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K Y B E R N E T I K A — V O L U M E 33 (1997), N U M B E R 4, P A G E S 3 7 1 - 3 8 6 

STRONG D E C O U P L I N G OF D E S C R I P T O R SYSTEMS 
VIA P R O P O R T I O N A L STATE FEEDBACK 1 

Liu X I A O P I N G AND V L A D I M I R K U C E R A 

The problem of strong input-output decoupling by proportional state feedback is con
sidered for linear descriptor systems. The resulting system is required to be regular, with 
a diagonal transfer function matrix and an impulse-free response. 

The problem is solved in two steps. First, a generalized structure algorithm is used to 
regularize the system. Then, another algorithm is proposed which produces a sequence 
of integers. These integers are invariant under restricted system equivalence and regular 
proportional state feedback. The second algorithm provides a condition for existence as 
well as a procedure for construction of a decoupling feedback law. 

1. INTRODUCTION 

We consider a linear, time-invariant descriptor system of the form 

x1 = Alxxx + A12x2 + Bxu 
0 = A21x1 + A22x2 + B2u (1) 

y = C1x1 + C2x2 + Du 

where Aix G RniXn\ Ai2 G Rn'xn\ HJ G Rn'xm, Ci G Rmxn> for i = 1,2 and 
J~) c. P"*xm 

The system (1) is said to be regular if the matrix 

s i - A n -An 
-A21 -A22 

is nonsingular. A regular system has a unique solution x 1 ^ ) , x2(t) for every input u. 
An initial condition x ^ O - ) , x 2 (0~) is said to be consistent if it satisfies the system 
equation (1). 
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was performed while the first author was with the Institute of Information Theory and Automation, 
Academy of Sciences of the Czech Republic, Czech Republic. 
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The problem in question is to find, if possible, a regular proportional s tate feed
back of the form 

u = F1x1+F2x2 + Gv (2) 

with G being nonsingular, such that the corresponding closed-loop system 

x1 = (A11 + B^F^x1 + (A12 + BlF2)x2 + BxGv 

0 = (A21 + B2F1)x1 + (A22 + B2F2)x2 + B2Gv (3) 

y = ( C 1 + D F 1 ) x 1 + (C 2 + D F 2 ) x 2 + L>Gt; 

has the following properties 

1. it is regular; 

2. its solution x 1 is differentiable and x2 is piecewise continuous for any piecewise 
continuous input v and any consistent initial conditions; 

3. it has noninteracting property, tha t is, the transfer function matr ix of the 
closed-loop system (3) is diagonal and nonsingular. 

Such a problem is referred to as the strong input-output decoupling problem. It is 
worth noting that the definition above is somewhat different from that proposed by 
Dai [6] in tha t only consistent initial conditions are considered. 

Descriptor systems (also referred to as the differential-algebraic equation, singu
lar, implicit or semi-state systems) constitute an important class of systems of both 
theoretical interest and practical significance. Such systems arise naturally, among 
others, in robotic systems [14], chemical engineering [9], mechanical systems [22], 
and electrical circuits [15]. For a comprehensive introduction, see books [7] and [5], 
or survey papers [4] and [11]. 

For linear descriptor systems, input-output decoupling problems have been ad
dressed by several authors (Dai [6], Paraskevopoulos and Koumboulis [16, 17, 18], 
Ailon [1], and Shayman and Zhou [19]). However, the results given in these pa
pers are all obtained under the assumption of regularity by using transfer function 
methods. In fact, descriptor systems which are not regular can also be decoupled 
by proportional state feedback. This paper addresses the decoupling problem with
out the assumption of regularity; one assumes mere regularizability by proportional 
state feedback. 

In contrast to standard state-space systems, continuous inputs to a descriptor 
system can give rise to discontinuities or impulsive modes in the state trajecto
ries. Therefore it is of practical importance to design a feedback such that the 
corresponding closed-loop system is free of impulsive modes. Dai [6] investigated 
an input-output decoupling problem with impulse-free response, and called it the 
strong input-output decoupling problem. However, these results have the drawback 
that the conditions under which the strong input-output decoupling problem is solv
able depend on a matr ix which needs to be chosen first. In addition, these results 
were given under a very restrictive assumption that B2 has full row rank. In this 
paper, under the condition of regularizability, necessary and sufficient conditions for 
the solvability of the strong input-output decoupling problem will be derived, which 
only depend on the parameter matrices of the original system. 
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The paper is organized as follows. Section 2 investigates the problem of reg-
ularization via proportional s tate feedback. An algorithm is proposed, which is 
based on the s tructure algorithm given in [21]. This algorithm yields a necessary 
and sufficient condition for the solvability of the regularization problem. In Section 
3, the strong input-output decoupling problem is addressed. Another algorithm is 
presented, which produces a sequence of integers. It is proved that these integers 
are invariant under the restricted system equivalence and regular proportional s tate 
feedback. A necessary and sufficient condition is derived, under which the strong 
input-output decoupling problem is solvable. Technical proofs are relegated to the 
Appendix. An alternative approach, which is based on the standard Falb-Wolovich 
test [8], is discussed in the concluding section. 

2. REGULARIZATION P R O B L E M 

The problem of finding a feedback (2) which makes the closed-loop system (3) regular 
is that of regularization. This problem has been investigated considerably, see [2, 3]. 
We address this problem by using an alternative method. 

First we present an algorithm which is based on the structure algorithm of Sil
verman [20, 21]. 

A l g o r i t h m 1. (Regularization Algorithm) 
Step 0. Let q0 = rank [A22 H2 j and let [AQ2 BQ ] be the submatrix formed from 
the .rst qo independent rows of [A22 B2]. Then, there exists an n2xn2 nonsingular 
matrix So such that 

r 122 52 

S0[A22 5 2 ] = [ o ° 7 

For convenience, part i t ion ;5b;421 conformably with So [A22 B2] as 
Í21 

^ 0 A - 121 I 
. ^ 0 J 

where A21 has go rows. If rank A2)1 = 0 , then terminate the algorithm. If rank A2,1 > 0 , 
then go on to next step. 

Step k + 1. Assume that A21, A21, A22, and H2, i — \,...,k, have been defined 
through Steps 1 to k. Calculate the matrices 

Ą 
W ] Г Ãf 

Let qk+i = rank 
.422 H2 1 

^21^12 ^42151 • I f Mifc+i Bl+i ] i s t h e submatr ix formed from 

the first qk+i independent rows of 

nonsingular matr ix Sk+i such that 

A22 ^ 
7oi*. 10 791 *„, l> ^ e n there exists an n 2 x n2 

lA%iAlz AilBl ' 

BÌ 
'21 

Sk+i 
Ăf Щ 

LA21A12 AfB1 

J22 
Лk + l 

fí2 

nk + l 
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Similarly denote 

5, fc+i 
Ãf ГД21 l 

Д21 
ŕiк + \ J 

where A2},1 has qk+\ rows. If 

rank 

л 21 
л 0 

^ 1 

Д21 
УЧ- + 1 

= rank 

л2\ 
y l 0 

Ą1 

then terminate the algorithm. Otherwise go on to next step. 

R e m a r k 1. A similar method was used in [10] for solving the problem of dynamic 
feedback regularization. 

It follows from [21] that Algorithm 1 terminates after a finite number of steps 
bounded by n\ 4- 1. The following properties of the algorithm are useful in this 
paper. 

L e m m a 1. 

1. The integers </;, i = 0 , . . ., and the matrices A21, i = 0, . . . , are invariant under 
the feedback of the type (2). 

2. Let A be the first integer such that q\ = qni. If q\ = n2, then the rows of L\ 
are linearly independent, where 

rig1 ^ 
M 21 

Л 2 1
 J 

Л A - 1 -

For the proof of Lemma 1, see the Appendix. 

The following theorem gives a necessary and sufficient condition for solvability of 

the regularization problem. 

T h e o r e m 1. The system (1) is regularizable if and only if q\ = n2. 

P r o o f . Sufficiency: If q\ = n2, then [.42 2 B2 ] has full row rank, which means 

that there exists a matr ix E2 such that A 2 2 4- B\F2 is nonsingular. The application 

of feedback u = F2x2 + v to system (1) produces the following closed-loop system 

-ІІ л 1 1 . ? 1 4- ( л 1 2 4- BlF2)x2 + Blv 

Л-V + (A22 + B2F2)x2 + B2v. 
(4) 



Strong Decoupling of Descriptor Systems via Proportional State Feedback 375 

It follows from Lemma 1 and [21] that the standard state-space system 

x1 = A11x1+(A12 + B1F2)x2 

y = A21x1+(A22 + B2F2)x2 

is invertible, which implies that its transfer function A21(sl — A11)~1(A12 + B1F2) + 

(A22 + B2F2) is nonsigular. Hence the matrix 

singular. Thus system (4) is regular. 

sI-A11 -(A^ + B^F2) 
-Ä21 -(A22 + B2F2) is non-

Necessity: Suppose that system (1) is regularizable. Then there exists a feedback 
(2) such that the corresponding closed-loop system (3) is regular, that is, the system 

x1 = (A11 + B1F1)x1+(A12 + B1F2)x2 

y = (A21 + B2F1)x1 + (A22 + B2F2)x2 

with input x2 and output y is invertible. So, performing Algorithm 1 for (3) gives 
rank(,422 + B\F2) = n2, which implies that rankfyi22 B2] = n2, i.e. q\ = n2. • 

Throughout the paper, we assume that system (1) is regularizable. Then, for the 
closed-loop system to be free of impulsive modes, x1 must be in the null space of 
L\. In addition, it is easily seen that for any x1 E KerLA the regularizable system 
can be equivalently described as follows." 

x1 = A 1 1! 1 +A12x2
rB

1u 

0 = A2
x
1x1+A22x2 + B2

xu 

where [.422 B2] has full row rank. 

3. DECOUPLING PROBLEM 

It follows from Section 2 that for any consistent initial condition a regularizable 
system can be equivalently described as (1) with [A22 B2] having full row rank. 
Therefore, it is convenient to make the following assumption. 

Assumption 1. The matrix [vl22 B2] has full row rank. 

Now let us introduce another algorithm which will play an important role in 
solving the strong input-output decoupling problem. 

Algorithm 2. (Decoupling Algorithm) 
Step 1. If 

^22 B2 
rank C2 Д = n2 
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then there exists a unique vector E} of dimension n2 such that 

[CI Di] = E}[A22 B2] 

where C} and D, are the i—th rows of C 1 and D, respectively. Then let T1 = 
C} — E}A21. Otherwise, set r, = 0 and terminate the algorithm. 

Step k. Assume that we have defined a sequence of T 1 , . . . , Tf~ • If 

rank A22 B2 

rnk-\дl2 Ţk~lßl = n2 

then there exists a unique vector Ek of dimension n2 such that 

[ff-\Ai2 Tk~1B1] = Ek[A22 B2]. 

Then let Tf = Tk~1A11 - Ek A21. Otherwise, set n = k - I and terminate the 
algorithm. 

Performing Algorithm 2 for i = 1,..., m produces m integers, say r\,. .. ,rm. 
Now let us introduce the following matrices 

with 

C} = 
TpA11 

čl = 

n = 0 

nфO 

61 

cì 

cì = 

c2 = 

Cì 

"<?Г 
Ď = 

•ĎГ 

Ѓ2 
-Dm_ 

n = 0 

TpA12 nфO 
DІ = 

DІ П = 0 

TpB1 nфO. 

Remark 2. 

1. If ri2 = 0, i.e. there is no algebraic equation in the system, then Ek must be 
considered as a vector with no entries and Tk is equal to Tk~1A11. In this 
case, the integers r,-, i = 1,..., m, are the same as those given by Falb and 
Wolovich [8]. On the other hand, the algorithm runs even in the case n\ = 0, 
i.e. there are no differential equations in the system. 

2. If Algorithm 2 does not terminate at step n\, then it never stops, i.e. r,- = oo. 
In this case, it is not necessary to continue the algorithm further, so let r,- = n\. 

The following two properties of Algorithm 2 are useful in the sequel. 

Lemma 2. The integers r%,..., rm are invariant under feedback (2) as well as the 
restricted equivalent transformation 

Q = Qì 
o 

- i P 2 

Pз 
P = 

Qi o 
Q2 Qз 

(5) 

whose definition can be found in [6]. 
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Lemma 3. If the matrix 

are linearly independent. 

A22 B2] 
^,2 f) lS nonsingular, then the vectors 

rpl rpTl rp\ rpTm 

The proofs of Lemma 2 and Lemma 3 can be found in the Appendix. 

A22 B2 

c2 b 
is nonsingular, then r\ + • • •rm < n_. As According to Lemma 3, if 

a consequence, it is always possible to chooce n\ — r linearly independent vectors 
T i , . . . , T r such that T1,...,Tni.r,T

1,...,T[\...,Tm,...,Tr
rn- are linearly inde

pendent, where r = r\ + • • - + rm. Therefore one can choose the following coordinate 
transformation 

r) = {r)i,...,rini„r)' 

s> VSl,---)Si i • • • iSmi • • • i Vrn / 

with Q = TJx1, i = 1 , . . . , rj, j = 1 , . . . , m, and r/, = T{x, i = 1 , . . . ,ni - r. It is 
easily seen that the description of system (1) in the new coordinates takes the form 

of 
r) = A1n + A2£ + A3x2 + Bxu 

0 = A21x1 + A22x2 + B2u 

i} = $ s 

(6) 

cr1 = e* 
%* = Clx1 + Cfx2 + Diu 

Vi = £}, i = 1, • • •, m 
where 

= T" 1 

[ Ã1 Ã2 ] = 

[ Ã3 B1 ] = 

T1 

T 
J П ] - I 

Tl 

11 a-,-1 AxlT 

[ A12 B1 ] 

with T = [Ti,-... , T n i _ r , 7 } , . 
Since the relation 

rpn 
>X1 : 

L - П l - Г J 

• , - í m > - - - , - í m J • 

rank 
Л 2 2 ß 2 

(ľ2 Ď 
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= rank 

= rank 

/ 0 
F2 I 

I -(Ä22 + B2F2)-lB2 

0 / 

A22 B2 ' 
Ć2 Ď _ 

A22 + B2F2 0 
Ć 2 + ĎF2 Ď- (Ć2 + ĎF2) (A22 + B2F2)~lB2 

holds for any F2 such that A22 + B2F2 is nonsingular, the application of feedback 
(2) with such F2s, and 

F1 = -G{Cl - (C2 + DF2) (A22 + B2F2)~1A21] 

G = [D-(C2 + DF2)(A22 + B2F2)-1B2]-1 

to System (6) gives 

Ä1r) + Ä2i + Ä3x2 + Blv 
(A21 + B2F1)xl + (A22 + B2F2)x2 + B2Gv 

(7) 

77 = 

0 = 

ŕi _ ü 
(8) 

= Č Г l 

Sг 
ép;1 

tr, 
ç» = щ 

Уг = Ç}. ! . . . . , m. 

The structure of these equations shows that the noninteraction requirements have 
been achieved. As a mat ter of fact, the input V\ controls only the output yi through 
a chain of r\ integrators, the input Vi controls only the output y^ through a chain 
of r2 integrators, etc. In addition, the nonsingularity of the matrix A22 + B2F2 

guarantees that system (8) has Properties 1 and 2 given in Introduction. Therefore 
A22 B2 

the nonsigularity of the matr ix 
C5 D 

is a sufficient condition for the solvability 

of the strong input-output decoupling problem. In fact, it is also necessary. 

T h e o r e m 2 . The Strong Inpu t -Outpu t Decoupling Problem is solvable if and only 
_422 £ 2 

is nonsingular. if & D 

P r o o f . Sufficiency has already been verified. Now let us prove the necessity. To 
this end, we assume that the closed-loop system (3) has been rendered noninterac-
tive, i.e. possesses Properties 1-3 stated in Introduction. It follows from Lemma 1 
that a necessary condition under which system (3) has Property 1 is that the matrix 
A22 + B2F2 is nonsingular. As a result, x2 can be uniquely determined from the 
second equation of (3) as 

x2 = -(A22 + B2F2yl(An + B2Fl)xl - (A22 + B2F2)~lB2Gv. 

Substituting this into the first and third equations of (3) yields 

x1 = (A + BFl)xl +BGv 

y = (C + DFl)xl + DGv 
(9) 
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with 

A = An -(Al2 + BlF2)(A22 + B2F2)'1An 

B = Bi-(A12 + B1F2)(A22 + B2F2)~lB2 

C = Cl-(C2 + DF2)(A22 + B2F2)-lA2X 

D = D-(C2 + DF2)(A22 + B2F2)~lB2. 
According to the noninteractive property of system (3), it follows that system (9) 
has the same property, that is, the system 

(10) 
x1 = Ax1 + Bw 

y = Cxl + Dw 

can be decoupled by the feedback w = Flxl + Gv. 

We need the following lemmas whose proof can be found in the Appendix. 

Lemma 4. For any matrix F2 which renders A22 + B2F2 invcrtible, d{ = t{ — 1 
for i — 1,.. ., m where 

( 0 A - ^ 0 

d l = l min{j :CiAiB^0,j — 0, 1,..., ni - 1} A = 0 

. n i - 1 CiAiB = 0, j = 0 , l , . . . , n , 

where d and D% being the i—th row of C and D, respectively. 

Lemma 5. For any matrix F2 which renders A22 + B2F2 invertible, B* is nonsin-
A22 B2 

gular if and onl}- if the matrix C D is nonsingular where 

B* 

ČiÁdlB 

VČmÁd™B\ 

According to the results on the input-output decoupling of standard state-space 
systems [20], it follows from Lemma 5 that the condition of the theorem is necessary. 

4. CONCLUSIONS 

The strong input-output decoupling problem has been considered for linear descrip
tor systems under the assumption of rcgularizability. Two algorithms have been 
proposed, one answering the existence of a regularizing feedback while the other one 
the existence of a decoupling feedback. Both algorithms are constructive. 

The method used in this paper is different from those found in the literature. 
The results of the paper are given under the assumption of rcgularizability, so they 
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are more general than the existing ones. Compared with the results by Dai [6], the 
condition for the solvability of the strong input-output decoupling problem is less 
restrictive and easier to check. 

For descriptor systems (1) with the matrix [A22 B2] having full row rank, an 
alternative solution of the strong input-output decoupling problem is available. Let 
F2 be a matrix such that ^422 + B2F2 is nonsingular. The application of feedback 
u = F2x2 -f v to system (1) produces a descriptor system in which 

x

2 _ _ ( y l 2 2 + 52 -̂1^21 .̂1 + B 2 v ) 

On eliminating x2, one obtains a system in standard state-space form. Thus the 
effect of F2 has been a shift of all infinite eigenvalues of (1) to finite positions. For 
the resulting system the standard Falb-Wolovich test [8] is applicable, thus providing 
an alternative design. The result, however, may depend on the choice of matrix F2 

and it is difficult to interpret in terms of the original system matrices. The method 
proposed in this paper avoids these difficulties. 

Perhaps the main advantage of the method of this paper is that it can be gen
eralized to linear time-varying and nonlinear descriptor systems. An indication of 
how such a generalization to the time-varying case can be obtained is given in [20]; 
the generalization to the nonlinear case can be found in [12, 13]. 

APPENDIX 

Proo f of Lemma 1 

For convenience, let "—•" denote the application of feedback (2) to the system. For 
» = Q, 

[ A22 B2 } - [ A22 + B2F2 B2G } = [ A 22 B< 
1 

ғ2 
0 
G 

which implies that q0 —>• q0, as a result, So —* S0. From the relation 

Af+BlF1 

i A21 

Я21 
л o 

= S0A
21 -^SQЏ^ + B^F1}^ 

A 

it follows that A21 —+ A21. NOW assuming that the result holds for i = k, then it is 
easily seen that the following relation is satisfied. 

Ãf Щ 
Ã21A12 AfB1 

Ăf + B2F2 B'ІG 
ĂfA12 + ĂfB}F2 Ã21BXG 

A22 
Лk щ 

A21A12 AfB1 

I 
F2 

This implies that Sk+i —* Sk+i and qk+i —> Qk+i- In addition, 

: Sk+i 
Ã21 i 

лk+\ 
A21 

Ak+l J 

ÃV 

s, k + l 

A21An 

Ã21An + S, k + l 
щ 

Ã21вl ғ1 
121 

y Ч + i + Щ+i 
721 

лk + l 

F1 
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which means A2
+1 —• A2 .^ . By induction, it is no hard to prove the first part of 

the lemma. The second part is proved in [21]. • 

Proof of Lemma 2 

In order to prove the result, let us denote the system formed after applying feedback 
(2) and restricted equivalent transformation (5) as follows: 

xl = Anx1+A12x2 + B1v 
0 = A21zl+A22x2 + B2v (11) 
y = C1*;1 + C2x2 + L)v 

where 
A11 = Q^1(A11+B1F1)Q1 + P2(A

21 + B2F1)Ql 

+QX\A12 + B'F2) Q2 + P2(A
22 + B2F2) Q2 

A12 = QJ1(A12 + B1F2)Q3 + P2(A
22 + B2F2)Q3 

A21 = P3(A
21 + B2F1)Ql+P3(A22 + B2F2)Q2 

A22 = P3(A
22 + B2F2)Q3 

B1 = {Q{]-1BlG+P2B
2G ( 1 2 ) 

H2 = P3B
2G 

C1 = (C1+DF1)Q1+(C2 + DF2)Q2 

C2 = (C2 + DF2)Q3 

D = DG. 

Now it is sufficient to prove that r* = rt-, i = 1 , . . . ,m, where r\ is associated with 
system (11). 

First, let us verify the following relations by induction. 

fik _ (E*+T*-1Q1P2)P~1 

1 (13) 
ff = TfQ, 

for k = 1 , . . . , T{ and i = 1 , . . . , m, where T± = 0. 
It is easily seen that relations (13) hold for k = 1. Assume that relations (13) 

hold for k = j . Then according to (12) and [T/A12 TjB1] = Ej+1[A22 B2), it 
follows that 

[ff.A12 fiB1) = (E{+1+TiQ1P2)P3-
1[A22 B2) 

which implies E\ = (E\ +T- QiP2)P$ . Moreover, it is easily seen that 

fj+1 = f / i 1 1 - Ej+1A21 = (TfA11 - Ej+1A21) Qx = T/+1Qi-

This proves (13). Then, from 

rank 
A22 B2 1 _ 

[T^A12 TT^B1]- n2 + 1 
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it follows that 

rank 

= rank 

= rank 

= rank 

A22 B2 

LŤ['Á12 Tf-H1 

P3(A22 + B2F
2)Q:i P3B

2G 
1V(A12 + B1F2)Q3+T['Q1P,(A2^B2F2)Q3 T[> B'G+T^Q.P^G 

Ps 0] [ A22 B2 ] [ Q3 0 
T[*QXP2 l\ [TpA12 T^B1] [F2Q3 G 

A22 B2 

TI'A12 TI'B1 

= n2 + l 

This completes the proof. 

Proof of Lemma 3 

It easily follows from Algorithm 2 that the following relations hold. 

[C2 Di] = E}[A22 B2} 

[Tk-iAi2 Tf-'B1} = Ef[A22 B2}, k = 2,...,n, i = l , 

These are equivalent to the following relations 

D 

(14) 
.., m 

[C2
 DІ] 

'Tř~lA12 Tř^B1] 

' I 0" 
F2 / 

' 1 0" 
ғ2 /_ 

E}[A22 B2} 
' I 0" 
J?2 /_ 

' I 0" 
J2 I 

= E\[A22 B2] 

k = 2, . . ., r,-, i = 1, . .., m 

that is, 

[Cf + DiF2 Dz] = E}[A22 + B2F2 B2} 

[Tf-^A^ + B'F2) T'-'B1} = E\[A22 + B2F2 B2}, 

k = 2 r,\ i = 1, . . ., m. 

(15) 

(16) 

Therefore, for any F2 which makes A22 + B2F2 nonsingular, E\ can be uniquely 
determined as follows: 

E\ = (C2 + DiF
2)(A22 + B2F2)~1 

Ek = T%

k-1(A12 + B1F2)(A22 + B2F2)~\ k = 2,. .. ,rt, i = I,..., 

Assume that T1,..., T[l,..., I * , . .., T%* a r e linearly dependent. Then, 

m r , - 1 

m. 
(17) 

» = i j=i І = ì 
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with c- being constant,j = 1,. . . , r,-, i = 1,...-, m. As a result, one can get 

[ m r; — 1 m 1 

0 = EE«+E«' [̂ " Bl] 
[*=i j=i i=i J 
m r, — 1 m 

0 = E E ^ ^ 1 2 TVHi] + ^ c r ' [ T ; ^ 1 2 Tf-H1] 
i = l j = l i = l 

m r; — 1 m 

= E E ^ ^ t ^ 2 2 ^ i + E c n - r ^ 1 2 -r^1]-
i = l j = l i = l 

Therefore, from the nonsingularity of the matrix 

Л 2 2 H2 

C 2 Ď 

• A22 B2 

TpA12 T^B1 

Tr™A12 Tr™Bl J 
-^m -tl x m ^ 

it follows that c r ' = 0 for i = 1, . ., m. As a result, 

m r, — 1 

»=EE«' 
ISSl j = l 

Considering (17), it is easily seen that 

m r, — 1 

0 = ^ ^ ^ ' T f ' [ ^ 1 1 - ( y l 1 2 + H1E2)(yl22
 + / i 2 E 2 ) - M 2 1 ] [yl12 H1] 

*'=1 ;' = 1 

m r , —1 

- E E ^ [ ^ n - ^ + 1 ^ 2 1 ] lAU Bl] 
* = i j = i 

m r , — 1 

= EE^''1^^'] 
» = i j = i 
m r , —2 m 

= EE^^^^+E^r'^-i 1 2 2TB1]. 
* = i j = i * = i 

It follows that c r , _ 1 = 0 for i = 1,. . . , m. 

Similarly, it is easily proved that ĉ  = 0 for j — 1,. . . , r,- — 2, i = 1,. . . , m. This 
completes the proof. D 



384 LIU XIAOPING AND V. KUČERA 

Proof of Lemma 4 

Substituting (17) into (14) yields 

Cf-(Cf + DiF
2)(A22 + B2F2)-1A22 = 0 

Di-(Cf + DiF
2)(A22 + B2F2)-1B2 = 0 

Tl
k~1[A11-(A12+B1F2)(A22 + B2F2)-1A22} = 0, k = 2,...,n 

T*-1[B1-(A12 + B1F2)(A22+B2F2)-1B2} = 0, k = 2,...,n, i = l , 

By construction of Tk, it is easily seen that 

T} = C1-E}A21 = C1-(C2 + DiF
2)(A22 + B2F2)-1A21 

Tk _ Tt
k-l-E?A21 =Tl

k-1[A11-(A12 + B1F2)(A22 + B2F2)~1A21}, (19) 

k = 2,... ,n, i = I,... ,m. 

In addition, for any F2 which renders A22 + B2F2 nonsingular, we have 

m. 
(18) 

rank 

= rank 

= rank 

As a result, rank 

A 22 B* 
LT['A12 T[*BX 

A22 B2 

T['A12 TŢ*Bl 
I 0 

F2 I 
l -(A22 + B2F2)~lB2 

0 / 

Л 2 2 + H2F2 0 
T[ҚA12 + BľF2) T[>[BV - (Л1 2 + B{F2) (A22 + B^F2)-^2] 

A22 B2 

T['A12 Tľ-B1 = n.2 + 1 if and only if 

^•[H1 ~ (.412 + BXF2) (A22 + B2F2)-\B2] £ 0. 

From equations (14)-(20), one can easily deduce the following relations. 

Di = Di- (C2 + DiF2) (A22 + B2F2)~1B2 = 0 

Ci = C1-(C2 + DiF
2)(A22 + B2F2)~1A21=T1 

CiB = T1
1[B1-(A12 + B1F2)(A22 + B2F2)~1B2] = 0 

CiA = Tl
1[A11-(A12 + B1F2)(A22 + B2F2)~1A21] = T2 

CiAB = T'i[B1-(A12 + B1F2)(A22 + B2F2)-1B2} = 0 

CiA2 = T2[A11-(A12 + B1F2)(A22 + B2F2)-1A21}=Tl
3 

(20) 

ČiÁr>-2B = T[i-1[Bl-(A12 + B1F2)(A22 + B2F2)~1B2]-0 

ČiÁ^-1 = T['-1[A11-(A12 + B1F2)(Á22 + B2F2)-1A21] = T[' 

ČiÁri-lB - T[>[Bl - (A12 + BlF2) (A22 + B2F2)~lB2} -í 0, i = 1; , rn 
(21) 
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which means that d,- = ff —»1. 

P r o o f of L e m m a 5 

According to the definitions of C2 and D, it follows t h a t 

rank 

= rank 

^ 2 2 B2 

C2 D 

r A22 B2 -
T r M 1 2 T r 1 5 l 

T ^ 1 2 T^TB 1 ! 
r /l22 H2 

T r M 1 2 T r 1 R l 

T^A12 T ^ H 1 

^ 2 2 + R 2 T 2 

I 0 
E2 7 

7 -(A22 + B2F2)~lB2 

0 / 

= rank 

= rank 

Tp (A12 + BlF2) 7J» [J51 - (^1 2 + H2E2) (,422 + B2F2)~1B2] 

T^r(A12 + BlF2) T^rlB1 - (A12 + B'F2) (A22 + B2F2)~lB2} 
A22 + B2F2 0 

T^(A12 + B1F2) ČxÁ
r'-lB 

= rank 

which proves the claim 

T^{Al2 + BlF2) ČmÁr™-lBl 

A72 + B2F2 0 
X B* 

(Received January 18, 1996.) 
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