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KYBERNETIKA —VOLUME // (1975), NUMBER 3 

On the Size of DeRemer's Analyzers 

PETER RŮŽIČKA 

The paper presents an upper estimation of the number of states of DeRemer's automaton 
d G for a context - free grammar G. The estimation is given in terms of the number of elements 
of some sets constructed from the rules of G. 

1. INTRODUCTION 

LR(fc) grammars form the largest known class of context-free (CF) grammars for 
which deterministic canonical nonbacktracking parsing algorithm can be mechanically 
constructed. Knuth [2] has proposed a method testing whether any CF grammar G 
for an arbitrary integer fc ^ 0 fulfils the LR(fc) condition. It simultaneously produces 
the parsing algorithm for G. The size of the crucial part of this parsing algorithm 
called parsing table grows exponentially with the complexity of the grammar and 
therefore the mentioned algorithm is of no use in practical cases. A great effort has 
been made to optimize the number of states of LR(fc) parsing table (one size of the 
parsing table is in fact represented by the number of states). One of the main results 
in this area is DeRemer's method constructing parsers for a special class of LR(fc) 
grammars called SLR(fc) grammars. 

For any CF grammar G DeRemer shows the way how to construct a characteristic 
finite state automaton s/G (further denoted as DR automaton) accepting characteris­
tic language of the grammar G. DR automaton is defined in section 3. If G is LR(0) 
grammar, then DR automaton stfG represents a parser for given grammar. If G 
is SLR(fc) grammar for fc > 0, then DR automaton forms the basis for the recognizer 
which in ambiguous situations has to make decisions based on look — ahead sets 
of words with the length up to k symbols. 

In this paper the upper estimation of the number of states for DR automaton s/G 

is expressed in terms of productions of the grammar G. If G is an e-free LL(l) 



grammar, then this estimation is exact and it is identical with the estimation given 
in the paper by Krai and Demner [3]. The quality of the estimation is further dis­
cussed. Another estimation expressed as a function of characteristics not depending 
on derivation relations is formulated. 

2. NOTATION AND PRELIMINARY DEFINITIONS 

In the paper we adopt the following notation and conventions. A context-free 
grammar G is designated by the quadruple (V, Z, P, S> where V(alphabet) is a finite 
set of terminal and nonterminal symbols, I is a set of terminal symbols, P is a finite 
set of pairs called rules (productions) and S is distinguished starting symbol from 
V - I. Each rule is of the form A .-• a where A e V - I and a 6 V* are left side and 
right side of the production respectively. V* denotes the set of all finite strings formed 
from V including the empty string e. Let production of the grammar be ordered in 
a sequence. The production 77 will be written in the form 77: An -* an. We denote 
the length of a string a by |a|. If i is an integer, then h(a, i) is the prefix of a of the 
length i. H(a, i) = {h(a,j) | 1 ^ j ^ ;'}. Furthermore, p(fy) represents the number 
of elements of the finite set %. The empty set is denoted by 0 and for a nonterminal 
symbol A the set of 'left' symbols by S£(A) = {B \ A =>* Ba, a e V*, B e V}. A non­
terminal symbol A is called left recursive (infix), if A e SC(A) (if there exists a rule 
An —> a.xAa2 in P such that a t 4= e). 

3. DR AUTOMATON 

Let us briefly review the construction of DeRemer's parsing algorithm. For our 
purposes a new production S' -» _L S I is added to the grammar G where S' becomes 
the new starting symbol of G and S', i . are distinct symbols not previously in V. 
The basic ingredients of DeRemer's parsing algorithm are configuration sets. Their 
members, called configurations, have the form An -*• attl . ani where An -> a^a^., 
is a production of G and the configuration marker indicates the position of parsing. 
A configuration is said to be the initial one if it has the form An -+ . an, A symbol 
situated immediately to the right of the configuration marker is called the successor 
symbol. By the basis set of a configuration set Sf (in short &>(&)) we mean configura­
tions in Sf with the configuration marker not being situated in the leftmost position 
of their right hand sides.- A closure set of Sf (briefly 33*(Sf)) consists of configurations 
in S" not included in the basis set ^(Sf). If Sf is an arbitrary set of configurations, 
then CL(cS^), the closure of Sf, denotes the smallest set of configurations containing 
Sf with the property: 

if A -» a . Bp e CL(^) , then B-* . 8 e CL(^ ) for all B -» § e P . 



Let A be an alphabet symbol and Sf be a configuration set. SUCC (Sf, A) is said 
to be A - successor of Sf if SUCC (Sf, A) coincides with the set 

CL ({B -» aA . p | B -» a . Aft e Sf}) . 

In order to accept strings from V*, the function SUCC can be extended in a natural 
manner: 

i. SUCC (Sf, e) = Sf; 

ii. SUCC (Sf, aA) = SUCC (SUCC (Sf, a), A). 

The set <̂ G of all configuration sets valid for G is defined as follows: 

1. the initial configuration set {S' -» . ± S i.} belog to ^G; 

2. if A e V, Sf e <«?G, then SUCC ( y , A) e ^ G ; 

3. ^ G contains no other configuration sets except those constructed by steps 1, 2. 

Elements of the set ^Q are said to be states of DeRemer's parsing algorithm. In 
conjuction with the finite state automaton defined by the set <_fc the parsing algorithm 
uses a stack containing state numbers. If the parsing algorithm is in the state Sf and 
the input symbol is A, then it changes the state from Sf to SUCC (Sf, A) and it puts 
SUCC (Sf, A) on the top of the stack. If the parsing algorithm perform the reduction 
relative to the production A -» a, then it pops joe] states from the top of the stack 
(now Sfx is a new top state) and it puts SUCC (Sf u A) on the top position. 

Let II1 : Ani -» ani,..., IJP : Anp -» aUp be labeled productions of a CF grammar G 
and #(-7 t ) , ..., *(IJP) be distinct symbols not in V. Then a reduced characteristic 
grammar G' = (V', I', P',S'} of G is constructed in the following way: 

V - r = {A' | A e V - 1} , 

r = Vu{#(/71),..., #(/?„)}, 

P' = {A^,( -» a„k # (/7t) | Ank -» ank e P ) u 

{A ' -» a_3" | A -» aBp, a,PeV*, B e V - 1} . 

Evidently the grammar G' generates regular language and following DeRemer [ l ] 
it is exactly the language accepted by DR automaton stfG. Hence the automaton s0G 

abstracts the essential structure of DeRemer's parsing algorithm. 

A state Sf of the automaton stfG is called inadequate if it contains at least two 
configurations one of which is of the form Ani -» afll. . Thus there occurs a transition 
from Sf both under the symbol *(TIt) of the configuration 77! and under successor 
symbols of other configurations in Sf. If such a case is always solvable by means of 
k - look — ahead sets [ l ] , then the grammar is SLR (k). 



210 Example 1: Consider a grammar G t with productions 

771 :S -» 1E1 

n2:E - E + T 

n3:E-^T 

774 : T ->• T x F 

n5:T -> F 

n6:F ^a 

777 : F - (£) 

Grammar Gj is SLR (1) grammar and its DR automaton is given in Fig. 1. 

CІH-Ф 

Fig. 1. DR automaton for grammar G t . 

4. ESTIMATION O F THE NUMBER O F STATES 

The investigation of the number of states is greatly facilitated by the introduction 

of the method for partitioning of grammar rules into not necessary disjoint sets. 

In certain cases the upper estimation given as a consequence of the mentioned method 

can be improved by means of left recursive symbols. 

Let °U be the totality of configurations in the closure set of a state y with the same 

successor symbol. The set is characterized by means of corresponding set of derivation 

symbols stfm = C\ stfn, where the symbol s4n for some production 77 : An -+ <xn 

denotes the system of sets of infix nonterminal symbols E = {Bu ..., Bm} with the 

properties: 



1. for 1 ^ i <J m there exists wf e V* and P contains a production Cf -> ajB^,-, 
a,-, jS£ e V* such that at = <5ai+ L holds for <5 e V* 

a) if 5 4= e, then 5 =>„ WiC,j3 =>R w^C, + t y holds for /?, y e V*; 
b) if <5 = e, then S =>« wpCpyp holds for yp e V*, p = i, i + 1, w; = w i + 1 ; 

2. if A e £, then A„ e i f (A); 
3. if for an infix nonterminal symbol Bk there exists wk e V* and a rule 

Ck ~> atBjjSi, a^ ft e V* such that 

a) at least for one A e E and B,, either la or lb holds, 

b) AneSC(Bk) 

then Bk e E. 

The set 91 is defined to be the system of all sets °U with the property .-/, 4= 0. 
We proceed with the formal definition. 

Definition 1. A set 91 is defined as a system of all sets °U <= P with the following 

properties 

i. right parts of all productions from <% begin with the same symbol from V; 
ii. H ^n + 0 (i-e- there exists a system of derivation sets and from each of them 

new 
for every production 17 e *% a word beginning with the symbol An can be derived); 

iii. if the right — hand side of some rule 771 begins with the same symbol as the 
right — hand side of rules from °U and it holds stfni c f) s$n then 771 6

 6U. 

Condition iii secures that 3k consists of maximal sets of grammar rules satisfying 
the conditions i and ii. 

Not all configurations of some state Sf with the same successor symbol are con­
tained in the closure set of Sf. Such a case can occur if a successor symbol of some 
configuration from 0l{Sf) is left recursive. The set 2) is determined by means of 
a system of configuration sets with the same successor symbol simultaneously con­
tained in the basis set 9)(S/') and the closure set 9l*(Sf) of some state &". 

Definition 2. Let JfA denote the set {Aa [ An ->• /JAa from P, 0 e V+}. Then 

9 = {%* n <%* | there exists <Wt e 91 and a left recursive symbol 

A e Vwith the property 0 ^n = {{A}} such that %\ = U H(cc„, \«a\) 
77e*l JIe«i 

and «U\ - U #(/?, |0|)} . 

Theorem 1. If G is a reduced CF grammar and 9* is the number of states of DR 
automaton s4G, then 

* ^ 2 + I K U % . |«-|)) - Ku ̂ ) • 



Proof. Consider a set Jt{A, Sf) to be the totality of all configurations in Sf with 
the successor symbol A. Three cases can be distinguished: 

i. „#(A, ST) c ®{Sf), 

ii. Jt{A, SP) c @*{Sf) {Jt{A, Sf) is of the type 1), 
iii. Jt{A, Sf) n »{&>) 4= 0, Jt{A, &>) n <%*{#>) 4= 0 {Jt{A, Sf) is of the type 2). 

Case i. Jt{A, Sf) can be expressed in the form 

1, Sf) = Jt(1\A, Sf) u Ji(2\A, ST) u ... u Jt(m\A, y) m = 1 

where Jt(1\A, SP) is derived from a configuration set of the type 1 (i.e. there exist 
a state Sfu a symbol Bt and a string ax such that Jt(1\A, Sf) = SUCC {Sfu B ^ ) 
holds and Jt{Bx, Sf\) is of the type 1) and Jt(k\A, ST) for 2 = k = m is derived 
from a configuration set of the type 2 (i.e. there exist a state ^fc, a symbol Bk and 
a string ak such that ^/ ( t )(A, 5̂ ) c SUCC (5^, T̂ a*) holds and Jt{Bk, Sfk) is of the 
type 2 while |a |̂ > |a/+i| for 1 = j = m — 1). It may be noticed that the set Ji{A, S?) 
in the case i can be derived from a set Ji{A, Sf) either of the type 1 or of the type 2. 
Thus from Jt{A, Sf) in the case i can be derived just those configuration sets, which 
are derivable from sets having one of distinguishable types. This consideration 
enables us to subsume the case i under one of the following cases. 

Case ii. For the number of states derivable from Jt{A, Sf) of the type 1 following 
statement can be obtained 

p{ U U SUCC{^,h{an,i)) = p{ U H{an,\an\)). 
IIeJl(A,£f) l g ! ' g | a j 7 | IleJ{(A,y) 

Case iii. Let Jt{A, Sf) be of the type 2 and let 

V{A, Sf) = {a\ae H{a„, \an\) , 77 e Ji{A, Sf) n 88*{Sf)} n 

n {a | a e H{an, \an\), An -+ ani . a„z e Jt{A, Sf) n @{Sf)} . 

Then the number of new states derivable from a set Jt{A, Sf) n 38*{Sf) is 

p{ U H{an,\an\)) - p{ U SUCC(y,a)). 
neJt(A,S?)n®*(Sf) aeV(A,y) 

Cases in which ii and iii can occur are investigated separately. 

Proposition 1. Let Sf x and ^ 2 be different states and A be a left recursive symbol. 
Furthermore, let Jt{A, SPt) be of the type 1 and Jt{A, SP2) be of the type 2 while 
Jt{A, yt) = Jt{A, y 2 ) n @*{Sf2). Then the following relation holds 

f| ^n * {{A}} • 
neji(A,y'i) 



Proof . Because Jt(A, Sf2) is the set of the type 2 and Jt(A, Sf',) = Jl(A, Sf2) n 
n gs*($?2) there holds {{A}} c fi dn. Moreover, Jl(A, Sfx) is of the type 1 

neJt(A,sfi) 
and therefore there exists a set of nonterminal symbols {B«,..., Bm} being different 
from {A} with the property {Bu ..., Bm} e fl ^ n - Thus we get {{A}} =t= 

ne^(x,yi) 
4= (1 -^n by which the Proposition is proved. 

/leMM.yi) 

Next, we establish the relation between members of 01 and sets of the type 1, 
namely, 

Proposition 2. Ji(A, Sf) e 0t if and only if the nonempty set Jl(A, S?) is of the 
type 1. 

Proof . Let M(A, Sf) be of the type 1 and ^ be a set of nonterminal successor 
symbols of configurations from SS(Sf) with A as their 'left' symbol. The assertion 
stf 6 f) s/n follows from the facts of the case i. Hence Ji(A, Sf) e 01. Conversely 

nejt(A,y) 
the assertion „#(A, Sf) e 0t implies the existence of the set of derivation symbols 

p| s4n such that Ji(A, Sf) c ®*(S") and A e £e(B) hold for all derivation 
nzJiu.y) 
symbols B. 

It obviously follows from the foregoing discussion that all states of DR automaton 
can be derived from configuration sets of the type 1 i.e. from elements of the set ^2. 
By means of the case ii we get the 'rough' estimation in the form (1) 

£ p( U H(an, |«n|)). 

If for a set °U e 0t and a left recursive symbol A holds (~\ si'n — {{A}}, then following 
J7e* 

Proposition 1 fy belongs to closure sets of those states the basis sets of which contain 
at least one configuration of the form An -» a . A/?. Then from Proposition 1 follows 
that some states are already numbered in the above estimation (1). The total number 
of states counted more than once is 

p(r) = p({a | a e H(<x„, |a„|), 77 e ^ } n 

n {a | a e H(an2, |afl2|) , An -» ania„2 e P , aBl * e}). 

Furthermore, initial and final states have to be added. Thus the proof of Theorem 
1 is completed. • 

The theorem is demonstrated on two examples. 

Example 2. For the grammar Gx the set 31 is 

0t = {{77,}, {n2}, {n3, nA}, {nA}, {n5}, {n6}, {/77}} 



ZKUH(an,|«„|))-=17. 
* e « He* 

Gx has two left recursive symbols E, T thus p( (J f) = 2. Therefore the estimation given by the 
•TeB 

theorem is I? =£ 17, while the exact number of states is 15, as can be seen in Fig. 1. 

Example 3. Let G2 be the grammar 

IIi :5 -> l £ i 

я2 
: £ - > £ + T 

Я 3 
:E -> T 

я4 
: T->ҒÎT 

я5 
: T->Ғ 

я6 
:F -*a 

In this case 
я7 

: Ғ - ( £ ) 

* = {{/?,}, {/72}, {/73}, {/74, /75}, {/76}, {/77}} 
and 

y>( u IIK, M)) = H. 
*6i» Jle* 

Grammar (72 has a left recursive symbol E, therefore p ( U 1 0 = 1 . The estimation given by the 
•VeS 

theorem is equal to the exact number of states of DR automaton for G2 (cf. [1, p. 455]) & = 15. 

For special subclasses of the entire class of CF grammars the estimation given 
by the main theorem can be expressed in a simpler form. As the first corollary of the 
theorem we give the result by Krai and Demner [3] about LL (l) grammars which 
form the largest known class of grammars with the following property: the number 
of states can be expressed by the sum of the length of productions increased by two. 
A class of all grammars satisfying this property contains properly all LL (1) grammars. 

Corollary 1. Let G be a reduced £ — free LL (l) grammar. Then the number 
of states of the corresponding DR automation is 

& = 2 + £ K| . 
neP 

Proof. From the paper [4] follows that LL (l) grammars are LR (1) grammars 
without left recursive symbols with the property that the rules forming configurations 
in the closure set 0)*{£f) of some state £f have not the same prefix. Hence 0t consists 
of one-element sets and for every set °U e 0t there exists a rule U^&P such that 

pi U H(«n, |%|)) = \ccni\. 
neV 



According to this equality we further get the result 

^ - 2 + E P ( U % H ) ) - 2 + E ZW = 2 + EN- • 

Corollary 2. Let G be a reduced £ — free LL (k) grammar for k = 2. Then the 
upper estimation of the number of states of the corresponding DR automaton is 

9 = 2 + £ p( U H(zn, \t„\)) . 

Proof . The proposition of Corollary 2 is a straightforward consequence of 
Theorem 1. • 

5. QUALITY OF ESTIMATION 

The estimation of the number of states given in Theorem 1 seems to be sufficient 
for grammars of programming languages. We try to find out properties of the estima­
tion in the entire class of CF grammars. 

The estimation of the number of states is denoted by (9(G) while the exact number 
of states of DR automaton s#G is denoted by 9(G). Next, deviation of the estimation, 
through division &J9 in the class of CF grammars, is investigated. 

Property. For each nonnegative integer n there exists a CF grammar G„ such that 

<9(Gn)\9(G„) > n. 

Proof. Consider a grammar G„ given by productions 

S -> A1A2 ••• An+U 

A\ -* A2 I a, 

A2 -^ A3 | aaki, 

A„ -* An+l | aak„", 

An+i -* aa*\\l. 

Numbers (9, 9 for G„ are counted 

&(Gn) = 4 + 3n + 2/c2 + 3/c3 + . . . + nkn + (n + 1) kn+l, 

" 1„) = 4 + 3n + k2 + k3 + ... + k„ + kn+i. 



216 For division we get 

fc2 + 2fc3 + ... + nk„+1 (G„)l&>(Gn) = 1 + 
4 + 3w + fc2 + ... + fcn+1 

There exists fcn + i p- 4 + 3n + fc2 + . . . + fc„ such that 

fc2 + 2fc3 + . . . + nkn + 1 _ 

4 + 3H + fc2 + ... + kn + 1 

and thus we get the result &(Gn)J0>(Gn) > n. • 

We give an upper estimation of the number of states of DR automaton as a function 
of characteristics of grammar not depending on derivation. Such characteristics can be 

Ig the length of the longest production of G, 

pA the number of productions from G beginning with the symbol A. 

The result is summarized in the following theorem. 

Theorem 2. Let G be a reduced CF grammar. Then for the number of states 0> 
of DR automaton s4' G holds 

^ = 2 + 1 'i(pA + {ig-i)Y, l(Y)fc. 
AeV k=l\ K J AeV k=l\ K J 

Proof . The set M from Definition 1 can be considered as the partition of the set 
of productions P into not necessarily disjoint elements. The assertion of the theorem 
follows from the fact that the maximal number of productions of all partition ele­
ments is 

i 'í('iV 
AeV k=i\K J a 

6. CONCLUSIONS 

Three main features of DR automaton stfG must be taken into account when 
counting states of jrfG. They are 

a) partitioning of all rules into not necessarily disjoint sets of rules; 

b) left recursive symbols which enable transition of initial and not initial configura­
tions under the same symbol; 

c) merging of states, containing the same set of configurations with the same 
derivation sets, produced by DeRemer's method from the various states. 



The upper estimation of the number of states covers both a) and b) but not point c). 

Deviation of the estimation from the exact number of states can be arbitrarily large 

for some special sample grammars due to point c).The estimation is sufficient for 

grammars used in practice. 
(Received July 16, 1973.) 
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