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K Y B E R N E T I K A - V O L U M E 7 9 ( 1 9 8 3 ) , N U M B E R 3 

LINEAR QUADRATIC CONTROL 
State Space vs. Polynomial Equations1 

VLADIMÍR KUČERA 2 

A class of linear quadratic control problems, the state space solution of which is well known, is 
solved here using the method of polynomial equations.The discussion includes linear regulator, state 
estimator, observer for a linear functional of state, and finally the case of linear quadratic control 
with incomplete and/or noisy measurements. The emphasis is placed on relating the two design 
techniques and on demonstrating the basic features of the polynomial equation approach. 
This provides further insight as well as simple and efficient algorithms for control system design. 

INTRODUCTION 

In recent years, we have witnessed a growing presence of algebra in systems and 
control theory. Algebra is now recognized as a natural and powerful tool in studying 
the structure and dynamical behaviour of linear constant systems, especially through 
polynomial models. 

These polynomial models can also be used to advantage when solving optimal 
control problems. The basic idea is to reduce the design procedure to the solution 
of a polynomial (Diophantine) equation. The first attempts to employ the polynomial 
equations in regulator synthesis are due to Volgin [19], Chkhartishvili [6], Astrom 
[2], Peterka [16] and Kucera [10, 11, 12]. 

No doubt this polynomial approach is natural and effective when the system 
or the process to be controlled is specified by its external model, see Astrom [3] 
and Kucera [13]. The purpose of this paper is to demonstrate that the method of 

1 The original version of this paper was presented at the 8th IFAC Triennial World Congress 
on "Control Science and Technology for the Progress of Society" which was held in Kyoto, 
Japan, during August 1981. 

This final version was written while the author was with the Laboratoire d'Automatique 
de l'Ecole Nationale Superieure de Mecanique de Nantes, Equipe de Recherche Associee au 
C.N.R.S., 44072 Nantes, France. 
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polynomial equations can also be applied to systems described by internal models, 
as an attractive alternative to the state space techniques. To make the relations 
between the two approaches clear and explicit, the discussion concentrates on the 
standard building blocks of state space design: linear regulation, state estimation 
and observer design. Their solutions are translated into the polynomial parlance 
and then used to derive simple, uniform and efficient procedures for the solution 
of linear quadratic control problems with incomplete and/or noisy measurements. 
To keep the presentation simple and instructive, we shall restrict ourselves to single-
input single-output systems: the generalization to the multiterminal case is addressed 
at the end of the paper. 

LINEAR REGULATOR 

Consider a reachable system 

x = Ax + Bu , x(0) = x0 

where x e R" and ueR, together with the cost 

ß = (x'Wx + u2)åt 

where W g: 0. It is desired to find a control law, relating u to x, which makes the 
resultant system asymptotically stable and minimizes Q for every x0. 

This control law is linear 
u = -Kx 

where 

(1) K = B'P 

and P is the solution of the algebraic Riccati equation 

(2) A'P + PA- PBB'P + W = 0 

such that A - BK is a stability matrix. 
To obtain the solution by polynomial methods, we shall follow Kalman [9], 

Brockett [5], MacFarlane [15] and Kucera [14]; a similar approach was reported 
by Shaked [17]. Denote s the differential operator and write 

(3) (sI-A)^B=M 
a(s) 

where a(s) is the characteristic polynomial of A. By reachability, the a(s) and b(s) 
are right coprime. Then define a stable monic polynomial g(s) by the relation 

(4) a(-s) a(s) + b'(-s) WB(s) = g(-s) g(s). 

This is called the spectral factorization and the g(s), if it exists, is unique. 
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We first establish the identity 

(5) [a(-s) + B'(-s)K'] [a(s) + K 5(a)] = a(-s) a(s) + b'(-s) WE(s). 

Add and subtract sP from equation (2) to obtain 

(si - A')P + P(sl - A) = W - PBB'P . 

Premultiply the result by B'(-sl - A')~l and postmultiply it by (si - A)*1 B. 
Then (5) follows on using (l) and (3). 

Next observe that the characteristic polynomial of A — BK equals a(s) + K B(s). 
Indeed, (3) implies 

(si - A) b(s) = B a(s) 

and the claim is immediate when adding BK b(s) to both sides above. Closed loop 
stability then implies that a(s) + K B(s) must be a stable polynomial. We have thus 
proved the following result. 

Lemma 1. The linear regulator gain K satisfies the equation 

a(s) + K b(s) = g(s) 
with g(s) defined in (4). 

Thus g(s) is the characteristic polynomial of the closed-loop system matrix A — BK. 
Since a(s) and b(s) are right coprime, the existence of K hinges on the existence 

of g(s). Let d(s) be the greatest common right divisor of a(s) and Wb(s). Then g(s) 
exists if and only if d(s) has no purely imaginary root; this corresponds to the absence 
of purely imaginary eigenvalues of the matrix 

Y-A BB'~\ 
\_ W A' J . 

If K does exist, it is unique. 

STATE ESTIMATION 

Consider a process modeled by an observable system 

x = Ax + v 

y = Cx + w 

where y e R, x e R" and v e R", w e R are two independent zero-mean Gaussian 
white random processes with intensities V ^ 0 and 1, respectively. Find an estimate x 
of x, generated from y by an asymptotically stable system, such that the expectation 

E(x - x)' U(x - x) 

is minimized in steady state for every U Si 0. 
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The optimal estimator is linear and given by 

k = (A-LC)x + Ly 

where 

L = PC 

and P satisfies the algebraic Riccati equation 

AP + PA' - PC'CP + V = 0 

with A — LC constrained to be a stability matrix. 

This is a dual of the linear regulator problem. Write 

c(si-Ar = f 
a(s) 

where a(s) is the characteristic polynomial of A. By observability, the a(s) and c(s) 

are left coprime. Then define a stable monic polynomial f(s) by the relation 

(6) a(s)a(-s)+c(s)V-c'(-s)=f(s)f(-s). 

The polynomial solution is now obtained by dual arguments; we have 

Lemma 2. The state estimator gain L satisfies the equation 

a(s) + c(s)L = f(s) 

with f(s) defined in (6). 

Again, the L exists if and only if d(s), the greatest common left divisor of a(s) 

and c(s)V, is devoid of purely imaginary roots. This corresponds to the absence 

of purely imaginary eigenvalues of the matrix 

Г-A ' CČЛ 

L V A J . 
If Ldoes exist, it is unique. Thej(s) is then the characteristic polynomial of the esti­

mator matrix A — LC. 

OBSERVING A FUNCTIONAL OF STATE 

Consider a reachable and observable system 

(7) x = Ax + Bu 

y = Cx 

where y e R, xe R", u e R and the state x is not available for measurement. Let 
a control law be specified in the form 

(8) u = -Kx . 
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Since the state of (7) is not directly available to implement (8), a system of the form 

(9) z = Fz + Gty + G2u 

h = Hz + Jy 

with 2 e Rm is constructed in such a way that h approximates Kx from available data. 
We say that (9) is an asymptotic observer for Kx if and only if there exists an m x n 
matrix Tsuch that E is a stability matrix and 

TA - ET= GiC 

TB = G2 

HT+ JC = K. 

There are two distinctive choices which guarantee an arbitrary characteristic 
polynomial of E for any K. These are a full order (m = JI) observer obtained when 
taking T nonsingular, and a least order (m = n — 1) observer obtained when T 
complements C to a nonsingular matrix. 

A direct polynomial solution is due to Wolovich [21]. Write 

(si-AyiB=m 
a(s) 

and 

C(sI-A)->B=bM 
a(s) 

where a(s) is the characteristic polynomial of A. By reachability and observability, 
the polynomials a(s) and b(s) are coprime. Introduce a pseudostate xp by 

(10) u = a(s)xp 

y = b(s) xp . 

The state x is then 

x = b(s) xp 

and we define a polynomial k(s) via 

(11) Kx = K b(s) xp = k(s) xp . 

To determine h from u and y we consider a system governed by 

(12) f(s)h = q(s)y + r(s)u. 

Inserting (10) and (11) into (12), it is readily established that 

j(s) (h - Kx) = [a(s) r(s) + b(s) q(s) - k(s)f(s)] xp. 

Thus (12) is an asymptotic observer for Kx if and only if f(s) is a stable polynomial 
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and 

(13) a(s)r(s) + b(s)q(s) = k(s)f(s) 

deg r(s) g deg/(s) 

deg q(s) g deg/(s) . 

The last two inequalities are to guarantee that (12) is a dynamical system. 

Consider the least degree solution q(s), r(s) of (13) with respect to q(s); it satisfies 
deg q(s) < n, where n = deg a(s). The conditions above are to be fulfilled for any 
k(s), hence we must take deg/(s) — n — 1 to satisfy the last inequality. Since neither 
deg b(s) nor deg k(s) exceeds n — 1, it is seen from (13) that this choice will also 
satisfy the other inequality. To summarize, we have 

Lemma 3. The system governed by (12) is an asymptotic observer for Kx if and 
only if f(s) is a stable monic polynomial of degree no less than n — 1 and <5f(s), r(s) 
are polynomials satisfying the equation (13) and the constraint deg q(s) < n. 

Thus f(s) is the characteristic polynomial of F. Clearly degj(s) = n — 1 yields 
a least order observer with arbitrary dynamics whereas deg/(s) = n results in a full 
order observer. The a(s) and b(s) being coprime, an observer can always be found 
for any k(s) and any j(s). Moreover, for any chosen f(s) the polynomials q(s) and 
r(s) are unique. 

DETERMINISTIC CONTROL 

Consider a reachable and observable system 

(14) x = Ax + Bu , x(0) = x0 

y = Cx 

where y e R, x e R", u e R along with the cost 

Q=\ (x'Wx + u2)át 

where W — 0. It is assumed that the state x of (14) is not accessible and our objective 
is to find a least order dynamical controller, processing y instead of x, which makes 
the overall system asymptotically stable while minimizing Q for every x0. 

Since the control law 

(15) u = -Kx 

resulting from the regulator problem cannot be directly implemented, the optimal 
controller would in general depend on x0. A natural approach is to construct a least 
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order asymptotic observer (9) for Kx and then implement the control law 

(16) u = -h 

in which Kx is replaced by its estimate h. The overall system then obeys the equation 

(17) r*"| = [ A - BK -BH 

L-J L o F _ 
where e = z — Tx. 

The polynomial solution of the deterministic control problem with incomplete 
measurements can now be obtained by combining the polynomial solutions to the 
regulator and observer problems. Write 

(sI-A)-iB=M 
a(s) 

and 

C(sI-A)^B=bf 
a(s) 

where a(s) is the characteristic polynomial of A. By reachability and observability, 
the polynomials a(s) and b(s) are coprime. 

Theorem 1. The observer-based control law for the deterministic problem is given 
by 

p(s) u = - q(s) y 

where the polynomials p(s) and q(s) satisfy the equation 

(18) a(s)p(s) + b(s)q(s)=f(s)g(s) 

and the constraint deg q(s) < n. The f(s) is any desired stable monic polynomial 
of degree n — 1 and g(s) is a stable monic polynomial defined by 

a(-s) a(s) + b'(-s) Wb(s) = g(-s) g(s) . 

Proof. By Lemma 1, the gain K in (15) satisfies 

(19) a(s) + K b(s) = g(s) 

where g(s) is defined in (4). Using Lemma 3, the least order observer for Kx is 

(20) f(s)h = q(s)y + r(s)u 

where 

(21) a(s)r(s) + b(s)q(s) = k(s)f(s) 

and deg q(s) < n. By definition, 

(22) k(s) = K b(s) 

and f(s) is an arbitrary but stable monic polynomial of degree n — 1. 
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The loop is now closed according to (16). Combining (16) and (20), the observer-
based control law is given by 

[r(s)+f(s)]u = -q(s)y. 

Adding a(s)f(s) to equation (21) gives 

a(s) [r(s) + j(s)] + b(s) q(s) = f(s) [a(s) + k(s)] . 

Since a(s) + k(s) = g(s) in view of (19) and (22), our claim follows on identifying 
p(s) = r(s) + f(s). • 

Clearly, the deterministic control problem is solvable if and only if the associated 
regulator problem is solvable. The characteristic polynomial of the closed loop 
system matrix in (17) is a product ofj(s), the characteristic polynomial of F, and g(s), 
the characteristic polynomial of A — BK. Once these polynomials are determined, 
the optimal control law can directly be obtained by solving equation (18). 

STOCHASTIC CONTROL 

Consider a controlled process modeled by a reachable and observable system 

(23) x = Ax + Bu + v 

y = Cx + w 

where y e R,xe R", u e R and v e R", w e R are two independent zero-mean Gaussian 
white random processes with intensities V ^ 0 and 1, respectively. In addition, 
the cost 

Q = £(x'Wx + u2) 

is given. It is assumed that the state x of (23) is not accessible, and our aim is to find 
a dynamical controller, processing y instead of x, which makes the resultant system 
asymptotically stable while minimizing Q in steady state. 

Invoking the separability of estimation and control, we first solve the linear 
regulator problem for the system 

x = Ax + Bu 
and the cost 

to obtain the control law 
-J> Q = (x'Wx + u2)dt 

u = -Kx . 

Then we solve the state estimation problem for the process 

x = Ax + v 

y = Cx + w 
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to obtain the estimator 

(24) x = (A - LC) x + Ly + Bu . 

Finally we implement the control law 

u = -Kx 

in which x is replaced by its estimate x. The closed loop system then obeys the 
equation 

H YA-BK - BKlYxl j " 7 OW^ 

in which e = x — x. 
The polynomial solution of the stochastic control problem with incomplete and 

noisy measurements is now at hand. Write 

( - - r - - | c(s/-Ar = f 
a(s) a(s) 

and 

C(sl-Ay>B = f 
a(s) 

where a(s) is the characteristic polynomial of A. By reachability and observability, 
the polynomials a(s) and b(s) are coprime. 

Theorem 2. The optimal control law for the stochastic problem is given by 

p(s) u = - q(s) y 

where the polynomials p(s) and q(s) satisfy the equation 

(26) a(s) p(s) + b(s) q(s) - j(s) g(s) 

and the constraint deg q(s) < n. The j(s) and g(s) are stable monic polynomials 
defined by 

a(s)a(-s) + c(s)Vc'(-s) =f(s)f(-s) 

a(-s)a(s) + b'(-s)Wb(s) = g(-s)g(s). 

Proof. The state estimator (24) js just a special full order observer of Kx in which 
h — z. It is obtained from (9) by setting T = 1, Gx = L. In view of Lemma 2, the 
characteristic polynomial, j(s), of the estimator matrix E = A — LC is given by (6). 
The proof then proceeds as in Theorem 1. • 

We can conclude by noting that the stochastic control problem is solvable if and 
only if the associated regulator and estimator problems are both solvable. The solu­
tion is then unique. The characteristic polynomial of the overall system matrix 
appearing in (25) is again a product ofj(s), the characteristic polynomial of A — LC, 
and g(s), the characteristic polynomial of A — BK. They are now both of degree n. 
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Once these polynomials are determined via the spectral factorizations, the optimal 
control law can directly be obtained by solving equation (26). Similar results in terms 
of rational transfer functions were reported by Shaked [18]. 

CONCLUSIONS 

The method of polynomial equations has been described as an alternative to the 
standard state space design of constant linear quadratic controllers. The emphasis 
has been placed on relating the two techniques and on demonstrating the simplicity 
of the polynomial approach. 

An interesting feature of this approach is that it closely associates the design 
of optimal controllers with the pole shifting technique. The spectral factorization 
is used to specify the characteristic polynomial of the optimal system and the control­
ler is then constructed so as to assign this polynomial. 

In addition to providing further insight, this procedure is computationally attractive. 
There are efficient algorithms which perform the spectral factorization, see Vostry 
[20], and the polynomial equations can easily be solved using the extended Euclidean 
algorithm, sec Blankinship [4], Kucera [13] or Jezek [7]. 

Finally, let us note that all the results presented in this paper hold true for discrete-
time systems. We just have to replace the differential operator s by the advance 
operator z and modify the relations for the spectral factorization appropriately; 
that is, we use z" 1 in place of — s and take the spectral factors of degree n. The results 
also generalize nicely for multivariable systems by employing the notion of matrix 
fractions. The multivariable regulator and estimator problems are discussed by 
Anderson and Moore [ l ] , Kailath [8] and Kucera [14], the observer problem by 
Wolovich [21] and Kailath [8]. The main difficulty arising in the multivariable 
observer design is associated with the choice of E(s), a matrix counterpart for the 
observer polynomial j(s), which would lead to the observer of specified order with 
a desired dynamics. Once this problem is solved, Theorems 1 and 2 are ready to apply. 

(Received June 15, 1982.) 
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