
Kybernetika

Anton Černý
Descriptional complexity measures of context-free languages

Kybernetika, Vol. 19 (1983), No. 3, 237--247

Persistent URL: http://dml.cz/dmlcz/124915

Terms of use:
© Institute of Information Theory and Automation AS CR, 1983

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124915
http://project.dml.cz

KYBERNETIKA- VOLUME 19 (1983), NUMBER 3

DESCRIPTIONAL COMPLEXITY MEASURES
OF CONTEXT-FREE LANGUAGES

ANTON CERNY

The properties of several new descriptional complexity measures of context-free languages
are discussed. Though these measures seem to be very simple the basic algorithmic problems
remain to be undecidable.

1. INTRODUCTION

In [2], [3] and [4] several measures of descriptional complexity of context-free
grammars (cfg's) and context-free languages (cfl's) have been investigated, most
of them having the following properties:

1. The corresponding hierarchy of complexity classes of languages over two-letter
alphabets is infinite.

2. The basic algorithmic problems are undecidable. (For example, the problems
to determine the complexity of a language generated by a given grammar, to decide
whether the given grammar is minimal or to construct an equivalent minimal gram­
mar.)

In the present paper an attempt is made to investigate measures which seem to be
simpler from two points of view. Over a fixed alphabet they induce a finite hierarchy
of languages, and to determine the complexity of a grammar only a part of the
grammar has to be considered. In spite of this for most of these new measures the
basic algorithmic problems remain to be undecidable.

2. PRELIMINARIES

A survey of the descriptional complexity theory of formal languages is given in [4].
The basic notions of context-free languages theory to be used here are from [l] .

A c/flis a quadruple G = (V, Z,P, S) with V and S £ V being finite sets of symbols

237

P a finite set of productions of the form A -> x where A e V - E, x e V*, and
S e V — E the start symbol. The elements of E, resp. V — E, are called terminals,
resp. variables. We write WiAw2 => w1 xw2 iff A -* x is in P and w1,w2e V*. The
relation =>* is a reflexive and transitive closure of =>. The language defined by a cfg
G i sL(G) =. {weE*;S=**w}.

In Section 4 the e-reduced form (E being the empty word) of cfg's will be often
used. A cfg G = (V, £, P, S) is said to be in e-reduced form iff

a) for no variable A 4= S, A -> £ is in P

b) if S — £ is in P, then S does not appear in any of the right sides of productions
in P.

The undecidability results in Sections 3 and 4 will be obtained using a reduction
to the Post correspondence problem. In doing that a class of languages, denoted
by L'xy, will be used. To define L'xy the languages Lxy described in [l] are used.

Let x = (xu ...,xn), y = (yt ..., y„) be ordered n-tuples (n 2: 1) of nonempty
words over the alphabet {a, b}. Let

L(x) = {ba'*... baucxh ...*,.,; k £ 1, n |> i, ^ l , j = 1,2, ..., k}

L(x,y) = L(x)cL(yf

Ls = {w^w^w^cw^; wuw2e {a, b}*}

Lx<y = {a, b, c}* - LsnL(x,y)

According to [1], Lxy is a cfl and a cfg Gxy generating Lxy can be effectively
constructed given x and y. Moreover, Lxy = {a, b, c}* iff the Post correspondence
problem for the pair (x, y) has no solution.

The languages L'xy can now be defined by L'xy = h(Lxy) where h : {a, b, c}* ->
—> {a, b}* be the homomorphism defined by h(a) = ab, h(b) = a2b2, h(c) = a3b3.

Clearly, a cfg G'xy generating L'xy can be effectively constructed given x and y,
and L'x = h({a, b, c}*) iff* the Post correspondence problem for the pair (x, y) has
no solution.

In our last definition, the notion of descriptional complexity measure ([4]) is intro­
duced. Let ^(JS?) denote the class of all cfg's (cfl's) and N the set of all nonnegative
integers. A descriptional complexity measure of cfg's (cfl's) is an arbitrary mapping

K : 3 ? - N (K : i ? - > N)

Every complexity measure K of cfg's induces a complexity measure of cfl's. This
measure is also denoted K and is defined as follows

K(L) = min {K(G); Ge<8, L(G) = L}

for every cfl L.

238

3. PRODUCTIONS WITH TERMINALS

The number of productions of a cfg G — Prod (G) is one of the basic complexity
measures of cfg's. One way to define a simpler measure seems to be to count some
special productions only.

Since variables and terminals play such an important role in the definition of cfg's,
it is natural to consider as a complexity measure the number of those productions
in which terminals and/or variables satisfy some special condition. For example,
productions with at least one (with no) terminal, productions with at least one
(with no) variable in the right side and so on. The measures of the former type are
investigated in this section. We consider the number of productions with a terminal
as a complexity measure.

In the following definition two terminal-based complexity measures are defined.
They differ only in the case when a cfg contains e-productions.

Definition 1. Let G = (V, E, P, S) be a cfg. Then
PT(G) = the number of productions in P with right hand side containing at least

one terminal
PT(G) = PT(G) + the number of e-productions in P

The basic relations between these two measures and the number of symbols of the
underlying alphabet are summarized in the following lemma.

Lemma 1. Let £ be a finite alphabet and L ^ 2* a cfl. Then

(i) PT(L) ^ PT£(L) g PT(L) + 1

(ii) PT(L) ^ |Z|

In spite of property (ii) of Lemma 1 measures PTand P T induce an infinite hie­
rarchy of complexity classes of cfl's with no gaps. Indeed, it is easy to verify that
for any integer n ^ 0 PT(Ln) = n (PTiLn) = n) holds for the languages L0 = 0,
Ln = {al5 ..., an) over the alphabets Zn = {a,, ..., an) (n ^ l).

Though measures PTand PTC are relatively simple, the basic algorithmic problems
for them are undecidable. The proofs of undecidablility are based on the following
lemma.

Lemma 2. There is no algorithm to decide for an arbitrary cfg G whether or not
PT(L(G)) = 1 (PT(L(G)) = 2).

Proof. Let D denote the Dyck language generated by the grammar with two
productions

S -> SaSb | e

Let h be the homomorphism from Section 2. For every pair (x, y) of n-tuples of non­
empty words over {a, b} denote

LXty = (D - ak({a, b, c}*) b) u a L'x_yb

239

Since the language ah({a, b,c}*)b is regular, a cfg G'x y can be constructed with

L(G:J = L;r

Two cases will be considered now.

I. The Post correspondence problem for (x, y) possesses no solution. In such a
case Vxy = h({a, b, c}*) and therefore Vxy = D, PT(Vxy) = 1, PTS(VXJ = 2.

II. The Post correspondence problem for (x, y) has a solution. We shall prove
by a contradiction that PT(Vxy) ^ 2 and PTt(V'xy) ^ 3 in this case.

Let G = (V, {a, b}, P, S) be a grammar generating V'xy. Suppose PT(G) = 1.
Since ab e a Vxyb £ V'xy, the only production in P with a terminal in the right
side has to be of the form

(1) A -> uavbz, uvze(\ - {a, b})*

and there exist words vt, v2 e (V - {a, b})* such that

S =>* v1Av2 => v1uavbzv2 =>* ab

However, this is possible only if

(2) S =>* vxAv2 =>* A, v =>* 6, MZ =>* e

Let us now denote L(u) = {w e {a, b}*\ v =>* w} and suppose for a moment that
the inclusion D £ L(y) has been proven. Since there exists a solution of the Post
correspondence problem for (x, y), there is a word

(3) t e h({a, b, c}*) - Vx,y

Then t e D £ L(v), and by (l), (2)

(4) S =>* A => uavbz =>* aub =>* alb

is a derivation in G. Consequently, atb e Vxy. On the other hand, by (3) the follow­
ing relations are simultaneously valid:

atb 4 D - ah({a, b, c}*) b, atb $ a L'Xiyb

From here we obtain that atb $ Vxy what contradicts to (4). This means that
PT(Vxy) ^ 2 (and PTE(Vxy) ^ 3) in this case. Therefore to finish the proof of lemma
the inclusion D £ L(v) remains to be shown. Since z is in L(i>), in order to prove
D £ L(v) it is sufficient to show that w[, w2 e D n L(v) implies wxaw2b e D n L(u).
Suppose Wj, W2 e D n L(v). The word w = a4w1aw2b/?4 is from D - ah({a, b, c}*)b.
Indeed, w is in D and none of the words from ah({a, b, c}*) b contains the subword
b5. Consequently, w is from Vxy = L(G). Then w = xxx2 where A => MAD^Z =>* xy

(an initial substring has to be generated using (1)). From (2) we obtain

S =>* A =>* %i 6 Vxy £ D

240

The equality x1 = w can be easily shown, as each initial substring of w except w
itself contains more a's than b's what is impossible for a word from D. Thus each
derivation of x, from uavbz has to be of the form

(5) uavbz =>* av3b =>* x, = w , where v =>* v3 =>* a3wtaw2bb3, v3 e V*

Since in (5) the production (l) has to be used again, the existence of the following
derivations can be shown similarly:

v =>* a2wlaw2bb2

v =>* aw!_w2_ _

v =>* w1aw2b

Therefore D _: L(.) and this completes the proof of lemma. •

The unsolvability of determining PT(L(G)) (PT(L(G))) can be formulated now
in a stronger form.

Theorem 1.

(i) For no integer n 2: 1 there is an algorithm to decide for a given grammar G
whether or not PT(L(G)) = n (PT(L(G)) = n + l).

(ii) The problems PT(L(G)) = 0, PT(L(G)) = 0, PT(L(G)) = 1 are decidable.

Proof, (i) For n = 1 the theorem follows from Lemma 2. Let now n ^ 2. Let
Zn_ t = {«., ..., -„_,} be an alphabet, such that Zn^L n {a, b] = 0. Denote L"}, =
= Lxy u Zn_,. Clearly, PT(Z„_,) = PT£(Zn„,) = n - 1. By the same reasoning
as in the proof of Lemma 2 one can show that PT(Lxy) = n (PTf{Lxy) = n + l)
iff the Post correspondence problem has no solution for (x, v). (i) now follows
from undecidability of the Post correspondence problem.

(ii) From Definition 1 we easily obtain

PT(L(G)) = 0 iff L(G) = 0 or L(G) = {s}

PT£(L(G)) = 0 iff L(G) = 0

Since L(G) = 0 and L(G) = {e} is decidable we have decidability of the first two
problems in (ii). The decidability of the third problem we get from the decidability
of the inclusion L(G) E w* ([l]) since

(6) PT£(L(G)) = 1 iff L(G) + 0 and there is a word w such that

L(G) S w +

The only trouble in the proof of (6) seems to be with the if-part for the case w =# e.
Let L(G) S w+ s Z* with Z being a finite alphabet, w + e. Let A, : a* -» Z* be
a homomorphism, h^a) = w . By [l] „^(L(G)) is a cfl not containing the empty

241

word. It is easy to see that

PT(L(G)) <PTz(h- '(L(G)))

and by Lemma 1 PT(Ar'(L(G))) = 1 . •

There are two interesting problems concerning the minimality of a cfg with respect
to PT(PTS). The undecidability of the first one is an immediate corollary of Lemma 2,
the undecidability of the second one needs a short proof.

Corrollary 1. There is no algorithm to construct for a given cfg G an equivalent
cfg G such that PT(G') = PT(L(G')) (PT(G') = PT(L(G'))).

Theorem 2. There is no algorithm to decide for a given cfg G whether or not
PT(G) = PT(L(G)) (PT(G) = PT(L(G))).

Proof. It is easily to see that given x and y a cfg G can be constructed such that
L(G) = L îV, PT(G) = 2 and PT£(G) = 3. It has been shown that PT(L'^y) < 2
(PT/L^' y) < 3) iff the Post correspondence problem for (x, y) has no solution.
However, this implies that G is a minimal cfg with respect to the complexity measure
PT(PTC) iff the Post correspondence problem for (x, y) possesses a solution. The theo­
rem now follows from undecidability of the Post correspondence problem.

4. END PRODUCTIONS

The structure of leaf-parts of derivation trees in cfg's depends on the number
and form of productions with no variable in the right hand side. Thus the number
of such "end productions" as the complexity measure for cfg's could be of some
importance. Similarly, the minimal number of distinct left sides of the end productions
gives us some information about the intrinsic complexity of the language.

Definition 2. Let G = (V, S, P, S) be a cfg. A production A ->• w will be called
end production iff w e £*. A variable A will be called end variable iff there is an
end production A -* w in P.

Definition 3. Let G = (V, X, P, S) be a cfg. If G is a grammar in e-reduced form,
then

EP(G) = the number of end productions in P

EV(G) = the number of end variables in P

Otherwise
EP(G) = EV(G) = l 2 | - l - l

Definition 3 needs some explanation. For an arbitrary grammar G an equivalent
grammar G with no end productions can be constructed. Indeed, by concatenating

242

the right side of each production with a new symbol X and adding X ~» £ to the
productions of G such a grammar is obtained. The separate definition of the measures
EP and EV for grammars not being in e-reduced form makes both measures non-
trivial, as shown in Lemma 3.

Lemma 3. Let n _ m _ 1 be integers and Sn = {«, , . . . , an} an alphabet. Then

(i) for any cfi L c_ I* EV(L) _; EP(L) _; n
(ii) there is a language Lm>n S E* such that EV(Lm _) = m, EP(Lm-) = n.

Proof, (i) is obvious. To prove (ii) denote Lm n = a+ u ... u a + _l u am u ...
... u an. This language is defined by the grammar with productions

S -> Ai | flj , i = 1,2, ..., m - 1

Ai -* OjAj | ay , j = m,m + 1, ..., n
and therefore

(7) £V(Lm>n) _; m , EP(Lm,n) ^ n

Let now G = (V, Ln, P, S) be an arbitrary grammar in s-reduced form generating
Lm n. Lm n contains at least one word from each of the languages a +, i = 1, 2, ..., n.
Hence for each integer i = 1, 2, ..., n there is a production

(8) Pi -» a,' , k, > 1

in P. Clearly, we may assume that kj = 1 for i = m, ..., n and that (8) is used in the
derivation of some word W-, ea + , jwj| > kj for i = 1, 2, ..., m — 1.

From (8) we immediately get EP(Lm n) > n, and consequently, EP(Lfflin) = nby(7).

Suppose there are integers r , s , l _ r < s _ m , such that Br = Bs. Then the follow­
ing two derivations exist in G:

S =>* bfBfl => b^ + q+kr = wr e L m . , p + q > 0

S =>* _?£»r_? => 6r
pB5br

q => 6?__"-? 6 Lm>n

This contradicts to the fact that no word in Lm n contains two different symbols.
Thus EV(Lm>n) _t m and by (7) EV(LmJ = m. ' Q

The decidability results for EP, EV and PT, PTE complexity measures are quite
similar and the following lemma corresponds to Lemma 2.

Lemma 4. There is no algorithm to decide for an arbitrary cfg G whether or not
EP(L(G)) = 1 (EV(L(G)) = 1).

Proof. Denote \!xy = "L'xyc. In order to prove the lemma it is sufficient to show
that EP(Vxy) = 1 (EV(h'x\y) = l) iff the Post correspondence problem for (x, y)
possesses no solution. To this end two cases will be considered.

I. If the Post correspondence problem for (x, y) has no solution, then \Jxy =

243

= h({a, b, c}*) c (h is the homomorphism defined in Section 2). This language is
generated by the grammar S -* abS | a2b2S | a3b3S | c and therefore EP(L"V) =
= EV(L;.A = 1.

II. Let the Post correspondence problem for (x, y) have a solution, i.e. there
exist words u, v, z, t e {a, b}*, _ = vR, t = uR, such that for no integer m Si 1 the
word h(umcvmczmctm) c is in L™v. Suppose there exists a cfg G = (V, {a, b, c}, P, S)
in e-reduced form which generates L"-, and EV(G) = 1.

Since c e L"v, the production A -* c where A is the only end variable of G has
to be in P.

At first we shall show that EV(G) = 1 implies that L™v is a regular language. Let

(9) B-*wlCw2

be an arbitrary production from P used in some derivation of a terminal word, with
Wj e {a, b, c}*, i.e. C is the first variable from left in the right hand side of (9). Then
there are words w3, ..., w8 e V* and the derivation

S =>* W3EW4 => W3WJCWJW4 =>* W 3W]W5^W 6W 2W 4 =>

=> w3w1w5cw6w2w4 =>* w1cw8 e L"^y

(A is the only end variable of G!). Since the only possible position for a symbol c
in L™y is at the end of the words, we get w8 = w2 = a. Hence every non-super­
fluous production of G is right-linear and L"„ is a regular language.

However, from the existence of a solution of the Post correspondence problem
for (x, y) the opposite follows. Indeed, by Theorem 5.6 of [5] if L™v is regular, then
the equivalence relation E on {a, b, c}* induced by L" is of finite index. Thus there
exist integers j , k S: 1, j # k, such that h(u')E h(uk). This contradicts to the fact
that f.(uj) h(cvkczkctk) c is from L™_ while h(uk) h(cvkczkctk) c does not belong
to L"v. Consequently, grammar G with the described properties cannot exist, and
EP(Ll'y) _t EV(L"V) ^ 2. The lemma follows now from the undecidability of the
Post correspondence problem. •

Using Lemma 4 the following theorem can be proven.

Theorem 3.

(i) For no integer n ^ 1 there is an algorithm to decide for an arbitrary cfg G
whether or not EP(L(G)) = n (EV(L(G)) = n).

(ii) The problem EP(L(G)) = 0 (EV(L(G)) = 0) is decidable.

Proof, (i) For n = 1 the theorem follows from Lemma 4. Let n ^ 2. Let Zn_1 =
= {a,, ..., an_i} be an alphabet, Sn_j n {a, b, c} = 0. Denote L" y = L" u Ln_!
where L"_ is the language from the proof of Lemma 4 and Ln_, = af u ... u a^_l.
Since the languages L™y and Ln_ t are over distinct alphabets we get easily

K(LJJ = K(L '̂jV) + K(Ln_,) for Ke{EP, EV} .

244

By a similar reasoning as in the proofs of Lemma 3 and Lemma 4 we get EP(L" y) = n
(EV(LX y) = n) iff the Post correspondence problem for (x, y) has no solution.
The theorem follows now from the undecidability of the Post correspondence
problem.

(ii) Clearly, EP(L(G)) = 0 (EV(L(G)) = 0) iff L(G) = 0 or L(G) = {e}. The
last two problems are known to be decidable. Q

Corollary 2. There is no algorithm to construct for a given cfg G an equivalent
cfg G' minimal with respect to EP (EV).

The problem of minimality is undecidable for EP, EV, too:

Theorem 4. There is no algorithm to decide for a given cfg G whether or not
EP(G) = EP(L(G)) (EF(G) = EF(L(G))).

Proof. Obviously, a cfg G in £-reduced form generating Lxy can be constructed,
with A -» a, B -> b, C -» c as the only end productions. If these productions are
replaced by the productions A -> Db, B -» Dab2, C -» Da2b3, D -» a, a new gram­
mar generating L'x y is obtained. From this grammar by a small modification a gram­
mar G' generating L"xy can be obtained such that EP(G') = EV(G') = 2. From
the proof of Lemma 4 it follows that G' is minimal with respect to EP(EV) iff the
Post correspondence problem for (x, y) has a solution. The theorem now follows
from the undecidability of the Post correspondence problem. •

To finish this section three another complexity measures similar to the measures
EP and EVare defined and some results concerning these measures arc summarized.

Definition 4. Let G = (V, I , P, S) be a cfg. If G is in s-reduced form, then

PTB(G) = the number of productions in P with a terminal at the beginning

of the right hand side

PTE(G) = the number of productions in P with a terminal at the end of the

right hand side

PTBE(G) = the number of productions in P with a terminal at the beginning and

at the end of the right hand side.

Otherwise

PTB(G) = PTE(G) = PTBE(G) = | I | + 1

Theorem 5.

(i) Let I be a finite alphabet, L g I* a cfl. Then
EP(L) g PTBE(L) ^ PTB(L) ^ |z |
PT5E(L) ^ PTE(L) -S |3E|

(ii) Let Ke{PTB,PTE,PTBE}. There is no algorithm

245

1. to decide for an arbitrary cfg G and integer n ^ 1 whether or not K(L(G)) = n
2. to decide for a given cfg G whether or not K(G) = K(L(G)j
3. to construct for a given cfg G and equivalent cfg G' minimal with respect to K.

5. COMPLEMENTARY MEASURES

Measures of complexity in Sections 2 and 3 have been defined according to the
following schema:

For each cfg G = (V, E, P, S) and each production p e P an integer k(G, p) e
e {0, 1} has been defined. The complexity of a cfg G has then been defined by

K(G) = X k(G, p)
psP

In other words, only a part of productions of a cfg G contributes to the overall
complexity of G. Once this point of view is accepted it is quite natural to investigate
the so-called complementary complexity measures to which the remaining part of
productions contributes. They are defined by

CK(G) = £ (l - k (G , p))
peP

and will be discussed in this section.

Definition 5. For a cfg G = (V, S, P, S) let us define

CPT(G) = the number of productions in P without terminals in the right side
CPT(G) = CPT(G) - the number of 8-productions in P
CEP(G) = the number of productions in P not being end productions
CEV(G) = the number of variables in V not being end variables
CPTB(G) = the number of productions in P with the right hand side not beginn­

ing with a terminal
CPTE(G) = the number of productions in P without terminal at the end of the

right hand side
CPTBE(G) = the number of productions in P with the right hand side not beginn­

ing or not ending by a terminal
The main results of this section are summarized in two theorems.

Theorem 6. There is no algorithm to determine CEP(L(G)) for an arbitrary cfg G.

Theorem 7. Let L be a cfl. Then

(i) If L = 0or L = {e} then CEV(L) = 1, otherwise CEV(L) = 0
(ii) CPT(L) = 0

(iii) I f e e L , then

CPT(L) = CPTB(L) = CPTE(L) = CPTBE(L) = 1

246

Otherwise
CPT(L) = CPTB(L) = CPTE(L) = CPTBE(L) = 0

Hence, the basic algorithmic problems are decidable for all complementary
measures of Definition 5 with the exception of the measure CEP.

Proofs. The proof of Theorem 6 is similar to that of Lemma 2. Let us denote
T.xy — Lxy — {e} and let us consider two cases.

I. If the Post correspondence problem for (x, y) possesses no solution, then Lx y =
= {a, b, c]+. This language is generated by the grammar S -> SS J a | b | c and
therefore CEP(LXJ = 1.

II. Let the Post correspondence problem for (x, y) have a solution. Suppose
there is a cfg G with L(G) = Lxy, CEP(G) = 1. Then the start symbol is the only
recursive variable in G. Now a grammar G' equivalent to G can be constructed
containing just one variable. However, this contradicts to Lemma 3.2 in [3], which
says that at least two variables are necessary to generate Lxy. It means that there
is no grammar G for Lxy with CEP(G) = 1 and therefore CEP(Lxy) ^ 2. Theorem 6
follows now from the undecidability of the Post correspondence problem.

If G is a cfg and A a variable of G such that A =>* w E L(G), then by adding
A -> w to the productions of G an equivalent grammar is obtained. From that (i)
of Theorem 7 follows easily. The parts (ii) and (iii) of Theorem 7 follow from the
well known fact that to every cfg there exists an equivalent cfg G' in e-reduced form
all productions of which are of the A -> a or A -* axb with a, b being terminals,
or S' -> e where S' is the start symbol of G'. •

ACKNOWLEDGEMENT

The author is indebted to Dr. J. Gruska for valuable and stimulating discussions and for
reading the manuscript.

(Received July 15, 1977.)

R E F E R E N C E S

[1] S. Ginsburg: The Mathematical Theory of Context-Free Languages. McGraw-Hill, New York
1966.

[2] J. Gruska: Some classifications of context-free languages. Information and Control 14
(1969), 2, 152-179.

[3] J. Gruska: Complexity and unambiguity of context-free grammars and languages. Informa­
tion and Control 18 (1971), 5, 502-519.

[4] J. Gruska: Descriptional complexity of context-free languages. Proceedings MFCS' 73,
High Tatras, 7 1 - 8 3 .

[5] A. Salomaa: Formal Languages. Academic Press, New York and London 1973.

RNDr. Anton Cerny, Katedra teoretickej kybernetiky Matematicko-fyzikdlnej fakulty Univer-
zity Komenskeho (Department of Theoretical Cybernetics, Faculty of Mathematics and Physics —
Comenius University), MIynskd dolina, 842 15 Bratislava. Czechoslovakia.

247

		webmaster@dml.cz
	2012-06-05T11:06:12+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

