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KYBERNETIKA- VOLUME 19 (1983), NUMBER 3 

DESCRIPTIONAL COMPLEXITY MEASURES 
OF CONTEXT-FREE LANGUAGES 

ANTON CERNY 

The properties of several new descriptional complexity measures of context-free languages 
are discussed. Though these measures seem to be very simple the basic algorithmic problems 
remain to be undecidable. 

1. INTRODUCTION 

In [2], [3] and [4] several measures of descriptional complexity of context-free 
grammars (cfg's) and context-free languages (cfl's) have been investigated, most 
of them having the following properties: 

1. The corresponding hierarchy of complexity classes of languages over two-letter 
alphabets is infinite. 

2. The basic algorithmic problems are undecidable. (For example, the problems 
to determine the complexity of a language generated by a given grammar, to decide 
whether the given grammar is minimal or to construct an equivalent minimal gram­
mar.) 

In the present paper an attempt is made to investigate measures which seem to be 
simpler from two points of view. Over a fixed alphabet they induce a finite hierarchy 
of languages, and to determine the complexity of a grammar only a part of the 
grammar has to be considered. In spite of this for most of these new measures the 
basic algorithmic problems remain to be undecidable. 

2. PRELIMINARIES 

A survey of the descriptional complexity theory of formal languages is given in [4]. 
The basic notions of context-free languages theory to be used here are from [ l ] . 

A c/flis a quadruple G = (V, Z,P, S) with V and S £ V being finite sets of symbols 
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P a finite set of productions of the form A -> x where A e V - E, x e V*, and 
S e V — E the start symbol. The elements of E, resp. V — E, are called terminals, 
resp. variables. We write WiAw2 => w1 xw2 iff A -* x is in P and w1,w2e V*. The 
relation =>* is a reflexive and transitive closure of =>. The language defined by a cfg 
G i sL(G) =. {weE*;S=**w}. 

In Section 4 the e-reduced form (E being the empty word) of cfg's will be often 
used. A cfg G = (V, £, P, S) is said to be in e-reduced form iff 

a) for no variable A 4= S, A -> £ is in P 

b) if S — £ is in P, then S does not appear in any of the right sides of productions 
in P. 

The undecidability results in Sections 3 and 4 will be obtained using a reduction 
to the Post correspondence problem. In doing that a class of languages, denoted 
by L'xy, will be used. To define L'xy the languages Lxy described in [ l ] are used. 

Let x = (xu ...,xn), y = (yt ..., y„) be ordered n-tuples (n 2: 1) of nonempty 
words over the alphabet {a, b}. Let 

L(x) = {ba'*... baucxh ...*,.,; k £ 1, n |> i, ^ l , j = 1,2, ..., k} 

L(x,y) = L(x)cL(yf 

Ls = {w^w^w^cw^; wuw2e {a, b}*} 

Lx<y = {a, b, c}* - LsnL(x,y) 

According to [1], Lxy is a cfl and a cfg Gxy generating Lxy can be effectively 
constructed given x and y. Moreover, Lxy = {a, b, c}* iff the Post correspondence 
problem for the pair (x, y) has no solution. 

The languages L'xy can now be defined by L'xy = h(Lxy) where h : {a, b, c}* -> 
—> {a, b}* be the homomorphism defined by h(a) = ab, h(b) = a2b2, h(c) = a3b3. 

Clearly, a cfg G'xy generating L'xy can be effectively constructed given x and y, 
and L'x = h({a, b, c}*) iff* the Post correspondence problem for the pair (x, y) has 
no solution. 

In our last definition, the notion of descriptional complexity measure ([4]) is intro­
duced. Let ^(JS?) denote the class of all cfg's (cfl's) and N the set of all nonnegative 
integers. A descriptional complexity measure of cfg's (cfl's) is an arbitrary mapping 

K : 3 ? - N ( K : i ? - > N ) 

Every complexity measure K of cfg's induces a complexity measure of cfl's. This 
measure is also denoted K and is defined as follows 

K(L) = min {K(G); Ge<8, L(G) = L} 

for every cfl L. 
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3. PRODUCTIONS WITH TERMINALS 

The number of productions of a cfg G — Prod (G) is one of the basic complexity 
measures of cfg's. One way to define a simpler measure seems to be to count some 
special productions only. 

Since variables and terminals play such an important role in the definition of cfg's, 
it is natural to consider as a complexity measure the number of those productions 
in which terminals and/or variables satisfy some special condition. For example, 
productions with at least one (with no) terminal, productions with at least one 
(with no) variable in the right side and so on. The measures of the former type are 
investigated in this section. We consider the number of productions with a terminal 
as a complexity measure. 

In the following definition two terminal-based complexity measures are defined. 
They differ only in the case when a cfg contains e-productions. 

Definition 1. Let G = (V, E, P, S) be a cfg. Then 
PT(G) = the number of productions in P with right hand side containing at least 

one terminal 
PT(G) = PT(G) + the number of e-productions in P 

The basic relations between these two measures and the number of symbols of the 
underlying alphabet are summarized in the following lemma. 

Lemma 1. Let £ be a finite alphabet and L ^ 2* a cfl. Then 

(i) PT(L) ^ PT£(L) g PT(L) + 1 

(ii) PT(L) ^ |Z| 

In spite of property (ii) of Lemma 1 measures PTand P T induce an infinite hie­
rarchy of complexity classes of cfl's with no gaps. Indeed, it is easy to verify that 
for any integer n ^ 0 PT(Ln) = n (PTiLn) = n) holds for the languages L0 = 0, 
Ln = {al5 ..., an) over the alphabets Zn = {a,, ..., an) (n ^ l). 

Though measures PTand PTC are relatively simple, the basic algorithmic problems 
for them are undecidable. The proofs of undecidablility are based on the following 
lemma. 

Lemma 2. There is no algorithm to decide for an arbitrary cfg G whether or not 
PT(L(G)) = 1 (PT(L(G)) = 2). 

Proof. Let D denote the Dyck language generated by the grammar with two 
productions 

S -> SaSb | e 

Let h be the homomorphism from Section 2. For every pair (x, y) of n-tuples of non­
empty words over {a, b} denote 

LXty = (D - ak({a, b, c}*) b) u a L'x_yb 
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Since the language ah({a, b,c}*)b is regular, a cfg G'x y can be constructed with 

L(G:J = L;r 

Two cases will be considered now. 

I. The Post correspondence problem for (x, y) possesses no solution. In such a 
case Vxy = h({a, b, c}*) and therefore Vxy = D, PT(Vxy) = 1, PTS(VXJ = 2. 

II. The Post correspondence problem for (x, y) has a solution. We shall prove 
by a contradiction that PT(Vxy) ^ 2 and PTt(V'xy) ^ 3 in this case. 

Let G = (V, {a, b}, P, S) be a grammar generating V'xy. Suppose PT(G) = 1. 
Since ab e a Vxyb £ V'xy, the only production in P with a terminal in the right 
side has to be of the form 

(1) A -> uavbz, uvze(\ - {a, b})* 

and there exist words vt, v2 e (V - {a, b})* such that 

S =>* v1Av2 => v1uavbzv2 =>* ab 

However, this is possible only if 

(2) S =>* vxAv2 =>* A, v =>* 6, MZ =>* e 

Let us now denote L(u) = {w e {a, b}*\ v =>* w} and suppose for a moment that 
the inclusion D £ L(y) has been proven. Since there exists a solution of the Post 
correspondence problem for (x, y), there is a word 

(3) t e h({a, b, c}*) - Vx,y 

Then t e D £ L(v), and by (l), (2) 

(4) S =>* A => uavbz =>* aub =>* alb 

is a derivation in G. Consequently, atb e Vxy. On the other hand, by (3) the follow­
ing relations are simultaneously valid: 

atb 4 D - ah({a, b, c}*) b, atb $ a L'Xiyb 

From here we obtain that atb $ Vxy what contradicts to (4). This means that 
PT(Vxy) ^ 2 (and PTE(Vxy) ^ 3) in this case. Therefore to finish the proof of lemma 
the inclusion D £ L(v) remains to be shown. Since z is in L(i>), in order to prove 
D £ L(v) it is sufficient to show that w[, w2 e D n L(v) implies wxaw2b e D n L(u). 
Suppose Wj, W2 e D n L(v). The word w = a4w1aw2b/?4 is from D - ah({a, b, c}*)b. 
Indeed, w is in D and none of the words from ah({a, b, c}*) b contains the subword 
b5. Consequently, w is from Vxy = L(G). Then w = xxx2 where A => MAD^Z =>* xy 

(an initial substring has to be generated using (1)). From (2) we obtain 

S =>* A =>* %i 6 Vxy £ D 

240 



The equality x1 = w can be easily shown, as each initial substring of w except w 
itself contains more a's than b's what is impossible for a word from D. Thus each 
derivation of x, from uavbz has to be of the form 

(5) uavbz =>* av3b =>* x, = w , where v =>* v3 =>* a3wtaw2bb3, v3 e V* 

Since in (5) the production (l) has to be used again, the existence of the following 
derivations can be shown similarly: 

v =>* a2wlaw2bb2 

v =>* aw!_w2_ _ 

v =>* w1aw2b 

Therefore D _: L(.) and this completes the proof of lemma. • 

The unsolvability of determining PT(L(G)) (PT(L(G))) can be formulated now 
in a stronger form. 

Theorem 1. 

(i) For no integer n 2: 1 there is an algorithm to decide for a given grammar G 
whether or not PT(L(G)) = n (PT(L(G)) = n + l). 

(ii) The problems PT(L(G)) = 0, PT(L(G)) = 0, PT(L(G)) = 1 are decidable. 

Proof, (i) For n = 1 the theorem follows from Lemma 2. Let now n ^ 2. Let 
Zn_ t = {«., ..., -„_,} be an alphabet, such that Zn^L n {a, b] = 0. Denote L"}, = 
= Lxy u Zn_,. Clearly, PT(Z„_,) = PT£(Zn„,) = n - 1. By the same reasoning 
as in the proof of Lemma 2 one can show that PT(Lxy) = n (PTf{Lxy) = n + l) 
iff the Post correspondence problem has no solution for (x, v). (i) now follows 
from undecidability of the Post correspondence problem. 

(ii) From Definition 1 we easily obtain 

PT(L(G)) = 0 iff L(G) = 0 or L(G) = {s} 

PT£(L(G)) = 0 iff L(G) = 0 

Since L(G) = 0 and L(G) = {e} is decidable we have decidability of the first two 
problems in (ii). The decidability of the third problem we get from the decidability 
of the inclusion L(G) E w* ([l]) since 

(6) PT£(L(G)) = 1 iff L(G) + 0 and there is a word w such that 

L(G) S w + 

The only trouble in the proof of (6) seems to be with the if-part for the case w =# e. 
Let L(G) S w+ s Z* with Z being a finite alphabet, w + e. Let A, : a* -» Z* be 
a homomorphism, h^a) = w . By [ l ] „^(L(G)) is a cfl not containing the empty 
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word. It is easy to see that 

PT(L(G)) <PTz(h- '(L(G))) 

and by Lemma 1 PT(Ar'(L(G))) = 1 . • 

There are two interesting problems concerning the minimality of a cfg with respect 
to PT(PTS). The undecidability of the first one is an immediate corollary of Lemma 2, 
the undecidability of the second one needs a short proof. 

Corrollary 1. There is no algorithm to construct for a given cfg G an equivalent 
cfg G such that PT(G') = PT(L(G')) (PT(G') = PT(L(G'))). 

Theorem 2. There is no algorithm to decide for a given cfg G whether or not 
PT(G) = PT(L(G)) (PT(G) = PT(L(G))). 

Proof. It is easily to see that given x and y a cfg G can be constructed such that 
L(G) = L îV, PT(G) = 2 and PT£(G) = 3. It has been shown that PT(L'^y) < 2 
(PT/L^' y) < 3) iff the Post correspondence problem for (x, y) has no solution. 
However, this implies that G is a minimal cfg with respect to the complexity measure 
PT(PTC) iff the Post correspondence problem for (x, y) possesses a solution. The theo­
rem now follows from undecidability of the Post correspondence problem. 

4. END PRODUCTIONS 

The structure of leaf-parts of derivation trees in cfg's depends on the number 
and form of productions with no variable in the right hand side. Thus the number 
of such "end productions" as the complexity measure for cfg's could be of some 
importance. Similarly, the minimal number of distinct left sides of the end productions 
gives us some information about the intrinsic complexity of the language. 

Definition 2. Let G = (V, S, P, S) be a cfg. A production A ->• w will be called 
end production iff w e £*. A variable A will be called end variable iff there is an 
end production A -* w in P. 

Definition 3. Let G = (V, X, P, S) be a cfg. If G is a grammar in e-reduced form, 
then 

EP(G) = the number of end productions in P 

EV(G) = the number of end variables in P 

Otherwise 
EP(G) = EV(G) = l 2 | - l - l 

Definition 3 needs some explanation. For an arbitrary grammar G an equivalent 
grammar G with no end productions can be constructed. Indeed, by concatenating 
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the right side of each production with a new symbol X and adding X ~» £ to the 
productions of G such a grammar is obtained. The separate definition of the measures 
EP and EV for grammars not being in e-reduced form makes both measures non-
trivial, as shown in Lemma 3. 

Lemma 3. Let n _ m _ 1 be integers and Sn = {«, , . . . , an} an alphabet. Then 

(i) for any cfi L c_ I* EV(L) _; EP(L) _; n 
(ii) there is a language Lm>n S E* such that EV(Lm _) = m, EP(Lm-) = n. 

Proof, (i) is obvious. To prove (ii) denote Lm n = a+ u ... u a + _l u am u ... 
... u an. This language is defined by the grammar with productions 

S -> Ai | flj , i = 1,2, ..., m - 1 

Ai -* OjAj | ay , j = m,m + 1, ..., n 
and therefore 

(7) £V(Lm>n) _; m , EP(Lm,n) ^ n 

Let now G = (V, Ln, P, S) be an arbitrary grammar in s-reduced form generating 
Lm n. Lm n contains at least one word from each of the languages a +, i = 1, 2, ..., n. 
Hence for each integer i = 1, 2, ..., n there is a production 

(8) Pi -» a,' , k, > 1 

in P. Clearly, we may assume that kj = 1 for i = m, ..., n and that (8) is used in the 
derivation of some word W-, ea + , jwj| > kj for i = 1, 2, ..., m — 1. 

From (8) we immediately get EP(Lm n) > n, and consequently, EP(Lfflin) = nby(7). 

Suppose there are integers r , s , l _ r < s _ m , such that Br = Bs. Then the follow­
ing two derivations exist in G: 

S =>* bfBfl => b^ + q+kr = wr e L m . , p + q > 0 

S =>* _?£»r_? => 6r
pB5br

q => 6?__"-? 6 Lm>n 

This contradicts to the fact that no word in Lm n contains two different symbols. 
Thus EV(Lm>n) _t m and by (7) EV(LmJ = m. ' Q 

The decidability results for EP, EV and PT, PTE complexity measures are quite 
similar and the following lemma corresponds to Lemma 2. 

Lemma 4. There is no algorithm to decide for an arbitrary cfg G whether or not 
EP(L(G)) = 1 (EV(L(G)) = 1). 

Proof. Denote \!xy = "L'xyc. In order to prove the lemma it is sufficient to show 
that EP(Vxy) = 1 (EV(h'x\y) = l) iff the Post correspondence problem for (x, y) 
possesses no solution. To this end two cases will be considered. 

I. If the Post correspondence problem for (x, y) has no solution, then \Jxy = 
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= h({a, b, c}*) c (h is the homomorphism defined in Section 2). This language is 
generated by the grammar S -* abS | a2b2S | a3b3S | c and therefore EP(L"V) = 
= EV(L;.A = 1. 

II. Let the Post correspondence problem for (x, y) have a solution, i.e. there 
exist words u, v, z, t e {a, b}*, _ = vR, t = uR, such that for no integer m Si 1 the 
word h(umcvmczmctm) c is in L™v. Suppose there exists a cfg G = (V, {a, b, c}, P, S) 
in e-reduced form which generates L"-, and EV(G) = 1. 

Since c e L"v, the production A -* c where A is the only end variable of G has 
to be in P. 

At first we shall show that EV(G) = 1 implies that L™v is a regular language. Let 

(9) B-*wlCw2 

be an arbitrary production from P used in some derivation of a terminal word, with 
Wj e {a, b, c}*, i.e. C is the first variable from left in the right hand side of (9). Then 
there are words w3, ..., w8 e V* and the derivation 

S =>* W3EW4 => W3WJCWJW4 =>* W 3W ]W5^W 6W 2W 4 => 

=> w3w1w5cw6w2w4 =>* w1cw8 e L"^y 

(A is the only end variable of G!). Since the only possible position for a symbol c 
in L™y is at the end of the words, we get w8 = w2 = a. Hence every non-super­
fluous production of G is right-linear and L"„ is a regular language. 

However, from the existence of a solution of the Post correspondence problem 
for (x, y) the opposite follows. Indeed, by Theorem 5.6 of [5] if L™v is regular, then 
the equivalence relation E on {a, b, c}* induced by L" is of finite index. Thus there 
exist integers j , k S: 1, j # k, such that h(u')E h(uk). This contradicts to the fact 
that f.(uj) h(cvkczkctk) c is from L™_ while h(uk) h(cvkczkctk) c does not belong 
to L"v. Consequently, grammar G with the described properties cannot exist, and 
EP(Ll'y) _t EV(L"V) ^ 2. The lemma follows now from the undecidability of the 
Post correspondence problem. • 

Using Lemma 4 the following theorem can be proven. 

Theorem 3. 

(i) For no integer n ^ 1 there is an algorithm to decide for an arbitrary cfg G 
whether or not EP(L(G)) = n (EV(L(G)) = n). 

(ii) The problem EP(L(G)) = 0 (EV(L(G)) = 0) is decidable. 

Proof, (i) For n = 1 the theorem follows from Lemma 4. Let n ^ 2. Let Zn_1 = 
= {a,, ..., an_i} be an alphabet, Sn_j n {a, b, c} = 0. Denote L" y = L" u Ln_! 
where L"_ is the language from the proof of Lemma 4 and Ln_, = af u ... u a^_l. 
Since the languages L™y and Ln_ t are over distinct alphabets we get easily 

K(LJJ = K(L '̂jV) + K(Ln_,) for Ke{EP, EV} . 
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By a similar reasoning as in the proofs of Lemma 3 and Lemma 4 we get EP(L" y) = n 
(EV(LX y) = n) iff the Post correspondence problem for (x, y) has no solution. 
The theorem follows now from the undecidability of the Post correspondence 
problem. 

(ii) Clearly, EP(L(G)) = 0 (EV(L(G)) = 0) iff L(G) = 0 or L(G) = {e}. The 
last two problems are known to be decidable. Q 

Corollary 2. There is no algorithm to construct for a given cfg G an equivalent 
cfg G' minimal with respect to EP (EV). 

The problem of minimality is undecidable for EP, EV, too: 

Theorem 4. There is no algorithm to decide for a given cfg G whether or not 
EP(G) = EP(L(G)) (EF(G) = EF(L(G))). 

Proof. Obviously, a cfg G in £-reduced form generating Lxy can be constructed, 
with A -» a, B -> b, C -» c as the only end productions. If these productions are 
replaced by the productions A -> Db, B -» Dab2, C -» Da2b3, D -» a, a new gram­
mar generating L'x y is obtained. From this grammar by a small modification a gram­
mar G' generating L"xy can be obtained such that EP(G') = EV(G') = 2. From 
the proof of Lemma 4 it follows that G' is minimal with respect to EP(EV) iff the 
Post correspondence problem for (x, y) has a solution. The theorem now follows 
from the undecidability of the Post correspondence problem. • 

To finish this section three another complexity measures similar to the measures 
EP and EVare defined and some results concerning these measures arc summarized. 

Definition 4. Let G = (V, I , P, S) be a cfg. If G is in s-reduced form, then 

PTB(G) = the number of productions in P with a terminal at the beginning 

of the right hand side 

PTE(G) = the number of productions in P with a terminal at the end of the 

right hand side 

PTBE(G) = the number of productions in P with a terminal at the beginning and 

at the end of the right hand side. 

Otherwise 

PTB(G) = PTE(G) = PTBE(G) = | I | + 1 

Theorem 5. 

(i) Let I be a finite alphabet, L g I* a cfl. Then 
EP(L) g PTBE(L) ^ PTB(L) ^ |z | 
PT5E(L) ^ PTE(L) -S |3E| 

(ii) Let Ke{PTB,PTE,PTBE}. There is no algorithm 
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1. to decide for an arbitrary cfg G and integer n ^ 1 whether or not K(L(G)) = n 
2. to decide for a given cfg G whether or not K(G) = K(L(G)j 
3. to construct for a given cfg G and equivalent cfg G' minimal with respect to K. 

5. COMPLEMENTARY MEASURES 

Measures of complexity in Sections 2 and 3 have been defined according to the 
following schema: 

For each cfg G = (V, E, P, S) and each production p e P an integer k(G, p) e 
e {0, 1} has been defined. The complexity of a cfg G has then been defined by 

K(G) = X k(G, p) 
psP 

In other words, only a part of productions of a cfg G contributes to the overall 
complexity of G. Once this point of view is accepted it is quite natural to investigate 
the so-called complementary complexity measures to which the remaining part of 
productions contributes. They are defined by 

CK(G) = £ ( l - k ( G , p ) ) 
peP 

and will be discussed in this section. 

Definition 5. For a cfg G = (V, S, P, S) let us define 

CPT(G) = the number of productions in P without terminals in the right side 
CPT(G) = CPT(G) - the number of 8-productions in P 
CEP(G) = the number of productions in P not being end productions 
CEV(G) = the number of variables in V not being end variables 
CPTB(G) = the number of productions in P with the right hand side not beginn­

ing with a terminal 
CPTE(G) = the number of productions in P without terminal at the end of the 

right hand side 
CPTBE(G) = the number of productions in P with the right hand side not beginn­

ing or not ending by a terminal 
The main results of this section are summarized in two theorems. 

Theorem 6. There is no algorithm to determine CEP(L(G)) for an arbitrary cfg G. 

Theorem 7. Let L be a cfl. Then 

(i) If L = 0or L = {e} then CEV(L) = 1, otherwise CEV(L) = 0 
(ii) CPT(L) = 0 

(iii) I f e e L , then 

CPT(L) = CPTB(L) = CPTE(L) = CPTBE(L) = 1 
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Otherwise 
CPT(L) = CPTB(L) = CPTE(L) = CPTBE(L) = 0 

Hence, the basic algorithmic problems are decidable for all complementary 
measures of Definition 5 with the exception of the measure CEP. 

Proofs. The proof of Theorem 6 is similar to that of Lemma 2. Let us denote 
T.xy — Lxy — {e} and let us consider two cases. 

I. If the Post correspondence problem for (x, y) possesses no solution, then Lx y = 
= {a, b, c]+. This language is generated by the grammar S -> SS J a | b | c and 
therefore CEP(LXJ = 1. 

II. Let the Post correspondence problem for (x, y) have a solution. Suppose 
there is a cfg G with L(G) = Lxy, CEP(G) = 1. Then the start symbol is the only 
recursive variable in G. Now a grammar G' equivalent to G can be constructed 
containing just one variable. However, this contradicts to Lemma 3.2 in [3], which 
says that at least two variables are necessary to generate Lxy. It means that there 
is no grammar G for Lxy with CEP(G) = 1 and therefore CEP(Lxy) ^ 2. Theorem 6 
follows now from the undecidability of the Post correspondence problem. 

If G is a cfg and A a variable of G such that A =>* w E L(G), then by adding 
A -> w to the productions of G an equivalent grammar is obtained. From that (i) 
of Theorem 7 follows easily. The parts (ii) and (iii) of Theorem 7 follow from the 
well known fact that to every cfg there exists an equivalent cfg G' in e-reduced form 
all productions of which are of the A -> a or A -* axb with a, b being terminals, 
or S' -> e where S' is the start symbol of G'. • 
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