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KYBERNETIKA CISLO 2, ROCNIK 4/1968

Some Theorems on Labelled Bracketings
Used in Transformational Grammars

KareL CuLik

There are proved several lemmas and theorems concerning certain types of decompositions of
well-formed labelled bracketings which are nothing else than a linear expression of phrase-
markers used in context-free grammars,

The following theorems concern the notions introduced in [1] in order to formalize
the theory of transformational grammar presented in [2]. Thus primarily the labelled
bracketings have their meaning in linguistiés or in the mathematical theory of lan-
guages because they are sequences of symbols expressing uniquely the phrase-markers
of context-free grammars. There is a correspondence between the well formed labell-
ed bracketings and the phrase-markes and markers defined as the special graphs in [4]
and [5] On the other hand some pure abstract results have more general mathematical
character and are connected with the bracketing mentioned in [3].

Finite, disjoint sets ¥V and Vy are said to be terminal and nonterminal vocabularies
resp. The pair ([, 4) or (], 4) is said to be a left or right labelled bracket resp. where
A€ Vy and instead of ([, 4) or (], 4) one writes [ or ] resp. Then L= {[; 4 ¥y}

A A A

and R = {]; AeVy} and a terminal labelled bracketing (Ib) is a finite string of
A

symbols from V; U L U R. The free semigroup of all strings the generators of which
belong to the set M is denoted by M® and M®° = M® U {e} where e is the identity
element of the semigroup M®, i.e. e is the empty string the length of which /() = 0.
Many other special definitions and notations are introduced in [1] and here accepted
without any change. First of all in the definition 1.1 of [1] a well formed labelled
bracketing (wflb) is introduced as follows: a Ib  is a wflbif either (i) ¢ & Vy U Py, or
(i) ¥ = 1, where ¥y, , arewflbor (iii) y = [¢'] where [e L,] e Rand ' is a wflb.
A A A A4

A Ib  is said to be in the basic form if = 2,X10,4,X50, ... 4,X,0, where
nx1,X;,eVy, l;e P and g;€ R®° foreachi = 1,2, ..., n.
Let ¥ be a Ib and let Y = aafdy, where a € Land @ € R. The occurrence shown
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of a is said to be a corresponding occurrence to the shown occurrence of a (and
conversely) if it is the first occurrence of @ in  on the right of a-which satisfies the
following condtions: a and @ are labelled by the same nonterminal symbol and the
number of occurrences of the left brackets in f is the same as the number of the right
ones.

A 1o  satisfies the bracket condition if to each occurrence of a left bracket in ¥
there exists the corresponding occurrence of a right bracket in ¢ and if the number
of occurrences of right brackets in  is not greater than of left ones.

Lemma 1. Let  be a b satisfying the bracket condition and let = dagay
where @ = abf; a, be L, e R and a and @ are the corresponding brackets. If b is
the corresponding bracket to b, then b can occur neither in § nor in y but always in
B. Therefore @ and dy satisfy the bracket condition too.

Proof. Let us assume that b do no occurs in ¢. Then according to the bracket
condition the number of left brackets in ¢ is the same as the number of the right
ones and therefore there must be a right bracket ¢ € R occuring in ¢ the correspond-
ing left bracket ¢ of which does not belong to ¢. This means that ¢ must occur either
in y what is a contradiction because the corresponding right bracket ¢ is on the left
and not on the right of the left bracket ¢, or ¢ occurs in 8. In this case we repeat the
previous considerations for the pair ¢, ¢ instead of a, @ and for the left bracket a
instead of b. This leads to a regress ad infinitum what is a contradiction to the finiteness
of o).

Thus b must occur in ¢ and this is true for each left bracket b in ¢. Therefore —

as y satisfies the bracket condition — ¢ satisfies it as well and in a similar way one
proves the same for dy.

Theorem 1. A1b  is a terminal wflb if and only if \y is in the basic form and if ¥
satisfies the bracket condition.

Proof. Let ¢ be a terminal wflb. If /() = 1, then ¥ € V; and therefore ¥ is in
the basic form. The condition concerning the brackets is satisfied trivially (there is
no bracketin ). If () = k > 1, theneither y = y'y" or ¥ = ay'a, where Y and y"
are the terminal w{lb’s such that I(y") < k, I(}/") < k and ae L, @ e R and & is the

- corresponding occurrence to a. In the first case according to the inductive assumption

Y o= 11X40) ... Ao Xn0p, and ¥ = x, X071 ... 41X 0, and therefore y'y” is in
the basic form too. Further /' and " satisfy our condition concerning their brackets
and therefore obviously this condition is satisfied by y'y” too.

In the second case by the inductive assumption it follows that ¥’ is in the basic
form and that /' satisfies the bracket condition. It is quite clear that than ay'a
satisfies both these conditions too.

Now on the contrary let ¥ = 1, X,9, ... 4,X,0, and let ¥ satisfy the bracket
condition. If I(¥) = 1, then ¥ € Vy and ¥ is a terminal wflb. If I(y) = k > 1, then
we shall distinguish two possibilities 1; = e and 1; = e.



In the first case from the bracket condition if follows g, = e and therefore it is
clear that ¢ = 1,X,0, ... 4,X,0, satisfies the bracket condition. Thus by the inductive
assumption — because [(¢) < k — ¢ is a terminal wflb and therefore ¢ = X,
a terminal wflb too.

In the second case one can write 4; = a4} where a € L. From the bracket condition
follows the existence of ¢ and 7y such that ¥ = agay, where d is the corresponding
right bracket to a. By Lemma 1, ¢ and y (bccause &= e) must satisfy the bracket
condition and therefore they must have the basic forms. Thus by the inductive assump-
tion — because (@) < kand I(y) < k — @ and y are the terminal wflb’s and therefore
Y = apay must be a terminal wflb too.

According to the definition 1.2 of [1] one can assigne the debracketization d(e)
to the Ib ¢ as follows: if ¢ = X, X, ... X, where X;e V; UL UR for each i =
=1,2,...,n then d(¢) = x;xy,... %, where 1 <k <k, <..<k,<n and
Xy, € Vrforeach i = 1,2, ..., p but x;e Lu Rfor each j such that 1 <j < » and
j == k;foreachi =1,2,..,p.

The further important notion is the standard factorization. A sequence of 1b’s
(W1» Y2, ..., W) is said to be the standard factorization of b Y if () ¥ = YW, ... Yy,
(ii) either Y/, = e or d(y;) + e and (iii) the leftmost or rightmost symbol of , is
not a right or left bracket resp.

In the definition 1.4 of [1] it is inconvenient to allow ¥; = ¢ and to prescribe the
number k characterizing the sequence (Wu Yzs +.s i), Therefore we shall call
a standard factorization (Y1, 2, ..., W) right if d(y;) % e foreach i = 1,2, ..., k.
Further the maximal right standard factorization of a wflb has the maximal length k.

It is clear that it is sufficient to study only the right standard factorizations because
each not right standard factorization can be obtained from a right one by adding
some elements e between some neighbooring strings in the sequence.

Theorem 2. Let 1, X,0,24,X52, ... 2,X,0, be the basic form of a terminal wflb
and let us denote w; = A, X 0; for each i = 1,2, ..., n. Then (wy, w,, ..., w,) is the
maximal standard factorization of . Further a sequence of strings (Y1, Y, ...
.. W) is a right standard factorization of  if and only if there are integers
1 py <py<..pe=nsuchthat Y, =ww,...w, and Y; =W,  1W,  42...
..wy, for eachj =2,3,..., k.

Proof. It is clear that really (w, ws, ..., w,), is the maximal right standard
factorization of . Further let us assume that (¥, ¥, ..., ) is a right standard

" factorization of ¥, i.e. Y1, ... ¥, = ¥ and d(y;) = e and the leftmost or rightmost
symbol of ; does not belong to R or to L resp. foreachi = 1,2, ..., k. Thenyr s, ...
coo Wy = 4, X104, X50, ... 4,X,0, and between X, and X, there can be at most
one cut and if it is the case this cut must be between g; and A;, ; what means that there
are the required integers p;. On the other side, if there are the required integers p;
such that ¥y = wiw, ... w, and ¥; =w, W, 42...W, for j=2,3,..k
then it is obvious that (;, Y5, ..., ) is a right standard factorization.
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A deconcatenation of a string ¢ is a sequence of strings (@1, 3, --., @,) such that
@103 .- ¢, = @ and @; + e for each i = 1,2, ..., n. The number n is said to be the
length of the deconcatenation (@4, @, ..., @,). If I{¢) = k, then by the induction
one easy proves that there are 2¢7! deconcatenations of the string ¢. In fact, the
right standard factorization is a special case of the deconcatenation.

Theorem 3. If (i, Y5, ..., ) is a right standard factorization of a terminal
wilb s, then (d(¥e), d(¥s), ..., d(W,)) is a deconcatenation of the debracketization
d(l//) of Y. The mapping assigning in this way deconcatenations to the factorizations
is a one-to-one mapping of the set of all right standard factorizations of \ into the
set of all deconcatenations of d().

Proof. Using Theorem 2 one can express explicitly the corresponding elements
in the considered mapping as follows:

(/11X1QI }vp,Xp,Qm: /1m+1Xm+1Qpl+1s lsz

PZQPZ’ A
oo A1 X g 10t 42X 2042 s Ap X p0,,) and
XXy . X, Xpe1 o Xpy oo X141 --- X,,). Now Theorem 3 is obvious.

Lemma 2. If aXp and o"XfB are the wflb’s such that X € Vy, € L®, o = «'o”
and B = B'B", then &’ = e and B” is a wflb also.

Proof. By the definition 1.1 of [1] it is clear what is the pair of the corresponding
brackets and that in a wflb are contained cither both of the corresponding brackets
or none of them. Now, if a € Lis an arbitrary bracket contained in o and if a is its
corresponding bracket, then 4 must be contained in « and thus in f’ also. By the
same reasoning a must be contained in «” and therefore o’ = «,i.e. a' = e.

Now aX ' and «Xf'f" are the wflb’s and therefore by Theorem 1 both of them
satisfy the bracket condition and are im the basic form. From this it follows that "
satisfies the bracket condition too and then that " is in the basic form. Thus by
Theorem 1, 8" is a wflb.

Finally the following definition 1.3 of [1] will be used. The interior of a terminal
Ib ¢ — written I{p) is the longest wflb  such that (i) d(p) = d(y), and (i) thercare
1b’s @, = such that ¢ = oW, if such ¥ exists. We shall call o the left exterior of ¢
(written E\(¢)) and 7 the right exterior of ¢ (E(¢)). If there is no such  we leave
I(p), E{¢) and E(p) undefined. We also leave the interior (and exteriors) of labelled
bracketing ¢ undefined if ¢ is not terminal.

Theorem 4. Let @ = y; for some i, where (Y1, ¥, ..., ¥,) is a right standard
factorization of a terminal wflb y and let the interior I(p) exist. If 2, X1012,X 505 ...
... 4,X,0, is the basic form of ¢, the following three possibilities can appear : either
E(p) = E(p) = eand I(¢) = ¢; in this case ¢ is a wflb itself, but in the remaining
two cases it is not; or E(p) = e,1(p) = 4,X 0, ... 4,X,0, and E(p) = ¢, + ¢ where
0, = 0,05 or E(9) = e, I(p) = 41X 0, ... 1,X,0,and E (@) = 1] + ewhere Ay = 1A},
i.e. there can never be E(p) + e + E ().



Proof. If ¢ is not wflb, then E(p) E(¢) + e because of ¢ = E(¢) I(¢) E{p)-
Further it is clear that either E,(¢) = e or there exists 1] such that E(p) 1] = 4
and similarly either E,(¢) = e or there exists ¢, such that ¢} E(¢) = ¢; (obviously
it is allowed A, = e and @} = e). Now it is sufficient to exclude the possibility of
E(0) + ¢ + E(0).

Therefore let us assume E(¢) + e + E(¢@). Under this condition 4, # e # ¢,
and we can write A, = ad{ where a e Land g, = ¢,b where b e R.

Now, let @ denote the bracket corresponding in ¥ to the a and let us ask whether @
belongs to ¢ or not. If the answer is yes, then there is an integer j suchthat 1 < j < n,
gj = ¢i¢y...c,where p = land ¢,e Rforeach h = 1,2,..., pand @ = ¢, for some
1£mZp.Thuse = 4,X,0; ... 4;X;¢1¢5 ... ¢, isin the basic form and by Lemma 1
it satisfies the bracket condition too. Therefore by Theorem 1 ¢’ is a terminal wflb.
On the other hand, I(p) is also a terminal wflb and &’ I(@) = ¢'¢” where a'a” = A;.
Therefore by Lemma 2 o' = e, i.e. E{(¢p) = e what is a contradiciton.

If the answer is no, i.c. @ does not belong to ¢, then the correspondingleft bracket b
to b must belong to ¢ and by a quite similar reasoning one obtains E,(¢) = e, i.e.
a contradiction again.

Lemma 3. Let (4,X101, 7,X205, -.-» 4, X,0,) be the maximal right standard
Jactorization of a terminal wflb . Then 4,X ,0; has its interior and if 4; = a,a,_; ...
...ay + e where a;e L for each 1 £j £ p and ¢; = byb, ... b, + e where b;e R
foreach1 £j < g, thenI(AX0,) = a,a,_y ... a1 X ;byb, ... b, where s = min (p, q).
If either 2; = eor g; = e, then I(A,X,0;) = X;.

Proof. It is clear that d(,X,0) = d(aa, ;... a;X;byb,... b)) = d(X;) and
therefore one needs to prove that the considered strings are wflb and have the maximal
length. It is obvious in the latter case. In the former case when A; & e @; one can ask
whether the corresponding bracket a, to a, belongs to 1,X,0; or not.

If the answer is yes, then @, = b; for some j, 1 £ j < ¢, and therefore by the
definition 1.1 of [1} a,a, ;... X;b;b; ... b; must be wflb what means j = p.
In this case evidently p = min (p, q) = s and also one can easy see that there is
no wflb containing a,, ;... a,X;b,b,... b, and being contained in A, X, ie.
a@a,_y...a;X;bib, ... by = I(4:X0).

If the answer is no, then one can ask a similar question whether the corresponding
bracket b, to the b, belongs to 4,X,0; or not. One easy sces that the answer must be
yes. Then by a similar reasoning one proves the required result again.

{Received September 11th, 1967.)
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VYTAH

Nékteré véty o zdvorkovani pro transformacni gramatiky

KareL CuLik

Je dokdzdna fada vét tykajicich se linedrnich zdpisk (a jistych jejich rozkladi)
frdzovych ukazateld uZivanych v bezkontextovych gramatikdch.
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