
Kybernetika

Athanasios V. Vasilakos; A. Haritsis; S. Batistatos
Isarithmic flow control using learning automata

Kybernetika, Vol. 26 (1990), No. 6, 473--483

Persistent URL: http://dml.cz/dmlcz/124835

Terms of use:
© Institute of Information Theory and Automation AS CR, 1990

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124835
http://project.dml.cz

K Y B E R N E T I K A - VOLUME 26 (1990), NUMBER 6

ISARITHMIC FLOW CONTROL USING
LEARNING AUTOMATA

A. V. VASILAKOS, A. HAR1TSIS, S. BATISTATOS

The main objective of flow control in a store-and forward packet switched network is a good
tradeoff between throughput and delay. The isarithmic method is an algorithm for network
access level flow control [6], that allows packets enter the subnet only if a free "permit" exists
at the source-node.

A learning automaton is situated at each exit-node, attempting to make an optimal decision
for the distribution of permits. We assume a network with Virtual Circuits (VC) and we analyze
the performance of the "Isarithmic-Learning" algorithm.

An Event Driven Simulator has been derived for the comparison of "Isarithmic-Learning"
algorithm with "Isarithmic-Random" algorithm (random distribution of permits).

1. INTRODUCTION

The main idea in isarithmic flow is controlling the congestion by limiting the total
number of packets existing in the network at any instant of time. This restriction
is achieved by having a fixed number of "permits" in the whole network, stored
at the nodes and travelling with packets. In order to enter the subnet, a packet
must capture one of the permits stored in the source-node, otherwise it waits outside
the network. After arriving at the destination, the permit is released by the packet
and can be returned to any node.

Problems. The particular problems appeared at isarithmic flow control are listed
below:

1) Although the global congestion is prevented, it does not guarantee that there will
not be an accumulation of permits anywhere, leading to congestion in that point
of the network.

2) It is difficult to find a good algorithm for the permits distribution. If they are
returned randomly, it is certain that every node will have some of them and a new
packet will not suffer a large delay before capturing a permit and leaving the
source-node. This random distribution may cause problems, when the arrival rate
packets for a Virtual Circuit (VC) is large (e.g. file transfer) related to another

473

Virtual Circuit. Then, there will not exist enough permits for the service of the first
VC (permit starvation).

3) The disappearance of generation of permits must be avoided.

A Solution in the Permit-Distribution Problem

From the above remarks, it is obvious that isarithmic flow control is not enough
for an efficient network operation. A combination of isarithmic — ETE window flow
control for each VC is needed [2, 6].

SCURCl
< E N T R Y I LNTRY> i [

0 0J-0 [V ^
0 0 |

0 /

DESTINATION
< E X I T >

• 4̂3-0
-0

P E R M 1 T S Fig. 1.

Permits are freed at the exit-node. A Learning Automaton is placed there and
chooses the VC, among them terminating at the same node, that will obtain the per­
mit. It is the Learning Automaton that undertakes the ETE flow control.

2. BASIC ELEMENTS FOR THE LEARNING AUTOMATON

A Learning Automaton (LA) is defined as a fivetuple {a, /?, (f>, p, T} [7], where
a: the set {a l5 a2, ar} of automaton actions.
/?: a continuous variable on [0, 1], the automaton input (S-model).
(j>: the automaton strategy.
p: the set {pu p2,..., pr} of action probabilities.

T: the learning algorithm.

The environment is defined as a triple {a, j8, c} [7], where
a: the set {a1? a 2 , . . . , a,} of environment input.
ft: a continuous variable on [0, l] , the environment output.

c: the set {c l5 c 2 , . . . , cr} of penalty probabilities

c,-(W) - P[/J(n) = 1 | a(n) = a J , c, e [0, l] .

We assume a non-stationary environment, thus the cf(n) change with time.

P A U T O M A T O N

P l ' P 2 P г

a
A U T O M A T O N

P l ' P 2 P г

E N V I R O N M E N T E N V I R O N M E N T

1 2 Fig. 2.

474

The automaton operation is explained below: At instant n, the automaton chooses
an action ct(n) = cct with probability Pi(n). The environment responds with a feedback
fi(n), that causes REWARD or PENALTY on the selected action. The action
probabilities are updated:

p(n + \)= T[p(n),x(n),[S(nj\

2.1 Learning Algorithm

There are linear or non-linear learning algorithms, with the p(n + 1) being a linear
or non-linear function of p(n) correspondingly. In addition, there are hybrid algo­
rithms that combine the previous ones. In our implementation the linear SLRP is
used [7].

If the selected action is a(n) = a,-, the following forms for the action probabilities
are used [7]:

REWARD Pi(n + 1) - Pi(n) + a[\ - .C |(n)] [1 - Pi(n)]

p(n) = 0 Pj(n + \) = Pj(n) - a[\ - ct(n)] Pj(n) (1)

PENALTY Pi(n + 1) = Pi(n) - b ct(n) Pi(n)

f$(n) = 1 Pj(n + \) = Pj(n) + b ct(n) j - ^ - Pj(n)\

where a, b: parameters on [0, 1]
; : 1,2,..., i - 1, i + 1, . . . , r .

For a non-penalty input (REWARD-case), the pt is increased and the other
probabilities are decreased. On the PENALTY-case, pt is decreased and all the other
components of p are increased. In both cases, the summation of probabilities remains
unchanged and equal to 1.

2.2 Classification of Linear Learning Algorithms

Based on the forms (l), we can classify the excited learning algorithms into three
categories [3], [4]:

1) Linear R e w a r d - I n a c t i o n (LRI): In this case b = 0. This algorithm is non-
ergodic and e-optimal. The action probabilities Pi(n) converge to a limited random
variable with probability one.

2) L inear R e w a r d - P e n a l t y (LRP): The parameters a, b are equal. The algorithm
is ergodic and expedient. The action probabilities converge to a random variable
with continuous distribution.

3) Linear (L R E P) : In this case b = 0[a~\ where b\a -* 0 as a -* Q. It is ergodic

475

and with a proper choice of b, the algorithm approaches SLR, and as a result becomes
s-optimal.

In our implementation we have preferred SLRfiP.

2.3 Computation of Penalty Probabilities

We have assumed non-stationary environment for the LA. The penalty probabilities
Ci(n) change with the time. There are two different ways of computation [7]:
1. The penalty probabilities depend on the action probabilities:

Ci(n + 1) = (j>i[pi(n)]

2. The penalty probabilities are affected from their previous values and the action
probabilities:

Ci(n + l) = k Ci(n) + (1 - *) UPM] . * e [0,1] (2)

The function #.[p.(w)] has the properties [7]:

1. It is defined everywhere on [0, 1]
2. It is continuous on every point of [0, 1]
3. It is monotonically increasing. (3)

In our implementation we have selected the second way of computation for the
Ci(n).

3. NETWORK MODEL

For the purpose of network analysis, we model each link as an M/M/l queueing
system (cf. Fig. 3) with infinite number of buffers. The basic elements of the queue
for link 1 are:

— mean packet length b bits
— capacity s(l) bps
— service rate c(l) = s(l)/b
— arrival rate y(l), equal to the summation of the throughputs of all the VC's

passing through link 1.

*ci:> cCID

QUEUE SERVER

Fig. 3.

The following assumptions are issued for the model:

1. The arrivals at the queue follow Poisson distribution with rate y(l).
2. The packet size follows exponential distribution with average value b.

476

3. The Kleinrock Independence assumption is issued. Each packet arriving at a node,
loses its length and obtains a new length from an exponential distribution with
average value b.

4. The packet delay includes the Queueing Time and the Transmission Time. So,
the mean steady-state packet delay is:

DELAY = — —
c(l) - y(l)

Speaking about permits, there is an initial fixed number of them at each source-node
of every VC. A packet, travelling from the HOST to a source-node, is accepted
only if there is at least one permit waiting there. In the case of shortage of permits,
the packet is discarded and the HOST retries to send this packet with another EVENT,
later, Fig. 4.

Q U E U E

Off&red Permьts >

Loa.d

PЛÏ *mits = 0 =

SERVER

•O-
Discard

Fig. 4.

Permits travel together with packets (one per packet) until the destination node is
reached. At this point, permits are released and the Learning Automaton decides
to which VC, having the same destination, they will be sent.

4. THE ISARITHMIC-LEARNING ALGORITHM

Any time that a packet arrives at its destination one permit is released and is
directed to the (source) node decided by the LA. Then, the environment of the LA
and the state probabilities are updated. The Algorithm's steps follows below:

SOURCE NODE OF fth VC MESSAGE DESTINATION NODE (LA)
Selection of action (ith VC)

PERMIT

Permits : = Permits + 1
Tt

Updating of penalty
probability c^n)

Updating of state pro­
babilities Pi(n)

In order to reduce the execution overhead and to achieve better measures of the
environment the Algorithm is executed (and thus the selected action changes), after
the arrival of N permits at the destination node (INTERVAL = N). When the

477

(fciV)th permit arrives (k = 1,2,...) the Algorithm is executed and its decision remains
for the interval of the next N permit arrivals.

4.1 Action Selection

In each LA there is a vector p which represents the action probabilities. Probability pi:

expresses the proportion of the permits that the ith VC of this LA will 'consume'.
The way an action is selected is as follows:

Probabilities pt, represented as small line sections (of length relevant to their
magnitude), are placed in a row forming a line section of length 1 (see Fig. 5). A ran­
dom number RND is generated in the range (0, 1). This number is located on the
above formed line. If the pt line section comprises this number, action i (i.e. VC i)
is selected for the next N permit arrivals.

P , P« Pr
i J t 1 r ™ T ' -1

o I i
RND = * VC 2 i s s e l e c t e d

Fig. 5.

4.2 Updating of the Penalty Probabilities

Formula (2) is applied with <£,•[/>/(»)] = T a n c l & — 0*^5 is chosen experimentally.

T h U S : ct(n + l) = k ct(n) + (l-k) Tt

Tt (normalized within the interval [0,1]) is the mean packet delay of the packet
transmitted through the ith VC, during the time of INTERVAL arrivals at the
destination node.

Measu remen t of VC-De lay :
Current mean packet delay of a VC can be measured at the VCs source by
keeping track on the round trip packets delay (delay until a packet's ACK is
received). An alternative approach is the measurement at the VCs destination.
The delay of each packet is extracted by a control information attached on it.

N o r m a l i z a t i o n :
In every LA the mean value of T£'s is kept. Any T£ is normalized after its division by
the relevant maximum value (of T/s) which is the double of the mean value of T£'s
kept. Values greater than the relevant max are normalized to the value 1. The
technique is depicted in Figure 6.

MEAN 2 * MEAN'

I " 1
Normals O 1

Fig. 6.

478

Remarks on the Function VC-Delay:

1. It has the properties (3) stated in Section 2.3. Tt is proportional to the probability
pi. Increase in pt means increase in number of permits assigned to the ith VC
which means increase of traffic through the VC and thus increase in T; (by M/M/l
rules).

2. As T£ takes high values the corresponding penalty probability ct(n) increases
in value and as a result, the LA reduces the probability of the ith VC-action
(p^. Consequently, the LA rewards (provides with more permits) the VC's with
lower packet delays.

4.3 Updating of the Action Probabilities

Formulas (1) are used, with parameters a = b = 002 (linear REWARD-PENALTY
model). If the penalty probability of the chosen ith VC is lower than a THRESHOLD
value, then fi(n) = 0, else 0(n) = 1.

5. SIMULATION RESULTS, COMPARISONS-CONCLUSIONS

5.1 Simulation for a 9-Node Network

Isarithmic-Learning Algorithm is compared with an isarithmic-Random Algorithm,
which distributes the permits to the source nodes randomly and no probability
vectors are recorded. In our simulation program, the network of Fig. 7 (9 nodes &
& 4 VCs) was used first. In the case of Isarithmic-Learning, there are 2 LAs; one
at node 4 with possible action {VC 1, VC 4} and the second at node 6 with possible
action {VC 2, VC3}.

For each Algorithm (RANDOM ISAR, LEARNING) simulation has run 10
times, with 35 000 EVENTS each time and different OfferedLoad each time. Final

Li I"
l * J *° l 5 J -v - \ v c »

tZгпÇҐ '«
vcз

•vc 1

Fig. 7.

479

results have driven to the following graphs

throughput = / (OfferedLoad) (Fig. 9)
Delay = / (OfferedLoad) (Fig. 10)
Power =/(OfferedLoad) (Fig. 11)

After observation of Simulation results and the corresponding graphs we came
to the following conclusions. The Learning Algorithm gives (particularly at the high
loads):

— Slightly higher Throughput than Random. We must note that both Algorithms
succeed in Flow Controlling the network (the Throughput graphs show that the
throughput climbs up to a limit imposed by the isarithmic flow control scheme
adopted).

— A much better (= lower) mean packet delay than Random Algorithm. This
implies that the LAs 'operated' as desired and the environment function Tt

resulted in an improved operation of the total network, by choosing the actions
with lower delay overhead.

— Improvement in power of the network, which is an obvious consequence of the
above.

5.2 Simulation for a 4-Node Network

The network depicted in Figure 8 was also used for simulating the two Algorithms
operation.

ЇS-
Fig. 8.

The corresponding graphs are shown as follows:

throughput =/(OfferedLoad) (Fig. 12)
Delay = / (OfferedLoad) (Fig. 13)
Power = / (OfferedLoad) = Throughput/delay (Fig. 14)

The conclusion is that Learning Algorithm gives better results than Random,
especially in the high loads.

It is worth to note that the results deviation between Learning & Random Algo­
rithms is greater than the deviation in the previous network. This happens because
the VCs differ more in traffic capability in the latter network, which results in
a stronger variance in the mean packet delays of the 3 VCs.

480

5.3 Parameters in Learning Algorithm

The following parameters were used in the Isarithmic Learning Algorithm:
- a = b = 002, k = 0-95: [7].

2 10 18 26 , 3 1 12 50 58 66 74

O f f e r e d l o a d

Fig. 9. Fig. 10.

26 34 42 50 58 66 74

OfferedLoad

— 3ANLTCV »- .EA9VNG

Fig. 11. Fig. 12.

; - 4 з / Pnлв' vs Cи 'a^ялi oяa

O iay

la^PiThMic - 1 3 / L?eav v5 d'9'Ba...Qafl

3 9 15 2" 27 33 39 16 51 57

CfferedLoad

-— RANDOM —*— LEARNING

FІg. 13. Fig. 14.

481

THRESHOLD = 0-3: set to this value after long tests.
INTERVAL = 4: this number should be close to parameter PERMITS VC.
PERMITS VC = 5: chosen after tests. Isarithmic-Learning Algorithm gives
better throughput for a choice of 6 permits/VC (than with 4, 5). This is reasonable
since more permits through the whole network result in more allowable load
in it. This notion is depicted in the following graphs:

Figure 7 network
Throughput = / (Offered Load) (Fig. 15)

Figure 8 network
Throughput = / (OfferedLoad) (Fig. 16).

'SAq-.EAflN.NG • 94 / Tnr, "S Onload

18 26 34 42 60 68 66 74 82

Offeredload

ISAR-J.EARN.SG - 4 3 / Thr vS Of.: oaf l

Throughput

9 15 21 2? ЭЭ 3 9 4 5 61 6 7 6 3

OffeгedLoad

— - PERMITS-4 - * - PERMITS-5 - * - PERMiTS-6

Fig. 15. Fig. 16.

6. CONCLUSION

In this work, we have presented the "Isarithmic-Learning" algorithm, which uses
Learning Automaton in order to solve the permit distribution problem. The si­
mulation results indicate that the use of this algorithm gives a good performance
for a packet-switched network.

The speed of Learning Automaton convergence and a better choice of the algorithm
parameters are problems for further investigation. We hope that discretized learning
algorithms will improve dramatically the performance of the FC scheme. We are
currently working on this field.

(Received July 21, 1988.)
R E F E R E N C E S

[1] A. S. Tanenbaum: Computer Networks. Prentice-Hall, Englewood Cliffs, N. J. 1981.
[2] D. Bertsekas and R. Gallager: Data Networks. Prentice-Hall, Englewood Cliffs, N. J. 1987.
[3] A. V. Vasilakos and S. A. Koubias: On routing and performance comparison of techniques

for packet-switched networks using learning automata. In: Proc. IEEE International Con­
ference on Circuits and Systems, Espoo, Finland, June 1988.

[4] Narendra and M. Thathachar: Larrning automata: a survey. IEEE Trans. Systems Man
Cybernet. 4 (1974), 323-334.

482

[5] G. Thaker and J. Cain: Interactions between routing and flow control algorithms. IEEE
Trans. Comm. 54(1986), 269-277.

[6] M. Gerla and L. Kleinrock: Flow control: a comparative survey. IEEE Trans. Comm. 28
(1981), 553-574.

[7] A. V. Vasilakos and S. A. Koubias: The use of learning algorithms in data network routing:
a methodology. In: Proc. IFIP TC 6/TC 8 International Symposium, Network Information
Processing Systems, Sofia, Bulgaria, May 1988.

[8] H. Kobayashi: Modelling and Analysis: An Introduction to System Performance Evaluation
Methodology. Addison-Wesley, Reading, Mass. 1981.

Dr. A. V. Vasilakos, Department of Computer Engineering, University of Patras, 26500 Patras
and Computer Technology Institute (CTI), Patras. Greece.
A. Haritsis, Department of Computer Science, Imperial College, London. England.
S. Batistatos, Department of Computer Engineering, University of Manchester, Manchester.
England.

483

		webmaster@dml.cz
	2012-06-05T21:36:09+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

