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K Y B E R N E T I K A - V O L U M E 21 (1985), N U M B E R 2 

THE STRONG POINTWISE CONVERGENCE 
OF NEAREST NEIGHBOR FUNCTION FITTING 
ALGORITHM WITH APPLICATIONS 
TO SYSTEM IDENTIFICATION 

ALEXANDER A. GEORGIEV 

A new nonparametric algorithm, based on the nearest neighbor rule, is investigated in the case 
when noisy measurements of real valued function g are taken in nonrandom domain points. 
Sufficient conditions for the strong pointwise convergence of the procedures are given. Applica­
tions for a wide class of system identification problems are discussed. 

1. INTRODUCTION 

An important problem in system and control engineering is the identification 
of a system g from the observations 

(1) {xhg(x^ + Zi}U, 

where xt is the input of the system, selected by the experimenter, and Z{ is an inde­
pendent zero-mean noise. If the system g is known except for a finite number of para­
meters, the most popular methods are the least square [5] or maximum likelihood 
methods [5], [9]. If g is completely unknown, the following model may be proposed 

g(x) = aT <p(x), 

where (pT(x) = [cp-^x),..., cpi(xj] are known basis functions and a is a vector of para­
meters which is estimated by different methods such as stochastic approximation [15] 
or random search algorithm [16]. 

In this paper it is assumed that the system g is unknown and moreover, no para­
metric models are assumed. Based on the data sequence (1) we construct a new 
nearest neighbor identification algorithm. In Section 2 of this paper we prove that 
the algorithm is strongly pointwise consistent. We also show that the procedure 
is applicable to the identification of the step and frequency response in linear dynamic 
continuous-time systems of an unknown order. 
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2. THE ALGORITHM AND ITS CONVERGENCE 

Let (Xj, Yj), (x2, Y2),..., (x„, Y„) be observations according to the nonlineai 
memoryless system 

Yi = g(xi) + Zi, i = l,2,...,n, 

where g is an unknown function defined on the closed interval [0, 1] and the errors 
Z; are independent, identically distributed random variables with zero mean and finite 
variance. The input signals {x j are assumed to be known without errors and they 
satisfy, without loss of generality, the order condition 

Xj < x2 < . . . < x„ . 

Let x0 = 0 and x„ + 1 = 1 and let r„ = r(x, fc„) be the distance between x and the fc„th 
nearest neighbor observation of x among all x ;. The number of neighbors /c„ depends 
on n and is determined by the experimenter. In this paper we propose the following 
new nearest neighbor algorithm for the estimation of g 

(2) <?„(*) = t Y K (Z^*i) (* ' -» ' - - ) , 

where K is a bounded nonnegative function defined on the real line. Another kernel 
procedure has been studied by Priestley and Chao [10], Benedetti [1] and Schuster 
and Yakowitz [17]. Rutkowski [13] has introduced an orthogonal series estimate 
for g. Another nearest neighbor procedure has been examined by Greblicki [7] for 
similar identification problems. 

The following theorem establishes sufficient conditions for strong consistency 
of the algorithm (2). 

Theorem. Let g be a bounded function, and K be a continuous probability density 
function, such that K(x) is nonincreasing for x > 0, and nondecreasing for x < 0. 

Let 
(3) An = max (xt - x,_.) g jg/n , j3 > 0 , 

and 

(4) <5„ = min (xt — *(_.) <s a/n , a > 0 . 
>• 

If 

(5) fc„/« ~* 0 , as n -> co , 

and 
(6) K>=0(n-<), 
(1) EZj = 0 , E|Z!|1 + 1/ ' < co , for some 0 < t < 1, 

then 

(8) 9n(x) -> g(x) w i t n probability 1, as n -» co , 

at every continuity point of g(x)-
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Proof. Let I^x\<a) be the indicator of the set of all points for which |x| :£ a. 
By definition of r„, we obtain the following relation between kn and r„ 

(9) k„dn <rn< knAn. 

Let us choose a > 0 and x as continuity point of g. It is obvious that 

\gAx) - g(x)\ < \gn(x) - Egn(x)\ + \Egn(x) - g(x)\ . 

For the bias of estimate (2) we can give the following upper bound 

(10) |E_„(x) - gM| < 

< XK (±ZJ!i\ fc____i___l) \g(Xt) _. g(x)\lm^_0) + 
'= ' V r„ ) rn 

+ ^ / x ^ x i . \ ( x ; - x ; _ 1 ) . _ } | / + 

' = i V '•„ / >•„ 

+ 11__ f ir* . ) ^ ~ 5=i) - il |«(x)| ^ 

^ eft + 2c £__(^^)fr__J____), + c|fdj|i _ !| , 

where c = sup \g(x)\ , e = sup \g(y) — g(x)\ , din = K ( i} ±-± ^ -^ 

xe[o,i] |j>-*l_« V r„ J rn 

and £ din <. b. Let first n -» oo. From Lemma 1 in Benedetti [1], p. 250, and 
i = l 

by assumptions from the Theorem, we get for the third term of (10) that 

(11) __di„ -* 1 , as n -» oo . 
i = i 

Obviously b < oo, because {d;„} is a sequence of nonnegative numbers and (11) is 
in force. The second term in (10) is not greater than 

- v _- (x - x\ \x - x ; | (x ; - x (_,) _ . 2cnzln ,, , 
2c£__ .)L____«l___ !___/ ^ B sup X(y)v | . 

Now we use (3), (5) and (9). We obtain that (10) convergences to zero if we first 
let n -> oo and then a -> 0. It is enough now to show that \g„(x) — Ea„(x)| tends 
to zero with probability 1, as n -» oo. Obviously 

|fl„(x) - Efl„(x)| = | f ^„Z;| . 

It follows, from (3), (4) and (9), that 
. . | . j.sup__(x) 1 

max \din\ g - — - — ^ — . 
i a fc„ 

By virtue of Pruitt's result [11], p. 769, and (6), (7) the proof is complete. Q 
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3. APPLICATIONS IN DYNAMICAL SYSTEM IDENTIFICATION 

The study of procedure (2) was motivated in part by our interest in identification 
of linear dynamical continuous-time systems using noisy measurements on a system 
output. Consider the dynamic system of an unknown order (see also Rutkowski [13]), 
with zero initial conditions, given by 

g(t) = w(t - s) u(s) ás, 

where w(t) is the weight function of the system, u(t) is the input signal (u(t) = 0 
for t < 0) and g(t) is the output signal. The system is observed as 

(12) Y(t) = g(t) + Z(t), 

where Z(t) is the measurement noise with zero mean, finite variance and such that 
Z(f) and Z(") are independent, identically distributed random variables for t' +- X". 
For the unit-step input the relation (12) becomes 

Y(t) = h(t) + Z(t), 

where h(t) is the step response. Let us suppose that n measurements are to be made 
and are carried out at equally spaced points 1/n, 2/n,..., 1 in the unit interval. Thus, 
the noisy values {Y;}; = i are recorded, where Y's are independent, and h(t) may be 
estimated by algorithm (2). 

Procedure (2) can also be used for identification the frequency response of a linear 

dynamic system (see Greblicki [7]). Assume that H(jco) is a transfer function and the 

input signal is u(t) = sin (cot). It is known that the output signal is 

g(t) = a(co) sin (cot + (p((o)), 

where a(co) = |iT(jo>)| and (p((o) = arg H()(x>). Let us suppose that 2n noisy measure­
ments are to be made in {a>;}"=,, i.e. 

At = |H(ja),)| + ZU, i = l,2,...,n, 
and 

4>; = arg H(jco;) + Z 2 i , i = 1, 2 , . . . , n . 

The noisy measurements {A ;}"=1 and {<$;}"=1 and frequency points {co,}"=1 are 
enough for consistent estimating a((o) and q>((o) by algorithm (2). 

For an other nonparametric procedures in system identification, the reader is 
referred to Greblicki [6], [7], Greblicki and Krzyzak [8], Rutkowski [13], [14], 
Georgiev [2], [3], [4], as well as Rafajlowicz [12]. 
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