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INTRODUCTION 

This monography gives a survey about recent work on robust time series analysis. 
After short introductions to different topics, investigations and new results are 
reported. Although the choice of literature is very subjective and the list of references 
is far from being complete, we have also put some unpublished entries which might 
be difficult to obtain from public libraries but they were relevant for our research. 

In the first chapter we review different concepts of robustness for independently, 
identically distributed observations as well as for time series. Min-max robustness, 
efficiency robustness and qualitative robustness is treated in more details. 

Consistency and robustness properties of least squares estimators of autoregressive 
integrated moving average parameters is dealt with, where the given time series is 
possibly contaminated by outliers. The least squares estimation behaves differently 
well in cases of considered two types of outliers. The bad performance of least 
squares estimators for contaminated data shows the necessity of robust estimation 
methods, methods which are robust toward outliers and wrong specification of the 
model. 

Chapter II deals with definitions, computational methods and properties of 
maximum likelihood type estimators (M-estimators) for pure autoregressive 
models as well as for ARMA models. In contrast to least squares estimators, M-
estimators are, in particular, efficiency robust if the given time series is contaminated 
by innovation outliers. Two estimation methods which can be used advantageously 
for time series including additive outliers, are outlined. 

An appropriate generalization of the maximum likelihood type (M-)method yields 
more satisfactory estimates of ARMA parameters in the case that the given time series 
is contaminated by additive outliers. Chapter III deals with definitions, computational 
methods and properties of generalized maximum likelihood type estimators (GM-
estimators) for pure autoregressive models as well as for ARMA models. In additive 
outlier situations GM-estimators have, in particular, the following properties. 
GM-estimators do not require independently, identically distributed outliers. GM-
estimators have a positive breakdown point, a bounded influence curve, considerable 
robustness and much smaller bias than M-estimators and least squares estimators. 

The properties of M-estimators and GM-estimators of AR parameters can be 
used to create tests which are able to determine the type of outliers in a time series. 
Robustified methods for the identification of AR models and ARIMA models are 
mentioned. 

In order to deal with robust filtering and smoothing a vector state-variable repre­
sentation of ARMA processes is described in Chapter IV. Here, a filtered value is 
defined to depend only on previous observations while a smoothed value is defined 
to depend on all given observations. A recursive algorithm for the computation 
of approximate conditional-mean (ACM) filters which are able to remove outliers 
from contaminated data, is dealt with. 



Maximizing a likelihood function which is approximated (also by an ACM filter), 
leads to approximate maximum likelihood (AML) estimators. Proceeding further 
by replacing the negative of the log-likelihood by a loss function which uses a robustify-
ing rho-function, yields approximation maximum likelihood type (AM) estimators. 
A relatively simple iterative scheme can be used to compute AM-estimators. Condi­
tional-mean M-estimators can be regarded as AM-estimators especially for AR 
models. Other methods for robust filtering and smoothing are provided, for example, 
by the robustified Kalman filter, L-smoothers, moving M-estimate smoothers and 
robustified splines. 

Chapter V presents a Monte Carlo investigation of methods for the least squares 
estimation, M-estimation and GM-estimation of ARMA models. Monte Carlo 
generally reveals properties which are expected from theory. For outlier-free data 
the means of the estimated parameters differ scarcely, and the mean square errors 
of M-estimators and GM-estimators are larger than those for least squares estimators. 
For the processes chosen here, with innovation outliers, the means of the estimated 
parameters also differ only slightly, but the sample relative efficiencies of M-estima­
tors are larger than the sample relative efficiencies of GM-estimators and of least 
squares estimators. Tn the presence of additive outliers the GM-estimation essentially 
yields better parameters and substantially smaller mean square errors than the 
least squares estimation and than the M-estimation. 

Several topics for further research concerning identification and estimation of 
various models, outlier detection, filters and spectral density estimation are discussed. 

ACKNOWLEDGEMENTS 

We like to thank Peter J. Huber and Frank R. Hampel for introducing us to the challenging 
field of robust statistics. We are grateful to R. D. Martin (who is the "main contributor" of 
this manuscript), V. J. Yohai, O. H. Bustos and J. E. Zeh for many stimulating discussions, 
to Karl Pfeiffer for stimulating the application of robust techniques and to E. Stadlober for the 
disposition of computer programs for generating pseudo random numbers. 

Some results are taken from the doctoral dissertation of the first author. The research was 
partially supported by the "Fonds zur Forderung der wissenschaftlichen Forschung", project 
no. 4487 and 4972. Finally, the comments of the referee and the excellent collaboration of the 
editors has been highly appreciated. 



B I B L Ю G R A P H Y 

Abraham B. and G. E. P. Box (1979): Bayesian Analysis of Some Outlier Problems in Time 
Series. Biometrika 66, 229—236. 

Ahrens J. H. and U. Dieter (1974): Computer Methods for Sampling from Gamma, Beta, Poisson 
and Binomial Distributions. Computing 12, 223 — 246. 

Akaike H. (1969): Power Spectrum Estimation through Autoregressive Model Fitting. Ann. 
Inst. Statist. Math. 21, 407-419. 

Akaike H. (1974): A New Look at the Statistical Model Identification. IEEE Trans. Automat. 
Control. AC-19, 716-722. 

Anderson T. W. (1971): The Statistical Analysis of Time Series. John Wiley, New York. 
Andrews D. F., P. J. Bickel, F. R. Hampel, P. J. Huber, W. H. Rogers and J. W. Tukey (1972): 

Robust Estimates of Location; Survey and Advances. Princeton University Press, Princeton. 

Beaton A. E. and J. W. Tukey (1974): The Fitting of Power Series, Meaning Polynomials, Illu­

strated on Bandspectroscopic Data. Technometrics 16, 2, 147—197. 

Boente G., R. Fraiman and V. J. Yohai (1982): Qualitative Robustness for General Stochastic 
Processes. Techn. Rep. 26, Dept. Statist., Univ. Washington, Seattle. 

Box G. E. P. and G. M. Jenkins (1976): Time Series Analysis: Forecasting and Control. Holden-

Day, San Francisco. 

Box. G. E. P. and G. C. Tiao (1975): Intervention Analysis with Applications to Economic and 
Environmental Problems. J. Amer. Statist. Assoc. 70, 70—79. 

Brubacher S. R. (1974): Time Series Outlier Detection and Modeling with Interpolation. Bell 
Laboratories Techn. Mem. 

Bustos O. H. (1981): Qualitative Robustness for General Processes. Informes de Matematica, 
Serie B-002/81, Institute de Matematica Pura e Aplicada, Rio de Janeiro. 

Bustos O. H. (1982): General M-Estimatcs for Contaminated/rth-Order Autoregressive Processes: 

Consistency and Asymptotic Normality. Z. Wahrsch. verw. Gebiete 59, 491 — 504. 

Bustos O , R. Fraiman and V. J. Yohai (1984): Asymptotic Behavior of Estimates Based on 
Residual Autocovariances for ARMA Models. Informes de Matematica, Serie B-019-Junho/84, 
Instituto de Matematica Pura e Aplicada, Rio de Janeiro. To appear in Proc. Heidelberg 

Workshop on Robust and Nonlinear Time Series, Sept. 1983. 

Bustos O. H. and V. J. Yohai (1983): Robust Estimates for ARMA Models. Manuscript. Sub­

mitted to J. Amcr. Statist. Soc. 

Chernick M. R., D. J. Downing and D. H. Pike (1982): Detecting Outliers in Time Series Data. 
J. Amer. Statist. Assoc. 77, 380. 

Cleveland W. S. (1979): Robust Locally Weighted Regression and Smoothing Scatterplots. 

J. Amer. Statist. Assoc. 74, 368, 829—836. 

Cleveland W. S. (1982): A Reader's Guide to Smoothing Scatterplots and Graphical Methods 

for Regression. In: Modern Data Analysis (Launer and Siegel, eds.) Acad. Press, New York. 
Cox D. D. (1981): Metrics on Stochastic Processes and Qualitative Robustness. Techn. Rep. 3, 

Dept. Statist., Univ. Washington, Seattle. 
Denby L. and W. Larsen (1977): Robust Regression Estimators Compared via Monte Carlo. 

Commun. Statist. A 6, 4, 335—362. 
Denby L. and R. D. Martin (1979): Robust Estimation of the First-Order Autoregressive Par­

ameter. J. Amer. Statist. Assoc. 74, 365, 140—146. 
Devlin S. J., R. Gnanadesikan and J.R. Kettenring 1975): Robust Estimation and Outlier Detection 

with Correlation Coefficients. Biometrika 62, 531 — 545. 
Donoho D. L. and P. J. Huber (1983): The Notion of Breakdown Point. In: Festschrift for 

Erich L. Lehmann (Bickel et al. eds.). Wadsworth, Belmont, CA. 



Durbin J. (1959): Efficient Estimation of Parameters in Moving Average Models. Biometrika 46, 
306-316. 

Dutter R. (1975): Robust Regression: Different Approaches to Numerical Solutions and Algo-
rithms. Res. Rep. 6, Fachgruppe f. Statist., Eidgen. Techn. Hochsch., Zürich. 

Dutter R. (1980): Robuste Regression. Bericht 135, Math. Statist. Sektion im Forschungs-
zentrum Graz. 

Dutter R. (1983): COVINTER: A Computer Program for Computing Robust Covariances 
and for Plotting Confidence Ellipses. Res. Rep. 10, Inst. for Statist., Techn. Univ. Graz. 

Dutter R. (1983b): Computer Program BLINWDR for Robust and Bounded Influєnce Regression 
Res. Rep. 8, Inst. Statist., Techn. Univ. Graz. 

Duttcr R. and P. J. Huber (1981): Numerical Mcthods for the Nonlinear Robust Regression 

Prcblem. J. Statist. Comput. Simul. 13, 2, 79—114. 

Fox A. J. (1972): Outliers in Time Series. J. Roy. Statist. Soc. B, 34, 3, 350—363. 

Fuller W. A. (1976): Introduction to Statistical Time Series. John Wiley, New York. 

Gastwirth J. L. and H. Rubin (1975): The Behavior of Robust Estimators on Dependent Data. 
Ann. Statist 3, 5, 1070-1100. 

Grenander V. and Mi Rosenblatt (1957): Statistical Analysis of Stationary Time Series. John 

Wiley, New York. 

Hampel F. R. (1968): Contributions to the Theory of Robust Estimation. Ph. D. Thesis. Univer-
sity of California, Berkeley. 

Hampel F. R. (1971): A General Qualitative Definiticn of Robustness. Ann. Math. Statist. 42, 
6, \ 887-1896. 

Hampel F. R. (1973): Robust Estimation: A Condensed Partial Survey. Z. Wahrsch. verw. 
GeЪìete 27, 87-104. 

Hampel F. R. (1974): The Influence Curve and Its Role in Robust Estimation. J. Amer. Statist. 

Assoc. 69 346, 383-393. 

Hampel F. R. (1975): Beyond Location Parameters: Robust Concepts and Methods. ISI Invited 
Paper, Proceedings of the 40th Session, Vol. XLVI, Book I, 375 — 382. Warsaw. 

Hampel F. R.. A. Marazzi. E. Ronchetti, P. Rousseeuw, W. Stahcl and R. E. Welsch. (1982): 
Robust Statistical Methods, Handouts for the Instructional Meeting on. Part IV. Palermo, 
Italy, Sept. 1 0 - 1 1 , 1982. 

Hampel F. R., W. A. Stahel, E. M. Ronchetti and P. J. Rousseeuw (1986): Robust Statistics: 

The Approach Based on Influence Functions. John Wiley, New York. 

Hannan E. J. (1970): Multiple Time Series. John Wiley, New York. 

Hannan E. J. (1973): The Asymptotic Theory of Linear Time Series Models. J. Appl. Prob. 
10, 130-145. 

Hannan E. H. and M. Kanter (1977): Autoregressive Processes with Infìnite Variance. J. Appl. 

Prob. 14, 411-415. 

Huang T. S., G. J. Yang and G. Y. Tang (1979): A Fast Two-Dimensional Median Filtering 
Algorithm. IEEE Trans. Acoust. Speech Signal Process. 27, 1, 13—18. 

Huber P. J. (1964): Robust Estimation of a Location Parameter. Ann. Math. Statist. 35, 1, 
73 -101 . 

Huber P. J. (1973): Robust Regression: Asymptotics, Conjectures and Monte Carlo. Ann. 

Statist. 1, 5, 799-821. 

Huber P. J. (1977): Robust Covariances. In: Statistical Decision Theory and Related Topics 
(Gupta S. and D. Moore, eds.), Vol. II. Academic Press, New York. 

Huber P. J. (1979): Robust Smoothing. In: Robustness in Statistics (Launer and Wilkinson, eds.). 
Academic Press, New York. 

Huber P. J. (1981): Robust Statistics. John Wiley, New York. 



Huber P. J. (1982): Current Issues in Robust Statistics. In: Some Recent Advances in Statistics 
(Tiago de Oliveira and Epstein, eds.) Acad. Press, New York. 

Jazwinski A. (1970): Stochastic Processes and Filtering Theory. Acad. Prcss, New York. 
Jones R. H. (1980): Maximum Likelihood Fitting of ARMA Models to Time Series with Missing 

Observations. Technometrics 22, 3. 
Justusson B. (1977): Statistical Properties of Median Filters in Signal and Image Processing. 

Unpubl. Rcp., Math. lnstitut., Royal Instit. of Techn., Stockholm. Svveden. 

Kailath T. (1968): An Innovations Approach to Linear Least Squares Estimation and Filtering. 

IEEE Trans. Automat. Control. AC-13, 6, 646 — 655. 

Kanter M. and W. L. Steiger (1974): Regression and Autoregression With Infinite Variance. 
Adv. in Appl. Prob. 6, 768-783. 

Kassam S. A. and H. V. Poor (1985): Robust Techniques for Signal Processing: A Survey. 
Proc. IEEE 73, 3. 

Kleiner R., R. D. Martin and D. J. Thomson (1979). Robust Estimation of Powcr Spectra. 

J. Royal Statist. Soc. B 41, 3, 313-338. 

Krasker W. S. and R. E. Welsch (1982): Efficient Bounded-Infiuence Regression Estìmation. 
J. Amer. Statist. Soc. 77, 379, 595-604. 

Kuensch H. (1983a): Infinitesimal Robustness for AutoregressiveProcesses.Res. Rep. 38,Fachgr. 
Statistik, ETH Zürich. 

Kuensch H. (1983b): The Influence Function and Optimal Robust Estimators for Time Serics. 

Subm. to Ann. Statist. 

Lee C. H. (1981): M-Estimates for ARMA Processes. Ph. D. Thesis. Dept. Elect. Engin., Univ. 
Washington. Seattle. 

Lee C. H. and R. D. Martin (1982): M-Estimates for ARMA Processes. Techn. Rep. 23, Dept. 

Statist, Univ. Washington, Seattle. 

Lee C. H. and R. D. Martin (1982b): The Information Matrix and Robust M-Estimates for 
ARMA Processes. Techn. Rep. 24, Dept Statist, Univ. Washington, Seatle. 

Lee C. H. and R. D. Martin (1984): Ordinary and Proper Location M-Estimates for ARMA 
Models. Techn. Rep. 29, Dept. Statist., Univ. Washington, Seattle. 

Lenth R. V. (1977): Robust Splines. Commun. Stalist A 6, 847—854. 
Mallows C. L. (1976): On Some Topies in Robustness. Bell Laboratories, Techn, Memo., Murray 

Hill, New Jersey. 
Mallows C. L. (1980a): Resistant Smoothing. In: Time Series (Anderson O. D., ed.). North-

Holland Publishing Company. 
Mallows C. L. (1980b): Some Theory of Nonlinear Smoothers. Ann. Statist 8, 4, 695-715. 
Mann H. B. and A. Wald (1943): On the Statistical Treatment of Linear Stochastic Differcnce 

Equations. Econometrica 11, 173 — 220. 
Marazzi A. (1980): Robust Affine Invariant Covariances in ROBETH. Res. Rep. 24, Eid-

genössische Techn. Hochschule, Zürich. 
Maronna R. (1976): Robust M-Estimation of Multivariate Location and Scatter. Ann. Statist 4 

1,51-67. 

Maronna R., O. Bustos and V. J. Yohai (1979): Bias- and Efficiency-Robustness of General 
M-Estimators for Regression with Random Carriers. In: Smoothing Techniques for Curve 
Estimation — Proc. Heidelberg (Gasser Th. and M. Rosenblatt, eds.). Lecture Notes in Math. 
757, Springer, Berlin. 

Martin R. D. (1978a): Asymptotic Properties of M-estimates for pth-order Autoregressions. 
Techn. Rep. 212, Dept. Electrical Engineering, Univ. Washington, Seattle. 

Martin R. D. (1978b): Robust Estimates of the Mean with Autoregressive Errors. Techn. Rep. 
211, Dept Electrical Engineering, Univ. Washington, Seattle. 



Martin R. D. (1978c): Asymptotic Properties of Generalized M-estimates for Autoregressive 

Parameters. Techn. Rep. 213, Dept. Elec. Engng., Univ. Washington, Seattle. 

Martin R. D. (1979): Robust Estimation for Time Series Autoregressions. In: Robustness in 
Statistics (Launer and Wilkinson, eds.) Acad. Press, New York. 

Martin R. D. (1979b): Robust Estimation of Location with Autoregressive Errors. Unpubl. 
manuscript, Dept. Electrical Engineering, Univ. Washington, Seattle. 

Martin R. D. (1979c): Approximate Conditional-Mean Type Smoothers and Interpolators. 
In: Smoothing Techniques for Curve Estimation — Proc. Heidelberg, 1979. (Gasser and 
Rosenblatt, eds.). Springer-Verlag. New York. 

Martin R. D. (1980): Robust Estimation of Autoregressive Models. In: Directions in Time Series. 
(Brillinger D. R. and G. C. Tiao, eds.). Inst. Math. Statist. Publications, Haywood, CA, pp. 

228-254. 

Martin R. D. (1980b): Time Series: Model Estimation, Data Analysis and Robust Procedures. 
In: Proc. Symp. Appl. Math., (R. V. Hogg, ed.), Vol. 23. 

Martin R. D. (1981): The Cramer-Rao Bound and Robust M-Estimates for Autoregressions. 
Techn. Rep. 9, Dept. Statist., Univ. Washington, Seattle. 

Martin R. D. (1981b): Robust Methods for Time Series. In: Applied Time Series II (Findley, ed.). 
Acad. Press, New York. 

Martin R. D. (1982): The Cramer-Rao Bound and Robust M-Estimates for Autoregressions. 

Biometrika 69, 2, 437—442. 

Martin R. D. (1983): Robust-Resistant Spectral Analysis. In: Handbook of Statistics. Vol. 3 
(Brillinger and Krishnaiah, eds.). Elsevier Sc. Publ. B. V. 

Martin R. D. (1984): Robust-Resistant Spectral Analysis. Techn. Rep. 27, Dept. Statist., Univ. 
Washington, Seattle. 

Martin R. D. and G. De Bow (1976): Robust Filtering with Data-Dependent Covariance. Proc. 

John Hopkins Conference and Informations Sciences and Systems, March 31 — April 2. 

Martin R. D. and J. M. Jong (1976): Asymptotic Properties of Robust Generalized M-Estimales 
for the First-Order Autoregressive Parameter. Bell Laboratories Techn. Memo., Murray Hill, 
New Jersey. 

Martin R. D. and C. H. Lee (1980): Robust Estimation of Location with Autoregressive Errors. 

Manuscript. Dept. Statist., Univ. Washington, Seattle. 

Martin R. D., A. Samarov and W. Vandaele (1983): Robust Methods for ARIMA Models. In: 
Applied Time Series Analysis of Economic Data (Zellner, ed.). Econ. Res. Rep. ER-5, Bureau 
of the Census. Washington, DC. 

Martin R. D. and D. J. Thomson (1982): Robust-Resistant Spectrum Estimation. Proc. IEEE 
70, 9. 

Martin R. D. and V. J. Yohai (1984a): Robustness in Time Series and Estimating ARMA Models. 

Techn. Rep. 50, Dept. Statist., Univ. Washington. Seattle. 

Martin R. D. and V. J. Yohai (1948b): Influence Curves for Time Series. Techn. Rep. 51, Dept. 
Statist., Univ. Washington. Seattle. 

Martin R. D. and J. E. Zeh (1977): Determining the Character of Time Series Outliers. Proc. 
Amer. Statist. Assoc, Business and Economics Section. 

Martin R. D. and J. E. Zeh (1979): Generalized M-estimates for Autoregressions, Including 
Small-Sample Efficiency Robustness. Techn. Rep. 214, Department of Electrical Engineering, 

University of Washington, Seattle. 

Masreliez C. J. (1975): Approximate Non-Gaussian Filtering with Linear State and Observation 
Relations. IEEE Trans. Automat. Control AC-20, 107—110. 

Masreliez C. J. and R. D. Martin (1977): Robust Bayesian Estimation for the Linear Model 
and Robustifying the Kalman Filter. IEEE Trans. Automat. Control AC-22, 361 — 371. 



Mosteller F. and J. W. Tukey (1977): Data Analysis and Regression. Addison-Wesley, Reading, 
MA. 

Nagel G. and W. Wolff (1974): Ein Verfahren zur Minimierung einer Quadratsumme nicht-
linearer Funktionen. Biometrische Zeitschr. 16, 6, 431 — 439. 

Pagano M. (1974): Estimation of Models of Autoregressive Signal Plus White Noise. Ann. Statist. 
2, 99-108 . 

Papantoni-Kazakos P. and R. M. Gray (1979): Robustness of Estimators of Stationary Ob­
servations. Ann. Probab. 7, 6, 989— 1002. 

Parzen E. (1971): Efficient Estimation of Stationary Time Series Mixed Schemes. Proc. 39th 
Session of ISI, Washington, D. C. 

Parzen E. (1974): Some Recent Advances in Time Series Modelling. IEEE Trans. Automat. 
Control AC-19, 723-730. 

Polasek W. (1982): Robust Estimation and Resistance Analysis for the Autocorrelation Function. 
Preprint 47, Univ. Vienna. 

Polasek W. (1982b). Exploratory Business-cycle Analysis Using Running Medians. Empirica / , 
49 -70 . 

Polasek W. and R. Mertl (1983): Robust and Jackknife Estimators of the Autocorrelation 

Function. Res. Rep., Inst. Statist, and Informatics, Univ. Vienna. 

Rabiner L. R., M. R. Sambur and C. E. Schmidt (1975): Applications of a Nonlinear Smoothing 
Algorithm to Speech Processing. IEEE Trans. Acoust. Speech Signal Process ASSP-23, 
552-557. 

Reinisch C. H. (1967): Smoothing by Spline Functions. Numer, Mathem. 10, 177—183, and 
Numer. Mathem. 16, 451—454. 

Relies D. A. (1968): Robust Regression by Modified Least Squares. Ph. D. Thesis. Dept. Statist., 
Yale University. 

Rieder H. (1980): Locally Robust Correlation Coefficients. Commun. Statist. A9, 8, 803 — 819. 
Schweppe F. (with E. Handschin, J. Kohlas and A. Friechter) (1975): Bad Data Analysis for 

Power System State Estimation. IEEE Trans. Power Apparatus Systems 94, 2, 329—337. 
SerflingR. J. (1980): Approximation Theorems of Mathematical Statistics. John Wiley, New York. 
Shibata R. (1976): Selection of the Order of an Autoregressive Model by Akaike's Information 

Criterion. Biometrika 63, 1, 117—128. 

Siddiqui M. M. (1958): On the Inversion of the Sample Covariance Matrix in a Stationary 
Autoregressive Process. Ann. Math. Statist. 29, 585-588. 

Stadlober E. and U. Dieter (1985): Computer Methods for Generating Student (-Variatcs. 
To appear in Computing. 

Stockinger N. (1983): Robust Estimation of Autoregressive Moving Average Models. In: Proc. 
of the 4th Pannonian Symposium on Math. Statist., Bad Tatzmannsdorf, Austria (Grossmann, 
Konecny, Pflug, Vincze and Wertz, eds.), pp. 299—309. Reidel Publ. Comp., Dordrecht-
Holland. 

Stockinger N. (1984): Detection of Outliers in Arrhythmic Pressure Pulses by Robust Methods 
of Time Series Analysis. Res. Rep. 11, Inst. Statist., Tcchn. Univ. Graz. 

Stockinger N. (1985a): Generalized Maximum Likelihood Type Estimation of Autoregressive 
Moving Average Models. Ph. D. Thesis, Techn. Univ. Graz. 

Stockinger N. (1985b): Computer Programs for the Simulation and GM-Estimation of ARMA 
models. Res. Rep. TS-1985-2; Inst. Statist, and Wahrscheinlichkeitstheorie, Techn. Univ. 
Vienna. 

Stockinger N. and R. Dutter (1983): Robust Time Series Analysis — An Overview. Res. Rep. 9, 

Inst. Statist., Techn. Univ. Graz. 

Stockinger N., K. P. Pfeiffer and R. Dutter (1984): Ausreissererkennung in Arrhythmischen 
Druckpulsen durch Robuste Methoden der Zeitreihenanalyse. In: Medizinische Informatik 



'84 (Gell and Eichtinger, eds.), Schriftenreihe der Oesterr. Computer Ges., Vol. 24, Oldenbourg 
Verlag, Vienna. 

Stuetzle W. (1979): Asymptotics for Running M-Estimates. In: Smoothing Techniques for Curve 
Estimation— Proc. Heidelberg, 1979 (Gasser and Rosenblatt, eds.). Springer-Verlag, New York. 

Thomson D. J. (1977): Spectrum Estimation Techniques for Characterization and Development 
of WT 4 Waveguide - I. Bell System Techn. J. 56, 4, 1769- 1815. 

Tukey J. W. (1960): A Survey of Sampling from Contaminated Distributions. In: Contributions 
to Probability and Statistics (I. Olkin, ed.). Stanford University Press, Stanford, CA. 

Tukey J. W. (1977): Explorative Data Analysis. Addison Wesley, Reading, MA. 
Tukey J. W. and T. E. Harris (1949): Development of Large-Sample. Measures of Location and 

Scale Which Are Relatively Insensitive to Contamination (Sampling from Contaminated Distri­
butions, 3). Memorandum Rep. 31, Statist. Research Group, Princeton University, New 
Jersey. 

Velleman P. F. (1975): Robust Nonlinear Data Smoothers; Theory, Definitions and Applications. 
Ph. D. Thesis, Dept. Statist., Princeton University. 

Velleman P. F. (1980): Definition and Comparison of Robust Nonlinear Data Smoothing Algo­
rithms. J. Amer. Statist. Assoc. 75, 371, 609—615. 

Walker A. M. (1960): Some Consequences of Superimposed Error in Time Series Analysis. 
Biometrika 47, 33—43. 

Wegman E. J. and R. J. Carrol (1977): A Monte Carlo Study of Robust Estimators of Location. 
Comimin. Statist. — Theor. Meth. A 6, 9, 795—812. 

Whittle P. (1952): Estimation and Information in Stationary Time Series. Arkiv foer Matematik 2, 
23, 423-434. 

Wilson G. T. (1969): Factorization of the Generating Function of a Pure Moving Average 
Process. SIAM J. Num. Analysis 6, 1. 

Yohai V. J, and R. A. Maronna (1977): Asymptotic Behavior of Least Squares Estimates for 
Autoregressive Processes with Infinite Variances. Ann. Statist. 5, 3, 554—560. 

Zeh J. E. (1979): Efficiency Robustness of Generalized M-Estimates for Autoregrcssion and Their 
Use in Determining Outlier Type. Ph. D. Thesis, Univ. Washington, Seattle. 

10 



I. MODELS AND CONCEPTS OF ROBUSTNESS 

This contribution is thought to be a first and introductory chapter in a series 
of five chapters. 

We will review different concepts of robustness for independently, identically 
distributed observations as well as for time series. Min-max robustness, efficiency 
robustness and qualitative robustness will be treated in more details. 

Consistency and robustness properties of least squares estimators of autoregressive 
integrated moving average parameters will be dealt with, where the given time series 
is possibility contaminated by outliers. The least squares estimation behaves differen­
tly well for two types of outliers which will be considered. The bad performance 
of least squares estimators for contaminated data will show the necessity of robust 
estimation methods, methods which are robust toward outliers and wrong specifica­
tion of the model. 

I. 1 GENERAL CONCEPTS OF ROBUSTNESS 

Loosely speaking, a robust estimator is one whose performance remains quite 
good if the true distribution of data deviates slightly from the assumed one. Data 
sets for which often the Gaussian model is assumed, sometimes contain a small 
fraction of outliers. More realistic models for such data sets are provided by heavy-
tailed distributions. A large portion of the literature on robustness, e.g. Dutter 
(1980), treats location and linear regression models with independently, identically 
distributed errors. A relatively small number of contributions, e.g. Dutter (1983), 
Polasek and Mertl (1983), deal with robust estimation of covariances. In this section 
some concepts of robustness that have been primarily developed in the independent 
observations context will be discussed. 

There are different possibilities to judge the robustness performance of an estimator, 
namely by the concepts of efficiency robustness, min-max robustness and qualitative 
robustness. 

Efficiency Robustness 

Efficiency robustness requires — roughly speaking — high efficiencies of an 
estimator in a neighborhood of an assumed distribution (Tukey, 1960). Efficiency 
robustness can be defined more exactly as follows (Martin and Yohai, 1984a): 
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Let T„ = T„(Yi, ..., Y„) be an estimator of a scalar parameter \i in the distribution 
PI of Y = (Yj, ..., Y„), a sample of size n, and let EEE (T„, P*) denote a suitably 
defined efficiency of T„ at P£. For example we might have 

„„„•_, „„-. V4PP n (known estimator of /i with the smallest variance) 
E-EtVn. Eu) = "• 

or we might have 

VARPii„ (T„) 

EEE(T„, PI) = - VcR^ 

where VCR(Pn
l) is the Cramer-Rao lower bound of the variance at Pn. 

When the focus is on asymptotic efficiencies, the estimator is denoted by T the 
distribution for the process {Y t}, ig l is denoted by P™, and the efficiency of Tat P* 

EFFiT, P") = ^ g ^ S 
V^T) 

where V^T) is the asymptotic variance of ^J(n) T„ at P^°. 
Let P °̂ be the assumed distribution (which is often called nominal distribution) 

for the data (typically P£° is Gaussian), and let P™1} P™2, ..., P " K be a set of distri­
butions which are in some sense "near" to P™. Then an estimator Tis said to be 
efficiency robust if T has high efficiency at P " , and also at P™4,..., P " K - High 
efficiency at P™ will usually mean an efficiency in the range between 90% and 95%. 

Min-Max Robustness 

Huber's (1964) min-max robust location estimates minimize the maximum 
asymptotic variance over certain uncountably infinite families of distributions. 
More precisely, this concept of robustness can be formulated as follows: Let V(T P) 
denote the asymptotic variance of an estimator Tat distribution P, and let T denote 
a family of estimators, while P denotes a family at univariate distributions. A min-
max robust estimator T0 solves the problem 

inf sup V(T, P ) . 

For more min-max theory and results see Serfling (1980) and Huber (1981). 

Qualitative Robustness 

Hampel's (1968, 1971) concept of qualitative robustness requires equicontinuity. 
of an estimator on a set of distributions of the data. This concept is summarized 
in the following. 

Let Y1; ..., Y„, ... be independently, identically distributed (i.i.d.) random variables 
with values on a complete and separable metric space (Q, d) with metric d. In most 
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cases Q is a Euclidean space. Let Q" and Qw be the Cartesian product of n copies 
of Q and countable copies of Q, respectively. Let 23 denote the Borel-u-algebra 
on Q and let 23" denote the corresponding product er-algebra on Q". 

An E-neighborhood (e > 0) of B e 23 is defined by 

BE:{xeQ\mfd(x, y) g e} . 
yeB 

For the measurable space (Q, 23) let p(Q) denote the set of all probability measures 
on 23. 

For F and G in p(£>) the Prohorov distance of these measures is defined by 

nd(F, G) := inf {s > 0| for all B e 23 , F(B) < G(B£) + E} . 

For a given F e p(Q) let F" denote the corresponding product measure in v(Q"). 
Let T„: Q" —> 0 be a sequence of estimators where the parameter space (0, y) is also 
a complete and separable metric space. 

The sequence of estimators {T„}„>„0 is qualitatively robust at Fep(Q), if, given 
s > 0, there exists 5 > 0 such that, for all n ^ n0 and for all G e p(£2) 

R / F , G) < <5 => ny(2.KTn | F"), £VT„ | G")) < 8 , 

where fi(T„ | F") denotes the law of T„ under F". 
This definition of qualitative robustness requires, uniformly in sample size n, 

that the distribution of the estimators does not change much when there is a small 
change in the marginal distribution of the observations, which might be produced 
by one or both of 

(a) a contamination of a small fraction of observations with gross errors (outliers), 
(b) small errors in all the observations (e.g. rounding or grouping errors). 

Influence Curve and Breakdown Point 

Since qualitative robustness gives no possibility to distinguish between more or 
less robust estimators, Hampel (1968, 1971, 1974) introduced the influence curve and 
the breakdown point. 

Let T denote a vector valued mapping of a subset of p(Q) into the fe-dimensional 
Euclidean space Uk and let F be in the domain of T. Let 8y denote the degenerated 
distribution having all its mass in y e Q. The influence curve of T for F is defined 
pointwise by 

1CT F(y) = lirn W ~ *) F+J5,1 - T(F) 
t-»o t 

The influence curve describes the standardized influence of an infinitesimal term at 
a certain position, on an estimator. 

The breakdown point is essentially the largest fraction of contamination, which 
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does not ruin an estimate (see Donoho and Huber, 1983, for a good and exact 
definition). 

There are also other tools to measure the robustness of estimators, e.g. the gross-
error sensitivity, the local shift sensitivity and the rejection point (compare Dutter, 
1980). The infinitesimal approach to robustness is already documented in a book 
(Hampel et al., 1986). 

I. 2 CONCEPTS OF ROBUSTNESS FOR TIME SERIES 

Efficiency Robustness and Min-Max Robustness 

For time series parameter estimation problems, efficiency robustness and min-max 
robustness are directly applicable concepts, because these concepts do not require 
independent (possibly vector valued) data. Efficiency robustness for vector parameters 
can be defined similarly to that of scalar parameters by using an appropriate defini­
tion of multivariate efficiency. Zeh (1979) investigated efficiency robustness of 
estimators of time series models using different measures for multivariate efficiency. 

Influence Curve and Breakdown Point 

Kuensch (1983b) and Martin and Yohai (1984b) give definitions for influence 
curves of parameter estimators in time series models. The definition of breakdown 
points for time series parameter estimators must pay attention to the detailed nature 
of the failure mechanism. For instance i.i.d. gross errors on the one hand, and 
highly correlated or patchy gross errors on the other, may yield different breakdown 
points. Martin and Yohai (1984a) comment on breakdown points for time series 
parameter estimators. 

Qualitative Robustness 

The problem which remains is providing an appropriate definition of qualitative 
robustness in the time series context. One possibility, but with not entirely satis­
factory theory, is to use an asymptotic version of qualitative robustness (Martin, 
1979), requiring continuity but not equicontinuity and replacing estimator sample 
distributions with asymptotic distributions. Thus an estimator T is asymptotically 
qualitatively robust at F e p{Q), if, given e > 0, there exists 8 > 0, such that for all-
G e p(«) 

n/F, G) < S => ny(2KT\ F), 2j\ G)) < e 

where 2^T [ F) denotes the asymptotic distribution (the "law") of Tfor distribution F. 
In order to, at least partially, cover non-i.i.d. observations, Hampel (1971) intro­

duced the concept of qualitative ^-robustness which is thought for observations 
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which are dependent in a certain weak sense. In contrast to the definition of qualitative 
robustness, which is based on marginal distributions E and G, the definition of 
qualitative ^-robustness is based on multivariate probability measures. 

Using the qualitative ^-robustness as a starting point, Papantoni-Kazakos and 
Gray (1979) define qualitative robustness of estimators on stationary observations. 
The authors substitute the generalized Ornstein metric for the Prohorov metric 
to measure the distance of sample distributions of stationary processes. Cox (1981) 
thinks that the generalized Ornstein metric is not superior to the Prohorov metric 
and presents other metrics on distributions of stochastic processes in order to define 
qualitative robustness for dependent data. Infinitesimal robustness for autoregressive 
processes was considered by Kuensch (1983a). Bustos (1981) also did some work 
on qualitative robustness for general processes. 

Resistance 

Boente, Fraiman and Yohai (1982) propose a new approach to qualitative robust­
ness, based on the concept of resistance (compare Mosteller and Tukey (1977)). This 
approach has the advantage that it may be applied without special assumptions 
on the probability model for the observations, e.g. they may be dependent or non-
identically distributed. The concept of resistance can be formalized as follows: 

Given x" = (xt, ..., x„) and y" = (yx, ..., yn) in Q", define a distance dn on Q" 

dn(x", y") := inf {e | number of {i \ d(xh y,-) >. e} g ne) . 

Therefore two points of Q" have a distance smaller or equal than 6, if for one point 
a fraction not greater than s of observations are replaced by arbitrary outliers, or 
if all the observations of one point are perturbed by round-off errors smaller than e. 

A change of T„, which is caused by a change - characterized by 5 > 0 - of 
x" e Q", is defined by 

AT,(x", 5) = sup {|T„(y") - rn(z")| | J„+(y", x") < 8, rf+(z", x") ^ 8} . 

The following definition formalizes the data oriented concept of resistance. Let 
x = (xt, ...,xn, ...)e£3°° and x" = (xu ...,x„). Then {T„}„>„0 is resistant at x if, 
given e > 0, there exists 8 > 0 and n0 such that 

AT„(x", <5) ^ e for all n > n0 . 

The following definitions of strong and weak robustness represent alternatives 
to Hampers definition of qualitative robustness. Let E50 e p'Q00). {T,}„g„0 is strongly 
robust at Fx, if 

Fx([{Tn}nkno is resistant at x]) = 1 . 

{T„}„g„0 is weakly robust at F " if, given e > 0, there exist 8 > 0 and n0 such that 

Fx([AT/x", 5) ^ e]) > 1 - £ for all n ^ n0 . 
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Although the latter definitions of qualitative robustness are very useful and trans­
parent, it is not trivial to prove qualitative robustness of implicitly defined estimators 
(e.g. M-estimators). 

I. 3 AUTO REGRESSIVE INTEGRATED MOVING AVERAGE MODELS 

A widely used method to describe the mechanism that generates and explains 
a univariate time series or process 

(i.i) yi,-..,yn 

is the estimation of an autoregressive integrated moving average model of orders 
p, d and q (ARIMA (p, d, q) model) (see Box and Jenkins (1976)) 

(1.2) <P(B)(yi-fi) = 6{B)ai 

where Q{B) and $(B) denote the moving average operator and the nonstationary 
autoregressive operator, respectively, i.e. 

0{B) = 1 - 0.B - . . . - 0qB
q 

and 
0(B) = 0(B) (1 - B)d 

where </>(B) denotes the autoregressive operator 

<t>(B) = 1 - < M - • • • - W 

with the backward shift operator B (Byi = y._i), autoregressive parameters (j)u ... 
..., (f>p and moving average parameters 0U ..., 8q. If d = 0, then it is reasonable to 
use a location parameter /. 4= 0. The at's are realization of i.i.d. random variables 
Ai with a symmetric distribution G with mean zero and scale er. The density of G 
will be denoted by g. The A,'s are called innovations. 

For all subsequent considerations the stationarity of the autoregressive operator 
and invertibility of the moving average operator is supposed. Therefore the roots 
of each of the characteristic equations 

(j>'B) = \ - <f),B - ... - <j>pB
p = 0 

and 

9yB) = 1 - 0 t B - ••• - OpB' = 0 , 

B now denoting a variable, must lie outside the complex unit circle. 

Box and Jenkins (1976) propose to estimate d by "differencing" the given time 
series (1.1), i.e. by regarding the differences of subsequent observations as a new 
time series, until the autocorrelation function of the new time series decays quickly. 
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If a value for d is determined there only remains the problem of estimating an 
autoregressive moving average model of orders p and q (ARMA (p, q) model) 

(1.3) <KB)wi = 0(B) A, 

where w,- = (1 — B)d y; denotes an observation of the d-times "differenced" time 
series (1.1). 

In the following we will assume d = 0 and w; = yt and concentrate on the estima­
tion of ARMA (p, q) models. 

Special cases of an ARIMA (p, d, q) model (1.2) are the moving average model 
of order q (MA (q) model) 

(1.4) yt - n = 0(B) a, 

and the autoregressive model of order p (AR (p) model) 

(1.5) <t>(B)(yi-li) = a;. 

After defining the intercept 

(1.6) l : = / < l - f > , . ) 
£ = 1 

the AR (p) model (1.5) can be written as a linear regression model with parameter 
vector 

(1-7) fi:=(X,<t>u...,4>py. 

1.4 TIME SERIES OUTLIER MODELS 

We assume that realizations x; of random variables X; satisfy the ARIMA (p, d, q) 
model (1.2) to be estimated. The time series (1.1) is called to be outlier-free, if yt = 
= x(, i = 1,. . . , n, and G, the distribution of the innovations, is Gaussian. 

When considering the problem of estimating time series parameters robustly, 
there is a need of characterizing time series contaminated by outliers in appropriate 
probabilistic models. Since complete probabilistic models are difficult to formulate 
(Martin, 1979), it seems imperative to begin with specifying simple outlier generating 
models, which are able to represent real data with outliers. In practice, outliers 
behave often as follows (Martin, 1979, 1980): 

For a possible outlier behavior, the character of the outliers is consistent with 
the remainder of the sample path except for an initial jump. A second possibility 
is that of isolated or gross-error outliers which might be due to various reasons 
like recording errors. A third possibility is that of patchy type outliers whose be­
havior appears somewhat or totally unrelated to the behavior of the remainder 
of the sample. This type might be due to a brief malfunctioning of a recording 
instrument. 

Now we want to capture some of the essence of the above kinds of behavior with 
appropriate formal models. 
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The first kind of behavior might be obtained by an innovation outlier (10) model, 
which is given if the yjs axe equal to the x;'s and if the innovations distribution G 
is symmetric and heavy-tailed. Outliers generated by an IO model are called innova­
tion outliers (IO's). G could be a /-distribution or a contaminated normal 

(1.8) CN(v, <-., <J2) = (1 - v) N(0, a2) + vN(0, a\) 

where N(0, a2) denotes the normal distribution with mean 0 and variance a2 and 
a\ > a\ and v is small. 

For the second and third kind of behavior the following additive outlier (AO) 
model may be the simplest appropriate representation. Additive outliers (AO's) 
(which are generated by AO models) are given if 

(1-9) . Yt = X{+ V( 

where the innovations A; are normally distributed and the V;'s are random variables, 
distributed independently of Xt and whose marginal distribution satisfies P(V; = 0) 
= 1 - y with y not too large. For time series occurring in practice y is in the range 
from .01 to .25. 

Independently and identically distributed V;'s model the gross-error situation. 
The distribution of the V;'s could be a Gaussian mixture distribution 

(IA0) CND(y, a3) = (1 - y) «50 + yN(0, a2
3) 

where 80 denotes the degenerated distribution having all its mass in the origin. 

Patchy type additive outliers can be obtained if the independence assumption 
for the V;'s is dropped. 

These types of outliers were first mentioned by Fox (1972). He considers two 
types of outliers: those which affect only the observation on which they occur (Type I 
outliers) and those which affect successive observations as well (Type II outliers). 

Gastwirth and Rubin (1975) study the behavior of some robust estimators of 
location for a first-order autoregressive process with a double exponential marginal 
distribution. This process is a special version of an IO model. 

Also Abraham and Box (1979) use both AO and IO models to consider inferences 
about the parameters of a possibly contaminated autoregressive process. However, 
they call their outlier generating models "aberrant observation model" and "aberrant 
innovation model", respectively. 

Some outlier-handling techniques require the specification of the data points which 
have to be treated as outliers, e.g. Brubacher (1974), Jones (1980). Since it is not 
likely to have this specification (see however Chernick, Downing and Pike, 1982) 
those techniques will not be discussed in this series of contributions. 
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1.5 LEAST SQUARES ESTIMATION OF AR MODELS 

If n = 0 the AR (p) model (1.5) can be written in the linear model form 

y = Z<£ + a 

where y = (yp+1,..., j>„)T, <f> = (4>u ..., 4>pf, a = (ap+1,..., a„)T and Z = [z p + 1 , . . . 
. . . ,z„]T with z ; = (j ' i-i , ..., j ' ; - p ) T . The least squares estimator (j>A is defined by 
the solution of 

(1.11) t (y ; - zT4>')2 = min . 
i = p+ 1 

Mann and Wald (1943) show that even without a Gaussian G, if the fourth moments 
of A; exist and are finite and y( = xit i = 1, ..., n, then y/(n) (<j)A — 4>) has a limiting 
normal distribution and a2(ZTZ)~1 is the asymptotically correct expression for the 
covariance matrix of <j>A. Therefore we can treat the problem of estimating auto-
regressive parameters like the classical regression problem. 

Consistency and Robustness Properties for IO Models 

It is well known (Martin, 1982) that the least squares estimator j}AT = (X, $ A T ) 
(1.7) — which can be defined similarly to <j>A — is asymptotically normal and asymp­
totically efficient when the innovation distribution G is Gaussian. The same is true 
for both the innovation scale estimator 6, obtained from the sum of squared 
residuals, and the "autoregressive-errors" location estimator 

(IA2) £ = i/(i - £ & ) . 
;=i 

In classical theory (Anderson, 1971) it is proved that <j>A is consistent if the variance 
of the innovation is finite. 

But some data may be better represented by AR models with innovations which 
have infinite variances. This has raised the question of whether the classical estimators 
are still reliable when innovation variances do not exist. A partial answer was obtained 
by Kanter and Steiger (1974). They show that <j>A is consistent if G is a symmetric 
stable law of index a e (0, 2], which is defined by 

exp (ilx) dG(x) = exp ( - ф l * ) 

for some c > 0. 
Yohai and Maronna (1977) have shown, more generally, that a sufficient condition 

for consistency of </>A is 
£ { [ l o g | a i | ]

+ } < a ) , 

where [ x ] + denotes the positive part of x. This condition cannot be weakened 
since it is necessary for the existence of the stationary autoregressive process. 



Hannan and Kanter (1977) have shown that if G belongs to the domain of attrac­
tion of a stable law of index a e (0, 2), then <j)A converges in probability to the true 
with rate T1/a, and therefore faster than T1/2 as in the finite variance case. 

The results from Kanter and Steiger (1974), Yohai and Maronna (1977) and 
Hannan and Kanter (1977), however, are based on the assumption that the location 
parameter \x is known. 

<j>A is asymptotically qualitatively robust in the sense, that its asymptotic covariance 
matrix V^, (the covariance matrix of the limiting distribution of sJ(n)(<j>A — 4>)) 
is independent of the innovation distribution, at least provided that the innovations 
have finite variance. This fact is somewhat obscured by the common practice of 
writing 

IV = °2c~l 

where the elements of Care given by Cy = covariance (Yh Yj),l _ i,j _ p. However, 
C = a2C where C is the covariance matrix for innovations with unit variance. Thus 
VQ, is better written as 
(1-13) V = C - 1 

where C depends only upon 0. This behavior was pointed out first by Whittle (1952). 
In fact, the distribution-free property exhibited in (1.13) is an asymptotic analogue 
of Hampers (1971) qualitative robustness concept, provided that only innovation 
outliers are possible and the innovation variance is finite (Martin, 1981). 

In sharp contrast to 0 A , the least squares estimators of the location \x and the 
innovations scale a are not robust in the above sense. 

On the other hand <j>A is not efficiency robust toward heavy-tailed innovation 
distributions, i.e. arbitrarily small departures of G from normality may cause arbitra­
rily large asymptotic variances of </»A (Maronna, Bustos and Yohai, 1979). This can 
be seen easily by computing asymptotic efficiencies. Straightforward calculation 
(Martin, 1981) shows that the large sample information matrix for (j>A is 

V = <r2 i(g) c 

where i(g) = E{8 log g(a, iS)jdfi}2 is the Fisher information (for location) for an 
innovation density g with finite variance. The Cramer-Rao lower bound V4,CR 

for the variance of (j>A is the inverse information matrix. 

Taking the pth root of the ratio of determinants as a multivariate measure of 
efficiency (compare Anderson, 1971) gives 

(1.14) EFF(LS, g) = ( f ^ ) ^ = (^ Kfi))'1 • 

But this is just the p-th power of the asymptotic efficiency of the sample mean for 
i.i.d. random variables, and the latter is notoriously lacking in efficiency robustness 
toward heavy-tailed G's. Computing the efficiency of ft yields also the right hand side 
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expression in (1.14). The efficiency of a is the same as that of the sample standard 
deviation calculated for i.i.d. data. The latter estimator has even less efficiency 
robustness than the sample mean (Tukey and Harris, 1949, Tukey, 1960). Considera­
tion of the Cramer-Rao lower bound 

v - L-Jg ] 

H'CR~ o2 i(g) 

for the first-order AR parameter, where 1 — </>2 is the asymptotic variance of ^>x 

(Martin and Jong, 1976), makes it transparent how heavy-tailed distributions dimi­
nish the Cramer-Rao bound and therefore also the efficiency EFF(LS, g) (1.14); 
for a2 can become arbitrarily large in arbitrarily small neighborhoods of the Gaussian 
distribution while i(g) remains relatively stable. 

Consistency and Robustness Properties for AO Models 

If a time series contains additive outliers, <|>A not only lacks efficiency robustness 
but also suffers from serious bias problems. Martin and Jong (1976) and Denby 
and Martin (1979) show that the variance of <f)t can be very large. Bias problems 
for the first-order AR parameter will be explained in the following. The bias for 

0i is 
B(&) = -$xol\(o2

x + a2
¥) 

assuming finite variance a2
x and av for Xt and i.i.d. Vf, respectively (1.9). This bias 

vanishes only if <£, = 0 or if axjav -+ co, what corresponds to an innovation outlier 
model. £(</>i) can be disastrous for rather mild contaminations through Vf's. For 
example if Vf is CND (.1, 10) distributed (1.10) and a2

x = 1, then B($t) = -<t>ij2, 
i.e. the bias is 50%. 

Certain additive outliers can produce the effect that some of the roots of the 
characteristic equation <f>(B) = 0 lie on the unit circle, therefore <j>A has a breakdown 
point of value zero (Martin, 1980). 

1.6 LEAST SQUARES ESTIMATION OF ARMA MODELS 

In contrast to AR models, the estimation of MA and ARMA models is always 
a nonlinear problem. Box and Jenkins (1976) treat the estimation of ARMA models 
for outlier-free time series. Their methods unfortunately give no reliable results 
if the given time series contains outliers. (Compare Martin and Jong (1976) and 
Denby and Martin (1979) for the first-order autoregressive parameter.) The authors 
present a conditional maximum likelihood estimator of (<j>r, 0r, a), where the not 
observed values yi-f,...,y0 and a i _ 9 , . . . , a0 must be chosen in advance. For 
a fixed scale a this estimator is equivalent to a least squares estimator with the same 
conditions. A conditional least squares estimator of a := (<f>r, 6r, fi)r is, however, 
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more conveniently computed by solving 

(1.15) t rf(«') = min 
i = P + i 

where the minimum in a' has to be achieved and what avoids the problem of fore­
casting or, more simply, choosing observations that were not observed. The residuals 

(1.16) ri(«') = 0'-1(B)«/)'(B) (yt-n') 

where an AR or MA operator marked by a prime use arbitrary AR parameters 
</>' or MA parameters 0', respectively, can be computed recursively by the following 
algorithm: 

(1) Assume ys — p. and r,(a') = 0, j ^ 0. 
(2) Set i = 1. 
(3) Computer,(a') = (yt - p') - &(.v._. - p.') - ... - 4>'p(yi-p - p') 

+ e i r ^ ^ a ' ) + ... + 0;r;_g(a'). 
(4) Augment i = i + 1. 
(5) If i ^ n go to (3), else stop. 

Box and Jenkins (1976) also propose an unconditional maximum likelihood 
estimator of (<j)T, 0J, a), where the so-called technique of back forecasting is used 
to estimate values yh i g 0, that were not observed. If n, the number of observations, 
is not too small, the unconditional maximum likelihood estimator is well approxi­
mated by an unconditional least squares estimator. Since maximum likelihood 
estimators take into account the dependence of the observations of a time series, 
usage of least squares estimators is justified. 

If the given time series is outlier-free, then the least squares estimator a A is asymp­
totically efficient (Martin and Yohai, 1984a) and, if the variance of G is finite, than 

yf(n) («A - a) __, N(Q, K((j>, 0, G)) 

where -i-+ denotes convergence in distribution and the (p + q + 1) x (p + q + 1) 
covariance matrix VLS = K((j>, 6, G) of the limiting normal distribution is given by 

IC*-\4>,0) 0 

W me,G)-i QT VAR{G)d-ei-.:^M 
\ ' ( 1 - t f i - . . - - * , ) 2 

where the matrix C* (<j>, 0) is symmetric and has the elements 

Ctk = t « i + * - , , if j _ fe _ P 
( = 0 

(1.18) C*>p+k - * £ « , „ . » - , , if JSP, k ^ q , j_fc 
1 = 0 

C*P+* = £ « . + , - * , if JSp, kSq, k^j 
1 = 0 
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= Ztei+k-j, i f J = k ^ q, 
1 = 0 

where £, and £, denote coefficients in the inverse AR operator and MA operator, 
respectively 

(1.19) r^l^B1 and 9~\B) = YC,Bl. 
1 = 0 1 = 0 

Notice that the upper left-hand block of (1.17) gives the asymptotic covariance 
matrix of ( 0 A T , 0 A T ) . Thus, if VAR(G) < oo, (<£AT, 0 A T , ) is asymptotically qualita­
tively robust. On the other hand the asymptotic distribution of fl depends on G. 

The asymptotic efficiency of aA can be measured by the ratio of the trace of the 
asymptotic covariance matrix of the maximum likelihood estimator of the trace 
of VLS. A maximum likelihood (ML) estimator can asymptotically be obtained by 
solving 

(1.20) - £ In g(ri(a')) = min 
i=P+i 

and is asymptotically efficient even in the presence of innovation outliers (Martin 
and Yohai, 1984a). The asymptotic covariance matrix VML of this estimator is given by 

(1.21) VUL = k(W,G)K(ij>,e,G) 

where x¥ = —g'jg, 

k(V, G) = Vloc(1>, G)jVAR(G) = [i(G) VAR(G)yi 

with Vl0C(W, G) = EGW2(A)jEaW(A) the asymptotic variance of the location ML 
estimator (Huber, 1964), and /(G) is the Fisher information for G, and K(<j>, 0, G) 
is given by (1.17). 

Using the above described measure of asymptotic efficiency shows that the effi­
ciency of the least squares estimator is just fc(!F, G). It is well known (Huber, 1964). 
that for any v-neighborhood of the N(0, a2) distribution 

Gv := {G | (1 — v)N(0, a2) + vF, v > 0} 

with F symmetric, k(¥, G) may be arbitrarily small. Thus aA lacks efficiency robust­
ness in the presence of innovation outliers. 

aA is neither efficiency robust nor unbiased, if the given date contain additive 
outliers (Martin and Yohai, 1984a). Martin (1980b) gives more interesting facts 
about the estimation of time series models. 
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II. MAXIMUM LIKELШOOD TYPE ESTIMATЮN 

Using Chapter I as a starting point this article will continue in treating the estima­

tion of autoregressive moving-average (ARMA) models. 

Definitions, computational methods and properties of maximum likelihood type 

estimators (M-estimators) for pure autoregressive models as well as for ARMA 

models will be dealt with. In contrast to least squares estimators, M-estimators are, 

in particular, efficiency robust if the given time series is contaminated by innovation 

outliers. 

Two estimation methods which can be used advantageously for time series includ­

ing additive outliers, will be outlined. 

II.1 MAXIMUM LIKELIHOOD TYPE ESTIMATION OF AR MODELS 

We now concentrate on estimating an autoregressive model of order p (AR(p) 

model) (1.5). The appropriate representation of the AR(p) model for the following 

considerations is the linear regression model 

(11.1) y = Z/J + a 

with parameter vector /? = (A, 4>u ..., <frp)
T (compare (1.6) and (1.7)) and where 

y = 0'p+i> •••» }'„Y denotes a vector of observations, a = (ap+1, ..., a„)T denotes 

a vector of realizations of innovations and Z = (ip+1, • ••, z„)T with z( = (l, y,-_,, ... 

. . . ,JV P ) T . 

Section 1.5 dealt with the least squares estimation of /} and the innovation scale a. 

In particular, the least squares estimator of 0 is consistent and asymptotically 

qualitatively robust, even it the innovations distribution is heavy tailed. However, 

we could miss efficiency robustness of the least squares estimator of ft in the presence 

of innovation outliers. Therefore we could be interested in a possibility to obtain 

an efficiency robust estimator of p if the given time series is contaminated by innova­

tion outliers. 

The attractive small sample robustness as well as asymptotic efficiency robustness 

properties of maximum likelihood type estimators (M-estimators) for regression 

proposed by Huber (1973), naturally suggest that for robust autoregression, one uses 

the analogue of the regression M-estimators (Martin and Jong, 1976). Thus a first 

step toward robustness is given which unfortunately still has deficiencies in the additi­

ve outliers case. 
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II.l.l. Definition 

An M-estimator pA is defined by 

(11.2) t QI1—^ 
>•=P +1 V a 

where Q(-) is a symmetric robustifying loss function (Relies, 1968), and a denotes 

an estimate of the innovations scale, a is used to ensure the scale-invariance of the 

minimum problem. The maximum likelihood estimator of /? can be obtained by 

using Q(-) = — logg(-), where g(-) denotes the density of the innovations. The 
e-functions are often given in the form of their first derivatives \ji(i) = dg(r)/d/. 

Various t/'-functions are listed in Dutter (1980). Examples are 

Huber's monotone psi-function (Huber, 1964) 

(113) *„(,) = U 

(П.4) Фn(t) = | J 

(II.5) фIЫ(t) = 

'sqn(f) jf| > c 

where sgn (i) = 1 for t > 0 and sgn (t) = — 1 for t < 0, 

Tukey's redescending bisquare psi-function (Beaton and Tukey, 1974) 

rt[i - (t/c)2]2 \Uc 
\t\ > c , 

and 

HanipeVs three part redescending psi-function (Hampel, 1968) 

t \t\ S a 

a sgn (t) a < \t\ g b 

a\t- dsqn(t)]j(b - d) b < \t\ < d 

0 d < \t\ 

The purpose of a g-function and, equivalently, of a i/'-function, is to bound the 

influence of a large residual yt — zj/?' on the estimation. According to its purpose, 

a (/^-function should be odd, bounded and continuous. If innovation outliers are 

possible, the identity function \j/(t) = t is a bad choice for i/', because in this case (II.2) 

defines a least squares estimator. 

The scale a could be estimated from the observations yu ,.., y(,..., y„. Huber 

(1973) proposed to estimate a and fi simultaneously through solving (II.2) and the 

side condition 

(n.6) — 1 _ f #.(azjO)_, 
n — 2p — 1 ;=p+i \ a J 

if a monotone psi-function — like \\iH — is used. The constant b is selected so that 

a is asymptotically consistent for a if the y/s are free of outliers and the innovations 

distribution is Gaussian with mean zero and standard deviation a, i.e. b — EN{0>1) 

{^(A)} where A is a random variable with distribution N(0, 1). 
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II. 1.2. Computational Methods 

The minimum problem (H.2) and the side condition (II.6) can be combined to the 
more general minimum problem 

(11.7) h((S', a')= i Q (?L-Lh£\ a' + ca' = min 
;=P+i \ a' J 

where the minimum in both ft' and a' has to be achieved and c = (n — 2p — 1) bj2 
(see Dutter, 1975). 

Differentiating h(JS', a') with respect to a' and /?' and equating the resulting ex­
pressions to zero yield 

d") - i z(~^-)-c 
>=P+I \ a J 

with x(t) = t ij/(t) - g(t) and a system of equations defining /JA for a known a, 

(II.9) t tf'JZLfll^-o. 
i-p+i \ a J 

Note that (II.9) can be written as follows. 

(mo) o- i * (?V. -£ 5 * r ^ -
=P+i \o- / ' ,-p+i o- (r;/ff) 

where r ; denotes the residual r,- = j;,- - zJ^A. 
This shows that M-estimators can be regarded as weighted least squares estimators 

with weights w; = t/r(r;/^)/(r;/ff). Unfortunately the weights wt depend on the residuals 
and therefore on /?A, hence (II.10) is only an implicit equation. The following iterated 
weighted least squares (IWLS) algorithm, however, could be used to estimate P 
and a simultaneously. A convergence proof for the estimation of linear models is 
given by Dutter (1975). Of course, the so-called H-algorithm (Dutter, 1980; Dutter 
and Huber, 1981) could also be used to compute M-estimators of /J and a. 

IWLS algorithm 

Let starting values /J(0) and o-(0), and a tolerance value s be given. 

1. Set the iteration counter m = 0. 

2. Denote }jm) - y, - zT^(m), i ~ p + I,..., n. 

3. Compute a new value for a using (11.8) 
,(m)\ 

c i=P+i \aim)) 

4. Calculate weights 

(m) _ JiA(r<*y m + ") / (r< m y m *^ if r<m) * 0 
otherwise 
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where i = p + 1, . . . , n. Define a diagonal matrix Pp('"> with w( as its (i — p)th 
diagonal element. 

5. Solve 

£ (r(m> - z ^ ^ ) 2 M'im) = m in 
; = P + I 

for T(m), which could be computed by 

T(m) = ( Z T ^ ^ ' Z ) - 1 ZTJV(m'y - /5("» 

where Z and y are defined by (HA). 

6. Compute new values for /} by 

/ ? ( m + 1 ) = /? (m)+COT (m) 

where 0 < a) < 2 is an arbitrary relaxation factor. 

7. Stop, if 
|ff(m) ... ff(m+l)| < f i f f <- . + l) 

and if the difference between the parameters is less than e times their approximate 
standard deviation, i.e. 

|coT(m)| < £ ( r ( m + 1 ) V z t t , k=l,...,p 

where zkk is the kth diagonal element in (ZrZ)~1. 

8. Augment m = m + 1 and go to 2. 

The IWLS algorithm described above can only be used for a monotone \J/. But 
using redescending psi-functions, e.g. Tukey's \J/B (II.4), yields higher efficiencies 
at extremely heavy tailed distributions than the monotone psi-functions, e.g. Huber's 
\jjtl (II.3) (Andrews et al., 1972; Denby and Larsen, 1977). For a redescending \j/ 
the IWLS algorithm must be modified as follows: An estimated value for the scale 
must be given and Step 3 must be omitted. 

It must be considered that for a redescending \\i the estimating equation (II.9) 
could have multiple roots. Therefore the following overall computational strategy 
is advisable when using a redescending \[/: 

Step 1: Set \j/(t) = t to obtain least squares estimates ft and & from the IWLS algo­
rithm. 

Step 2: Use the least squares estimates as starting values for an IWLS algorithm 
with a monotone and bounded x[f. Typically 3 or 4 iterations will be sufficient. 

Step 3: Use the results of Step 2 as starting values for an IWLS algorithm based on 
redescending \fr, which does not iterate a. 

The motivation for the above strategy is rather obvious. It is hoped that the 
estimates based on a monotone \\i are close to the "appropriate" solution of the 
estimating equation (II.9) based on a non-monotone \j/. 
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II.1.3 PROPERTIES 

Consistency and Robustness Properties for IO Models 

Under regularity conditions consistency and asymptotic normality of /?A are 
obtained for time series containing innovation outliers with finite innovations 
variance (Martin, 1978a). 

The asymptotic covariance matrix of /JA is found to be (Martin, 1979) 

(11.11) Vr = Vl0C(rl>,g)D-1 

where Vloc(\j/, g) = EG\j/2(A)lEG\j/'(A) is the asymptotic variance of a location M-

estimator at innovation density g (G denotes the innovations distribution) (Huber, 

1964) and 

with l a ( p x 1) vector of l's and C the (p x p) moment matrix with elements Cu = 
= covariance (Yh Yj), 1 :g i,j :g p. 

An inversion formula for partitioned matrices yields 

(„,3) K , ._M # .# )[ i±J^_l|z_p^] . 

The 1-1 element of (IIT3) is the variance of the intercept X. The lower-right (p x p) 
part of (II. 13), Vloc(ij/, g) C ~ \ is V^„, the covariance matrix of (/>A. The covariance 
matrix of the least squares estimator <j>A is contained as a special case in (11.13), 
because Vloc(ij/, g) = a2 for \j/(t) = t. 

Taking — analogously to (1.14) — the pth root of the ratio of the determinants 
of the Cramer-Rao lower bound VQCR and of the asymptotic covariance matrix 
V^,. as a multivariate measure of efficiency gives 

(11.14) EFF(M, g) = ( ~ ^ J ' ' = ( M * . -0 Ko))"1 

where i(g) denotes the Fisher information (compare (1.14)). But this is just the pth 
power of the asymptotic efficiency of a location M-estimator based on \j/, at an error 
density g. Therefore, an M-estimator of (f> has the same attractive asymptotic 
efficiency robustness as a corresponding location M-estimator for i.i.d. data. Martin 
(1982) treats efficiency robustness of <f>A in more details. 

An M-estimator of <j) can have far greater precision (i.e. smaller variance) than 
a least squares estimator, because in (11.13) C = a2C where C depends only on <j> 
(compare Section 1.5) and because with a good choice of \j/ the value of Vloc(\ji, g) 
is relatively stable while a2 takes on arbitrarily large values for arbitrarily small 
heavy tailed deviations of g from normality. The M-estimation of an AR(1) model 
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provides a particularly transparent special case because 

(H.15) V LzAVloc(^g) 
a2 

(Denby and Martin, 1979). 
If the ^-function which is used in (H.9) is bounded, then for each fixed fi the 

function f(z, y) = \J/((y — zTj?)/ff) z is bounded in the scalar y. but unbounded 
in z. Correspondingly it turns out that the influence curve for /JA is bounded in y 
and unbounded in z. This feature would be appropriate if one could be sure that the z 
portion of the model (II. 1) is correctly specified. The z portion is correctly specified 
for outlier-free time series and for time series with innovation outliers. 

An M-estimator of 0 is — in contrast to a least squares estimator 0A — not 
asymptotically qualitatively robust if innovation outliers are possible because the 
asymptotic covariance of <j>A depends on the innovations distribution G. However, 
this is hardly a serious deficiency because an M-estimate has greater precision than 
a least squares estimate. 

Consistency and Robustness Properties for AO Models 

In the presence of additive outliers M-estimators can have an inflated variance 
and finite sample biases and asymptotic biases which can be as catastrophic as those 
of least squares estimators (Denby and Martin, 1979; Martin and Jong, 1976). 

In the presence of additive outliers an M-estimator of <j> is no longer efficiency 
robust (Martin, 1979) and has a breakdown point of value zero. The latter fact is 
not surprising since — in terms of regression analysis — additive outliers produce 
an errors-in-both-variables problem, and M-estimators do nothing to cope with 
errors in the "independent" variables (Martin, 1980). 

For time series observed with additive outliers there is a z misspecification in the 
linear model (II. 1). When such deviations from the ideal model are possible the 
influence curve is unbounded. Compare also Dutter (1980) for details of the influence 
curve for linear regression. 

Summarizing we can say that an M-estimation of AR parameters is advisable 
if the given series is outlier-free or contain innovation outliers, because in these 
situations clean asymptotics and efficiency robustness can be achieved. For time 
series contaminated by additive outliers, however, M-estimation is almost worthless 
and therefore other methods of estimation are needed. 
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II.2 ROBUST ESTIMATION OF THE LOCATION OF ARMA MODELS 

II.2.1. Autoregressive-Errors M-estimator for AR Models 

Since the location /( is related to the intercept X by (1.6), it is appropriate to call 

(11.16) fi = 1/(1 - 11) 
i = l 

an autoregressive-errors M-estimator of \x, if pA = (X, $1;...,(/>p)Tis an M-estimator 
of p. It can be shown (Martin, 1978b) that fi is a consistent and robust M-estimator 
for innovation outlier situations if fiA is a suitably chosen M-estimator. 

Let aA denote an estimator of a = (a l5 a2, ..., ap+1)
T = (\x, (/>,, ..., 4>P)T. Let 

P = ft(a) denote the transformation from a to /? and let i? denote the matrix of partial 
derivatives of h(<x) with respect to a, i.e. h{J ='(djdcCj) h,(a). 

If /JA is consistent and asymptotically normal with covariance matrix F/(A,thenaA 

is also consistent and asymptotically normal with covariance matrix 

(11.17) Vm* = H - 1 V / i , ( H T ) - 1 . 

For the following consideration a finite innovations variance is assumed. The asymp­
totic covariance matrix of an M-estimator PA is given by (II. 11) and therefore, 
the asymptotic covariance matrix of the corresponding aA = h~i(pA) is 

(11.18) K.. =(f íT5fí)- 1V ; o c( . / / ,a) = 
(1 -í>H oт 

0 c~l VuJý,g) 

where Vlgc(\j/, g) is defined as in (11.11) and C is defined as in (11.12). 
Martin (1981, 1982) shows that the efficiency of the autoregressive-error M-estima­

tor p. is 

(n-19) EFF(M, g) = [i(g) Vlocty, g)]'1 . 

Expression (II. 19) is equal to the efficiency of an ordinary location M-estimator 
for i.i.d. errors. The upper-left element of Va« (II. 18) differs from the usual location 
M-estimator asymptotic variance Vloc(\j/, g) for i.i.d. errors only by the scale factor 

p 

(1 - £ ^ ; ) ~ 2 - It follows that Huber's (1964) min-max robustness results hold for 
i = i 

autoregressive-errors M-estimators of location over families of distributions with 
finite variances. 

The autoregressive errors M-estimator (I (11.16) is almost worthless if a time 
series contains additive outliers, because the same is true for the M-estimator <£A. 
One might use some other procedure, such as the generalized M-estimation (which 
will be described in Chapter III), to obtain robust estimators X and <f>A. A difficulty 
with the latter approach is that although the estimator of fx will be robust, it will not 
necessarily be consistent unless X and <j>A are consistent as well as robust. (Generali­
zed M-estimators are robust but not consistent for additive outlier models.) However, 
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it is possible to construct a robust and consistent estimator of JX from robust but not 
necessarily consistent estimator X and <j>A (Martin, 1979b). 

Lee and Martin (1984) give more information about the computation and the 
properties of location M-estimators for ARMA models. 

H.2.2. Robustly Centered Data 

It is also possible to estimate autoregressive and moving-average parameters for 
observations that were robustly centered by an ordinary location M-estimator as 
defined by Huber (1964). This is analogous to the usual approach for estimating 
ARMA parameters by least squares where the sample mean is used to center the data. 
One might hope that the M-estimator fi is efficiency robust for the outlier models 
considered here, because the sample mean is asymptotically efficient for a wide 
class of correlated Gaussian processes (Grenander and Rosenblatt, 1957). While 
some caution is appropriate until the robustness properties of the M-estimator fi 
are better understood (see, for example, Wegman and Carroll, 1977), Monte Carlo 
experience (Zeh, 1979) indicates that use of p. will not impair the robustness properties 
of the ensuing estimator of <f>. 

II.2.3. Prewhitening-Based M-Estimation of the Location 

For the following considerations we assume that observations yt are generated 
by random variables Y; = Xt + Vt (compare (1.9)), where the random variables 
Xf + V; are identically and symmetrically distributed but are not necessarily inde­
pendent. 

For simplicity we assume that X; + Vt is an outlier-free or contaminated AR(l) 
process, i.e. Xt is an AR(l) process and Vt + 0 for an additive outlier process. 
(Generalizations to higher-order autoregressions are straightforward.) A robust 
estimator $ x of the first-order autoregressive parameter can be used to prewhiten 
the observations robustly 

(11.20) ut = y. - i ^ j v i , 2 g i = n , ut = yt . 

The «;'s can be used to compute an ordinary location M-estimate fi by solving 
(compare Martin, 1981b) 

- fi , v [""•• ~ i1' 
a(l - fay 

Then a prewhitening-based M-estimate fip of the location can be computed 

(11.22) fip = fi(l - fa). 

If $1 --></>0, \<p0\ < 1, &-Z-+G and the distribution of (X2 + V>) - (j)0(X1 + Vx) 
is symmetric (what is the case if the V;'s are i.i.d. and have a symmetric distribution), 
then fip is, under reasonable conditions, a consistent and asymptotically normal 
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estimator of/.. Martin and Lee (1970) found high efficiencies of fip relative to ordinary 
M-estimators of fi. 

It might be noted that when <p{ is an M-estimator or generalized M-estimator 
and V£ = 0 for all i, then the asymptotic variance of fip is 

(i-*i)~a*U*,0) 
which is exactly the same as the asymptotic variance obtained by estimating fi with 
an autoregressive-errors M-estimator (11.18) for a time series which is possibly 
contaminated by innovation outliers. The main advantage of prewhitening appears 
in additive outlier situations. Both M-estimators and generalized M-estimators of A 
and 4> are asymptotically biased toward additive outliers and these estimators use 
no constraints that would insure consistency of an autoregressive-errors M-esti­
mator of /x. However, the implied constraint of the prewhitening step in computing 
fip forces consistency. 

II.3 MAXIMUM LIKELIHOOD TYPE ESTIMATION OF ARMA 
MODELS 

II.3.1. Definition 

Section 1.6 illustrated the distribution-free asymptotic behavior, i.e. the asymptotic 
qualitative robustness, of least squares estimators of autoregressive moving-average 
parameters <f> and 0, but Section 1.6 also revealed the lack of efficiency robustness 
of these estimators in the presence of innovation outliers. 

The maximum likelihood estimator defined by (1-20) is asymptotically efficient, 
but it can be computed only when it happens that the innovations density g is known. 
Since g in general is not known, it is also possible to use the maximum likelihood 
estimator in practice. However (1.20) suggests to define the following class of maxi­
mum likelihood type estimators (M-estimators) aA = (</>AT, 0 A T , fi)T by 

(11.23) «(«', a) = £ Q r ^ l l = rain 
> = P+I |_ a J 

where r;(a') denotes a residual (1.16). The g-function has the same purpose as that 
that in (II.2), namely to bound the influence of large residuals on the estimation and 
therefore the g-functions used for an M-estimation of AR parameters can also be 
used here. 

Similarly as in Section II . l . l a and a may be found simultaneously through solving 
(11.23) and the side condition 

(n.24) _ _ J i r(rM\ = b 
n - 2p - q - 1 i = P+i \ a J 

if a monotone psi-function - like $u (II.3) - is u s e d. The constant b is the same as 
in (II.6). 
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The minimum problem (11.23) and the condition (11.24) can be combined to the 
more general minimum problem 

(11.25) h(*',a')= Í J-~P)a' 
Í - P + I \ a j 

ca = mm . 

where the minimum in both a and a' has to be achieved and c = (n — 2p ~ q ~ 1). 
.ft/2. ^ 

If \ji{t) denotes dQ'yt)\dt, differentiating of ^11.25) with respect to a and setting 
the resulting expression equal to zero yield the system of estimation equations 

(11.26) i V/(^W(aA)=0 
»=P+I \ a J 

where d + (aA) denotes the vector of the first derivatives of the residual r,(aA) 

(11.27) d+(aA) = (d[(«A) , -drla^dnY 

with 

(11.28) - 5 r ; ( « A ) / ^ = (1 - $t - ... - $p)j{l - B t - ... - 0q) 

and 
d / a A ) = ( 5 ; _ 1 ( « A ) , . . . , S ; _ p ( « A ) , . . _ . ( « % . . , . , _ _ ( « * ) ) * . 

(11.29) s ;_,(aA) = ~ 5 r ; ( a A ) / # , = $~\B) r ;_,(«A) 

(11.30) ' , - > * ) = -3r ;(«A) /a0, = - 8 _ 1 ( B ) r ;_,(aA) . 

Similar to (II. 10) equation (11.26) can also be written as a weighted least squares 
problem with weights n>; = i/'(r;(a

A)/o-)/(r;(a
A);ff); the least squares problem, however, 

is nonlinear. 

II.3.2. Computational Methods 

Before an algorithm to compute M-estimates of a and a is described, algorithms 
to compute the first derivatives of the residuals with respect to AR parameters (11.29) 
and with respect to MA parameters (11.30) are given. 

Computation of the first derivatives of the residuals with respect to AR parameters 

(1) Set s/x') - 0 for j = 1 - p, 2 - p, . . . , 0 . 

(2) Set? = 1. 

(3) Compute s;(a') = 4>[ s^^a') + ... + <p'p -,_-(*') + r ;(a'). 

(4) Augment i = i + 1. 

(5) If i = n - 1 go to (3), else stop. 
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Computation of the first derivatives of the residuals with respect to MA parameters 

(1) Set tj(x') = 0 for J - p - 2q + 1, p - 2q + 2, ...,p - q. 

(2) Set / = p ~ q + 1. 

(3) Compute /,(a') = 0J tj-^a') + ... + 0'q .•<_/«') - r,(«'). 

(4) Augment i — / + 1. 

(5) If i <| n - 1 go to (3), else stop. 

Residuals can be computed by the recursive algorithm given in Section 1.6. 

The minimum problem (11.25) can be solved iteratively by adapting the WS-

algorithm (W-Sophisticated) which was applied by Dutter and Huber (1981) for the 

nonlinear robust regression problem. The WS-algorithm consists of the iterated 

weighted least squares (IWLS- or W-) algorithm and uses the algorithm of Nagel 

and Wolff (1974) to solve the nonlinear least squares problem. The algorithm of 

Nagel and Wolff is based on a linear compromise between the Gauss-Newton 

procedure and the method of steepest descent. The motivation for the step of the 

WS-algorithm may be seen in Dutter and Huber (1981). 

An Algorithm for the M-estimation of ARMA parameters 

Let starting values a ( 0 ) and c ( 0 ) , a tolerance value c > 0 and a constant c as in 

(11.25) be given. 

1. Compute residuals r ( 0 ) = ( r p + 1 ( a ( 0 ) ) , ..., r„(a ( 0 )))T 

2. Set the iteration counter m = 0. 

3. Find an improved scale 

(^У-lt^xi^) Лm) 

where %(t) = t x(t) - g(t). 

4. Calculate weights 

w<r>~xi,'Kri«ni°im+1Wi(«ni°{m+1))> 
if r/a ( m )) + 0, otherwise wjm) = 1, i — p + 1, ..., n; define a diagonal matrix 

W(m> with W;"1' as its (/ — p)th diagonal element. 

5. Compute the first derivatives of the residuals with respect to the parameters 

Sl(_C->) _ ~drp+1(^)jd<t>p,...,S„^m>) - -<3r„(a ( m ))/# 1 , 

tp+l-Mm)) = -Srp+1(«m)lMP, •••> tn-Mm>) = ~Sr„(^)ldex , 

- dr^m))l8n = (i - 4>r - - - 0(m))/(l - e^ - ... - 0 ( m )). 

; _ p +-1,...» »» and for i = p + 1,';.., n form the vectors 

d/a ( m )) = (>,- Mm)), • • - s(-P(«(m)), t,-iM, • • -, t.-9(«(m)))T 



and 

d+(«(m)) = (dT(* ( r a )), - 5 r ; ( « r m ) ) / ^ ) 1 -

Let D(m> denote the matrix [d+

+ 1(_ ("°), -••, d„+(a("°)Jr . 

6. Solve 

J ( r . (_ «)) _ _+T((-*->) T ( " ; ) ) 2 w(-m) = min . 
; = P + i 

for the (approximate) direction T(m) of the Gauss-Newton method, i.e. solve 

//(m^(«) _ y("<) 

where H ( m ) = D(m)Tfl/(m)Z>(m) and y(m) = 2>(m,TPF(mVm) denotes the vector of 

steepest descent and r ( m ) denotes (rr+i{»(m),..., r„(a (m)))T. 

7. Calculate qx = a(a ( m ), ff

(m+1)), new values for a by a(m + 1 ) = a ( m ) + T(m), r ( m + 1 ) 

and g2 = a(a ( m + 1 ) , a ( m + 1 ) ) . If o 2 < a. go to 8. 

7a. Compute 

y<->TyO 

Tv' 

which is an approximative value so that g takes its minimum in the direction of 

vcoy(m) + (1 - v) %{m) with 0 < v < 1 . 

Perform the following steps. 

(1) Set « = 0. 

(2) Augment i = s + 1. 

(3) Compute new values for a by 

_(«+!) = _(«) + { W y

( m ) /5 + (1 - «/5) T(m) . 

(4) Compute r ( m + 1 ) and g2 + t = </(a(m+1), a ( m + 1>). 

(5) Ifff2 + [ < a., go to 7b. 

(6) If « < 5 go to (2), else go to 7c. 

7b. Compute a linear back-interpolation between (i ^ ])/5 a n d ,/5 by 

- 02 + , 1 

,,<«)T„(m) 

= T«)т Я («) ľ («) ' 

5 Qi + l - g2 + i5' 

Put a ( m + 1 ) = a ( m ) + v*coy(mj + (1 - v*) T(m). 
Compute residuals r(m + 1 ) . 
I f a ( a ( r a + 1 ) , ff(ra+1)) < a i , g o t o 8 . 
Otherwise put a ( m + , ) = «(m) + «uy(m)/5 + (I - tj5) T(«), 
Compute residuals r ( m + 1 ) and go to 8. 

7c. Put co = co/2. 
Compute a ( m + 1 ) = a ( m ) + con(m) and residuals t («+D. if fl(a

(m + 1 ) , o<m+») _; Q u 

repeat step 7c. 
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8. Stop, if 
|ff(m + U _ ff(«)| < g f f(«+U 

and all the differences between the parameters are less than e times their approxi­
mate standard deviation, i.e. if 

K m + 1 ) - «i"°| < eo-(m+1) sjdkk for all fc = 1, . . . , p + q + 1, 

where ak denotes the kth element of a and _** denotes the fcth diagonal element 

of [D^D^y1. 
9. Augment m = m + 1 and go to 3. 

The algorithm which is described above, can only be used with a monotone \j/-
function. For a redescending \j/ an estimated value for the scale must be given 
and the improvement of the scale (Step 3) must be omitted. An illustrative application 
of this algorithm to compute M-estimates of ARMA parameters for simulated data 
is given in Stockinger (1983). 

II.3.3. Properties 

Under general regularity conditions it may be proved (Martin and Yohai, 1984a) 
that for an M-estimator of a 

(11.31) V(w) ( a A - «) - ^ N(0, k(xjj, G) K(<t>, 9, G)) 

where K((j>, 0, G) is given by (1.17) and the form of k(\jj, G) is the same as in (1.21), 
except for !F being replaced by a general psi-function \j/. More details are given by Lee 
and Martin (1982). 

The ratio of the trace of VUL (1.21) to the trace of the asymptotic covariance 
matrix of aA gives [<'(G) Vloc(ij/, G)]" 1 as a measure for multivariate efficiency which 
is just the asymptotic efficiency expression for a location M-estimator and aA there­
fore has the same attractive asymptotic efficiency robustness properties as a location 
M-estimator based on the same psi-function \j/. 

If the variance of G is large, then the variance of an M-estimator for (</>T, 0T) 
for a good i/r, is smaller than the variance of a least squares estimator. In contrast, 
it follows from (11.31), that the M-estimator for a is not asymptotically qualitatively 
robust. 

Additive outliers however, can cause not only inflated variability of M-estimators, 
but also considerable bias, even asymptotically. 

II.4 METHODS USED IN THE ADDITIVE OUTLIERS CASE 

As we have seen in Section II.1.3 M-estimation is not satisfactory if a time series 
might contain additive outliers. In this section two methods for dealing with i.i.d. 
additive outliers will be outlined. (The next chapter will treat a more powerful method.) 
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II.4.1. Pagano's Method 

In this section it is assumed that Xt (1.9) is an outlier-free pth order autoregressive 
process with location p. = 0. 

If the V;'s are independent and Gaussian with variance a2, it is possible to construct 
parameter estimators of <j>, a2 and av which are not only consistent but are also 
asymptotically efficient. Pagano's (1974) method of doing this is as follows: 

Apply the X;-whitening transformation to the observations _y; which yields 

ut- yt- </>iJVi - ... - 4>pVi-p = 

= (Xi + Vt) - 4>i(xi-i + Vi-t) - ... - (j>/Xi-p + Vi_p) = 

= Xt - 4>iXi-i - ... - 4>pXi-p + Vi - 4>iVi-i ~ ... - <t>pVi-p = 

= a ; + vi - 4>iVi-l - ... - <?Vvp . 

The last line reveals u ; is produced by an Mk(p) model. Then it follows that there 
exists a white noise sequence of random variables r\i with an AT(0, a2) distribution and 
there exist constants 9U 62,..., 6P, so that 

u, = ni - 01rli_1 - ... - Ojit-p. 

Thus Y; is an ARMA(p, p) process with parameters <f>u ...,<pp, 0U ..., 6p, a2. 
The parameters 6U ...,9p,a

2 could be determined by the covariances c(k) = 
= EUiUi+it, k = 0, 1, ..., p. Thus the process Y, is equivalently parameterized by 
<f>i,...,<f>p,c(0),...,c(p). 

Although consistent and asymptotically efficient estimators of the above equivalent 
parameter sets are available (Hannan, 1970, 1973; Parzen, 1971), they do not directly 
provide efficient estimators of the original parameters <pu...,tj>p, a2, a2,. Pagano 
obtains efficient estimators of these parameters by a least squares regression of the 
estimates $u ..., $p, c(0),..., c(p) on <j>u ..., 4>p, a2, av using the relations 

c(k) = o2S0,k + v r t 4>j4>j + k > k = 0,l,...,p 
j = 0 

where <50ifc = 0 for k + 0, <30j0 = 1 and (j>j = 0 for ; = 0 o r ; > p. 

H.4.2. A Robust Instrumental Variables Approach 

We consider a special case of (1.9) in which Xt is a first-order autoregressive process 
with location p = 0 and the V;'s are i.i.d. For the linear model 

(11.32) y, = (piyt-i + Ui 

we have (because yt = xt + vt and xt = (^Xj-i + a;) 

Ui = y-t - (jfiyt-i = xt + v, - (p^i-i = <t>iXi-i + a, + vt - ^ . j ' . - i = 

= fl; + Vt~ <$>i(yi-i - X,-i) = fl; + Vf- (jilVi-i . 
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Thus the usual linear regression approach does not yield a consistent estimate of <pl 

because E(U; | Y-x) 4= 0. In fact, as mentioned in Section 1.5, the asymptotic bias 

of the least squares estimator of </>! is —4>\Gvl(ox + av) • 

However, the least squares instrumental variable (IV) approach is appropriate 

in this case (Walker, 1960, Martin, 1981b). Because E(U; | Y_2) = 0, Y;_2 serves 

as an instrumental variable and 

ZУІ-IУІ-: 
Í = З 

is a consistent estimator of <j)t, if <j>1 #= 0. Notice the difference between 4>t and the 

usual least squares estimator of (j>± which can be computed by 

(i**-o/(irf-,). 
i=2 j = 2 

The least squares instrumental variable estimator <j>t can be robustified easily. 

An instrumental variable generalized M-estimate $IV is obtained by solving 

The weight function W(t) should be chosen so that ( W(t) is bounded. ax denotes 

a robust scale estimate which might be computed directly from the data. The robust 

scale estimate a is computed from an auxiliary equation. 

Under regularity conditions and if $x + 0 the estimator $[V is consistent and 

asymptotically normal, even in the presence of additive outliers. 
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III. GENERALIZED MAXIMUM LIKELIHOOD TYPE 
ESTIMATION 

An appropriate generalization of the maximum likelihood type (M-) method yields 
more satisfactory estimates of ARMA parameters in the case that the given time 
series is contaminated by additive outliers. Definitions, computational methods and 
properties of generalized maximum likelihood type estimators (GM-estimators) for 
pure autoregressive models as well as for ARMA models will be dealt with. In 
additive outlier situations GM-estimators have, in particular, the following properties. 
GM-estimators do not require i.i.d. outliers. GM-estimators have a positive break­
down point, a bounded influence curve, considerable robustness and much smaller 
bias than M-estimators and least squares estimators. 

The properties of M-estimators and GM-estimators of AR parameters can be 
used to create tests which are able to determine the type of outliers in a time series. 

Robustified methods for the identification of AR models and ARIMA models 
will be mentioned. 

III.l GENERALIZED MAXIMUM LIKELIHOOD TYPE ESTIMATION 
OF AR MODELS 

We now concentrate on estimating an autoregressive model of order p (AR(p) 
model) (1.5). First we center the data robustly (compare Section II.2.2) by using an 
ordinary location maximum likelihood type (M-)estimator fi, that is defined by 

(HI.1) t e t ^ 
1=1 V -> 

where Q(%) is a symmetric robustifying loss function and ay is an estimate of the scale 
of thej' i

,s(Huber, 1964). Some explanations to g-functions and to their first derivatives, 
denoted by \fi, were already given in Section II. 1.1. If a robustly centered observation 
is — for notational convenience — again denoted by yt, then the AR(p) model can 
be written in the linear model form 
(III.2) y = Z4> + a 

where y = (yp+1, •••, y,f, <£ = O n •••> 4>P)T, a = (ap+1, ..., a„)T and Z = 
= [ z p + 1 , . . . , z „ ] T w i t h z i = (>>,_!. ...,y^p)

T. 
M-estimation of AR models (compare Section IL1) is an attractive possibility to 

obtain asymptotic efficiency robustness in situations where only innovation outliers 
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are present. However, M-estimators have a breakdown point of value zero and large 
biases in the case of additive outliers and lack qualitative robustness toward both 
outlier situations. Since additive outliers occur probably much more frequently 
than innovation outliers, other methods of estimation are strongly required. Two 
methods for dealing with i.i.d. additive outliers were mentioned in Section II.4. 
Here we will be concerned with a more general method. As stated in Section II.1.3 
the influence curve of M-estimators is bounded in y, but unbounded in z. This is an 
undesirable property if additive outliers occur. The possibility of bounding the 
influence curve in y and also in z for usual regression problems has been alluded 
to by Huber (1973), suggested by Mallows (1976) and advocated by Hampel (1973, 
1975). 

III.l.l. Definition 

The basic idea of generalized M-estimators (GM-estimators) is to modify the 
minimum problem (II.7) so that the summands of the estimating equation (II.9) 
are bounded and continuous functions of the data. This in turn results in an influence 
curve which has the same properties. GM-estimators <j>A and a are analogues of 
bounded-influence regression estimators and are given as an extention of Huber's 
(1973) proposal for robust regression by the general minimum problem 

(1II.3) h(4>', a') = i uiViQl (^LZJ^t) a> + ca< = m i n . 
i = p+l \ M;ff' j 

where the minimum in <j>' and a' has to be achieved and i//x(t), the first derivative 
of Qi(t), should be monotone, e.g. \j/t(t) = ij/f,(t) (II.3). a is consistent for a if the y;'s 
are free of outliers with N(0, o-2)-distributed innovations and fi = fi, if c = (n - 2p) 
EuiViENi01)\l/^(A)j2 where A is a random variable with an N(0, l) distribution. 
The M;'S and o/s are weights depending on the "largeness" of z(. Dutter (1983b) 
uses an equation like (III.3) to compute bounded-influence estimators for linear 
regression. Differentiating h(<j>', a') with respect to a' and <f>' and equating the resulting 
expressions to zero yield 

(HI.4) i M^^^UC 

with Xi(t) = t\jjx(t) — Qx(t) and a system of equations defining </>A for a known <x 

(III.5) i 9#JhJZ&l\ZlWt*. 
i= P +i \ ufi ) 

Equation (III.5) defines the least squares estimator of </> if vt = M; = 1 for all i and 
if ij/1 is the identity function. In contrast to the least squares estimator the influence 
of the residuals yt — zJ^A and therefore also the bad influence of innovation 
outliers is bounded for a good choice of \\ix in (III.5). For a Mallows type GM-
estimator (Mallows, 1976) every M; is equal to 1 and »f = ^2(^()/^«> where bt denotes 
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the "largeness' of z, and \j/2 is for example one of the i/'-functions (II.3) to (II.5). 

The u;'s should bound the influence of the z;'s and therefore also the influence of 

additive outliers on the estimation. A Schweppe type GM-estimator (Schweppe, 

1975) uses ut = v, = ^2(bi)l^ito increase the influence of an observation with a small 

Pj if the residual yt — z]<j>A is also small. Therefore a Schweppe type GM-estimator 

should be superior to a Mallows type GM-estimator with the same psi-functions if 

innovation outliers are present. 

III.1.2. Computational Methods 

First we will describe possibilities to assess the "largeness" bt of z ; and then we 

will explain a method to compute GM-estimates of AR parameters. 

The "largeness" b; of z, can be assessed by 

(III.6) bi = (p-iz]C-lziy'2 

where C~l is an estimate of the a priori unknown inverse p*p covariance matrix 

of the outlier-free process Xt which is the basis of Y (compare Section 1.4). Martin 

(1980) estimates C - 1 in the following way: Suppose that Xt is a Gaussian process 

(not necessarily a pth-order autoregression) with p*p covariance matrix Cp and let 

$*j> •••' $*k> lc = L 2> •••> P ~ 1, b e the coefficients of the predictors of Xt based 

on Xi_1, ...,Xi_k with the minimum mean square error. Denote the corresponding 

prediction-error variance by a2(k). Then C " 1 has the factorization (Akaike, 1969) 

where 
c ; 1 = SI'S„ 

j> k 

(sX- = 

-Фp-kj-k 

a(p - k) 

1 
j = k 

a(p - k) 

0 , j < k 

with 1 ̂  k,j g p and <r(0) denoting the scale of theX,'s. a(0) could be estimated by 

(111.7) ax = med \y-, - med ^-|/.6745 . 
i I 

Assuming that AR models of order p = 1,2,..., pmgx are fitted in succession using 

GM-estimates, set Cp ' = §pSp where Sp is obtained from Sp by replacing <pk] by 

its GM-estimate and replacing a(k) by the appropriate GM-estimate of scale. 

To estimate the first-order AR parameter $., the system (III.5) becomes 

(111.8) I^ip'"^1^'-!"0 
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where the "largeness" to compute vt and M; could be 

(III.9) bi = &-(yi„l 

with ax defined by (III.7). 
Another possibility to estimate the inverse covariance matrix C~l is to express C~l 

as a function of (/>, C" 1 = C-1(0), using Siddiqui's (1958) results and then set C_1 = 
= C-1(0A), where <j>A denotes a GM-estimator. But this method creates extreme 
difficulties in establishing existence and uniqueness for solutions of the estimating 
equations. 

A special formulation of equation (III.5) reveals a GM-estimator $* as a weighted 
least squares estimator whose weights depend on the residuals r ; = j ' , — z|<£A, 
i = p + 1, ..., n (compare (H-9)). It follows that an iterated weighted least squares 
(IWLS) algorithm could be used to estimate 4> and a simultaneously. Before starting 
the IWLS algorithm, the weights M; and vh i = p + 1, ..., n, which are — in terms 
of linear regression — weights in the factor space (and which are constant for a fixed 
time series yt,..., y,), must be determined. 

The IWLS algorithms for the M-estimation (compare Section 11.1.2) and GM-
estimation of AR parameters are in general similar, but the improvement of the scale 
and the calculation of the weights are different. Thus the IWLS algorithm described 
in Section II.1.2 can be used here if it uses model (III.2) instead of model (II. 1) 
(P has to be replaced by <j>) and Step 3 and Step 4 must be newly formulated: 

3. Compute a new value for a using (III.4) 

(o«-+")a-- i uiViXl(^\{^y 
c i = P+\ \upim>/ 

4. Calculate weights considering that M; = 1 for a Mallows type estimator and 
M; = Vi for the Schweppe type estimator 

»i*i ( rf y f - 7 - ^ - 1 , if r(m) * 0, Ui + 0 

Vtjui , if r(;n) = 0 , Mj 4= 0 

1 , if r(
;
m1 = Ui = vt = 0 

1 , if r(m) + 0 , a-, = Vi = 0 , iAi(t) = t 

0 , if r(m) + 0 , M; = Vi = 0 , \j/i is bounded 

where i = p + 1 , . . . . n. Define a diagonal matrix W^m) with w; as its (i — p)th 
diagonal element. 

For a non-monotone i^-function- the IWLS algorithm described above must be 
modified in the same way as the IWLS algorithm to compute M-estimates, i.e. an 
estimated value for the scale must be given and Step 3 must be omitted. The overall 
computational strategy which was described in Section II. 1.2, should be used because 
the estimating equations (111.4), (III.5) could have multiple roots for a non-mono­
tone \j/v 
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III. 1.3. Properties 

Asymptotics and robustness properties were mainly investigated for the Mallows 
type solution of (III.3) and will be described for the Mallows type estimator, if not 
otherwise stated. 

The GM-estimator (</>AT, 6) may be represented as a functional in the following 
manner. Define a multivariate sample by (Y, Y^u ..., Y-p), i = p + 1 , . . . , n, and 
let E„ denote the empirical distribution function for the sample. Let F denote the 
multivariate distribution function for 

(111.10) UT = (Yp+1, ZT
+ 1) = (Yp+1! Yp,..., Y) 

where Yt denotes a random variable representing an observation centered by the 
functional /.(E), i.e. /x(E)is the true location parameter and (x = n(F„) is a (robust) 
location estimate used to center time series data. 

The GM-estimator (<j>A,a) could be defined by the functional (e4T(E), c(E)) = 
= T4, „(F) whose value is the root of 

(111.11) EPVKZp+i)Zt 

and 

(111.12) EPV(Zp+l)\tâ 
*P+Í Zp+Ìt ьЛ = o 

where V(Zp+1) denotes a weight depending on Z p + 1 . Note that equation (111.12) 
is the GM-estimation version of the side condition (II.6) proposed by Huber (1973) 
for the M-estimation. 

The values of </>(E„) and cr(E„) could be obtained by solving (III.3). 

Consistency 

GM-estimators defined by (III.3) are consistent and asymptotically normal even 
in innovation outlier situations without Gaussian or finite variance assumptions 
under reasonable regularity conditions (Martin, 1978c; Bustos, 1982). For well 
chosen \jjr and i/^-functions GM-estimators have much smaller biases than least 
squares estimators or M-estimators at additive outlier models. Evidence in support 
of this statement may be found in Martin and Zeh (1978) and Zeh (1979). Some 
Monte Carlo results for the AR(l) model were presented by Denby and Martin 
(1979). 

The Asymptotic Covariance Matrix 

If innovation outliers are possible the joint asymptotic covariance matrix of <j>" 
and a is (Martin, 1980) 

(n,.3) ^ i y 
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with 

(111.14) V+ = B;lB2B^ Vloc(il,,g) 

where 

(ITI.15) B 1 = £ { Z p + 1 V ( Z p + 1 ) Z ^ + 1 } , 

B2 = E{Zp+lV
2(Zp+l)Zj+i} 

and Vloc(ij/, g) is the asymptotic variance of a location M-estimator. The expression 
for V„ is 

(111.16) V, = ̂  EF V2(Zp+l) E;#?[Ap+1/a(E)] - b,}2 

d 

where d is defined as in (III.21). 
If V(Zp+1) = 1 the GM-estimator reduces to an M-estimator and the resulting 

asymptotic covariance matrix for (j>A is just the lower right part of (ITT.13). If, in 
addition, i/^ is the identity function we get the least squares covariance matrix (1.13). 

Efficiency Robustness 

On the one hand, GM-estimators have good efficiency robustness relative to least 
squares estimators in innovation outlier situations, on the other their efficiency 
robustness can be poor relative to M-estimators. This is to be expected considering 
the fact that using the weights vt in (III.3) results in increased variability relative to 
M-estimators. The asymptotic variances of an M-estimator and a GM-estimator 
of the first-order autoregressive parameter are, respectively (compare (111.14)), 

(111.17) V,l,M=^Vjiug) 
EY\ 

and 

(IIU8) p«-i6 | ) , '* , ) 

where Vloc(\\ix, g) is the asymptotic variance of an M-estimator for location at in­
novations density g. Therefore the efficiency of the Mallows type GM-estimator 
relatively to the M-estimator is 

(111-19) EFF(GM, M) = - ^ = Q\UMJI) 
*4>I,GM 

where QY^^^YO i s t n e correlation coefficient for Yx and iftziTi)- The function \j/2 

will typically be chosen so that Cy.^y,) is moderately large for an outlier-free time 
series — say 6y,,^,(y.) = -95. The value Qr^fiiYO' n o w e v e r > can be rather small for 
some innovation outlier model (Denby and Martin, 1979), which results in consider­
able loss of efficiency. 
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Schweppe type GM-estimators offer some hope for obtaining better efficiency 
robustness at innovation outlier situations. 

GM-estimators provide considerable robustness toward additive outliers with 
modest losses of efficiency relative to M-estimators in "gentle" innovation outlier 
situations (Martin, 1980). Since innovation outlier situations probably occur 
infrequently, GM-estimation is an attractive possibility. Favorable small sample 
efficiency robustness of GM-estimators for the first-order autoregressive parameter 
is reported in the Denby and Martin (1979) Monte Carlo study. 

The Influence Curve 

Let U ' T — (Y;+1,Z;T ,) be a dummy variable replacement for U T defined by 
(111.10). The influence curve ICT F ( U ' ) of the joint GM-estimator of </> and a can 
be computed in a straightforward manner (Martin, 1980). The calculation is simplified 
by replacing (i(F) by fi, thus acting as if the location parameter were known. Define 
R(F) : = Yp+1 - Z T

+ 1 4>(F) and do similarly for R'(F). Then the calculation yields 

(111.20) ICr^yV) = 

where 

(111.21) 

D\ e 

fTi d 

и ( z ; * ' ) z : : ' < ғ , ŕ , Ш 
^ ' Ш 1 ' 

. ,Rm D = EP}V{Zp+1)Zp+1Zl+1rp\l 

' • * { - W ^ ^ 

assuming that the above inverse exists. 
If only innovation outliers are possible then R(F) = ap+1 and the expectation 

values e and f are equal to the zero-vector, assuming the innovations distribution G 
is symmetric and i/̂  is odd. In this case we have 

(111.22) ICT ,Ғ(U') = 
1СТфУкМ') 

7 С Г .(1Г) 

D - ^ Í Z ; , , ) ^ , ^ ) ^ 
a(F) 

1'U*^)-
where ICT4,,F(V) and lCTatP(\J') are the influence curves for the separate estimators 
<j>A (with a known) and a (with <j> known). 
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Although the above separation of the influence curve does not hold for the ad­
ditive outliers model, (III.22) will hold approximately if e and f are approximately 
zero. One may expect this to be the case if <j>(F) = $ 0 + 0 provided y =- P(Vt + 0) 
(compare Section 1.4) is not too large and the bias <j>0 — (j>h small. A small bias can 
be obtained if the l^-function and i/'2-function are well chosen. 

Qualitative Robustness 

Let E0 be a fixed distribution of X = (Xp+1, ....JfjJ* for an innovation outlier 
model where Yt = X{. Define an additive outliers model on the innovation outlier 
model where the vector Y = (Yp + i, •••, Yi)T has distribution E. Suppose that ^ i ( ' ) 
and iA2(")

 a r e chosen so that the influence curve (111.20) exists for all E and is 
a bounded and continuous function of U'. Then it can be shown that 

(i) Tj,ia(F) = (</>T(E), c(E)) defines a functional which is continuous at E0; 
(ii) under additional regularity conditions, (</>A, a) is asymptotically normal with 

mean (</»T(E), <r(E)); 
(iii) the asymptotic covariance matrix V^-JF) of (<j>AT, 6) defines a functional which 

is continuous along the special "directions" for which X ~ E0 with E0 fixed 
and Y ~ E. 

It further follows that (</>AT, a) is qualitatively robust at a Gaussian E0 if deviations 
in the form of additive outliers are allowed. 

The Breakdown Point 

It may be shown that the breakdown point of GM-estimators for AR(p) models 
is positive but somewhat unfortunately it is bounded by lj(p + l). The heuristic 
reason for this is easy to see. A single gross outlier at a fixed time ;0 appears in p 
consecutive prediction vectors zt = (yt-i, •••, .P;-p)T- When a fraction of lj(p + 1) 
gross errors are uniformly spaced, all the predictors z]<t>' appearing in the residuals 
j'i — zT<j>' will be worthless. Of course the situation will be better in the case of 
patchy outliers, because then the total fraction of outliers can be higher without 
ruining the GM-estimates. 

III.2 GENERALIZED MAXIMUM LIKELIHOOD TYPE ESTIMATION 
OR ARMA MODELS 

M-estimators of ARMA parameters (compare Section II.3) have the advantage of 
being efficiency robust toward innovation outliers. But the behaviour of M-estimators 
in the presence of additive outliers should be better. We now will generalize M-esti­
mators ARMA parameters to diminish the variability and bias if additive outliers 
are present, where the additive outliers are not necessarily i.i.d. 
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I1I.2.1. Definition 

In contrast to M-estimators, GM-estimators of ARMA parameters can hardly 
or not at all be defined by a minimum problem, because the weights to be used 
depend on the parameters to be estimated (compare Martin and Yohai, 1984a). 
But the following approach could be used to define GM-estimators of ARMA 
parameters (Stockinger, 1985a) where the definition of least squares estimators is 
generalized. 

Differentiating the minimum problem (1.5) which defines a least squares estimator 
of ARMA parameters a := ((j)T, 0T, /i)T, with respect to a' and setting the resulting 
expression equal to zero yield the estimation equation for the least squares 
estimator aA 

(111.23) £ r ;(aA)d+(aA) = 0 
i=p+i 

where r ;(aA) denotes the residual at time i (1.16) and d+(aA) denotes the vector of 

the first derivatives of r ;(aA) which is specified by (11.27) to (11.30). 

If a given time series ylt..., y„ contains outliers, it is advisable to use 

(111.24) £ w[r ;(aA), d;(aA), </>A, 0 \ &~\ r ;(aA) d + (aA) = 0 
; = P + I 

instead of (111.23) to estimate a, where w[r, d, </>A, 0A , &~\ rd+ is bounded and & is 
an estimate of the innovations scale. vv[r, d, (/>A, 8, <t] denotes the above mentioned 
weight which depends on the parameters a and <r to be estimated and which transforms 
the least squares problem (111.23) into a weighted least squares problem (HI.24). 
If only innovation outliers are possible, it is sufficient to choose the weight function w, 
so that w[r, d, <j)A, 0A, &~\ r is bounded. If \lj(r\&)\(r\&) is selected as weight function 
where \jj should be a bounded t/'-function, e.g. \jj„ (II.3), equation (III.24) reduces to 
the estimating equation (11.26) of an M-estimator. 

The symmetric matrix C(<f>, 0) which is equal to matrix C*(<f>, 0) (1.18), except that 

(111-25) cJtP+k = - c * p + t , if j =g p , k^q 

is the covariance matrix of d;(a)/<r (Martin and Yohai, 1984a) if a is the true para­
meter vector and <r is the true scale of the innovations. 

This can be proved for j 5* k <£ p as follows (the proofs for other indices j and k 
are analogous), where a residual r;(a) computed for the true parameter vector has 
to be set equal to the corresponding realization a, of an innovation. 

COV(Si-j(<x), st-k(*)) = COV(Z0a^j + &*,_,_ . + ... + 4 - A - * + ••• , 

£<,«;-* + . i - i - * - . +•••) = o1 f {,{,.,4..^ . 
1 = 0 

Therefore CoV(s;_/(a)/<r, s,-k(v)\a) = cJik. 
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The "largeness" of d ;(aA) can be assessed by 

(111.26) Z>;(a
A, &) = &~'[dJ(aA) C~\^A, 0A) d ; ( a A ) ] 1 / 2 , 

because &2C(<j>A, 9A) estimates the covariance matrix of d ; (a A ). , 

Now estimators aA which satisfy (111.24) where w[r, d, (j>A, 6A, <r] rd + is bounded 

can be defined. These estimators are referred to as generalized M-estimators 

(GM-estimators). Note that there is no need to bound the influence of the last 

component —3r;(aA)/<5^ (11.28) in d + (a A ) (11.27) because this component does not 

depend on the given data yu ..., yn. 

Define terms u ;(aA, d) which represent the largeness in the factor space for linear 

regression problems, by 

(m n) vUA tt\ J M * « ( - A . *)]/*.(«A, &). if b/xA, u) 4= 0 
(111.27) vfa , a) - ^ ^ ( f ) / ( > . f ^ &) = Q 

<-*o 

There are various types of GM-estimators according to the selection of the weights 

w[r, d, <j>A, 0A, <x]. By the following choice of w\r, d, </>A,6A, &] (111.28) a Mallows 

type GM-estimator (Mallows, 1976) is given if u = 1 and a Schweppe type GM-

estimator (Schweppe, 1975) is given if u = v, where v is an abbreviation of u ;(aA, 6) 

from (111.27). 

# ! (r/utjj/(r/ff) if r 4= 0 , u 4= 0 

u/w , if r = 0 , u 4= 0 

1 , if r = u = t = 0 

1 , if r 4= 0 , u = v = 0 , 

*.(*) = t 

0 , if r + 0 , u = !) = 0 

ij/t is bounded. 

To estimate the first-order AR parameter <pu equation (111.24) becomes 

(IH.29) i Vi($u d) *, lli~A=S] yt-1 = ° 
1-2 \ui($1,&)&J 

where the "largeness" to compute vt($u a) is given by 

(111.30) bi(4>ua) = o-\l-4>)yi2yi_x. 

Equations (III.8) and (III.9) on the one hand and equations (111.29) and (111.30) on 

the other give alternative possibilities to estimate <f>i using different estimators for ox. 

To estimate the first-order MA parameter 8t equation (III.24) becomes 

(111.28) w[r,d, фA, A,ð~] = 

kм*' iïШ'-л)-° 
where the "largeness" to compute vt(Bu a) is given by 

bi(Bua) = &-\i-®2y<2ti_1(dl) 

(t^O,) is defined by (11.30)). 



A Hampel-Krasker-Welsch type GM-estimator (Krasker and Welsch, 1982) is 
defined by 

(TII.31) w[r, d, ,*, 0\ *\ = Í f - W ) / ^ ) ' jí ' + ° a"d * +
 n° 

^ 7 L ' -« í l i i- i- — 11 r\r h — II [I , if r = 0 or b = 0 

where b denotes the "largeness" of d which could be computed by (111.26). The 
principle of a Hampel-Krasker-Welsch type estimator is similar to that of a Schweppe 
type estimator and therefore both estimators should have similar properties. If in­
novation outliers are present a Schweppe type estimator or a Hampel-Krasker-Welsch 
type estimator should be superior to a Mallows type estimator because a Mallows 
type estimator does not simultaneously take into account the largeness of the residuals 
and the largeness of the first derivatives of the residuals. 

The influence curves of Mallows type GM'estimators and Hampel-Krasker-
Welsch type GM-estimators of first-order AR and MA parameters published by 
Martin and Yohai (1984b) encourage the implementation and application of an 
algorithm for the computation of these estimators. 

III.2.2 Computational Methods 

Unfortunately it might be very difficult to determine a function whose first deriva­
tive with respect to a is the left hand side of (III.24). But.' III.24) can be solved without 
knowing the minimum problem by applying a nonlinear iterative least squares 
algorithm, where the weights are determined using the approximations for the para­
meters calculated in the preceding iteration. 

Algorithms to compute the residuals r,(a') (1.16) and the first derivatives of the 
residuals with respect to AR and MA parameters s;(a') (11.29) and f/a') (11.30) were 
already given in Section 1.6 and Section II.3.1, respectively. Next an algorithm to 
compute inverse AR or MA operators (1.19) will be given. 

Computation of the Coefficients of an Inverse AR Operator (Anderson, 1971) 

Let M denote the highest index of the coefficients to be computed. 

(1) Set m = 1, £0 = 1 and p0J = cjij, j = 1, ..., p. 

(2) Set £m = /? m - 1 ( I . 

(3) Compute fimJ = pVw-M + Pm-i.ifa, J = I, •••, P ~ 1, and j8m>p = 

= - f t . - i . i t f , . 

(4) Augment m = m + 1. 

(5) If m > M stop, else go to (2). 

GM-estimates of ARMA parameters could be computed by the algorithm for the 
M-estimation of ARMA parameters given in Section II.3.2, if it is modified as 
follows: 
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A constant c as defined in (11.25) is not necessary and Step 3 must be omitted, 
because there is no side condition like (11.24) to improve the scale. 

Before the weights can be calculated (Step 4) the first derivatives of the residuals 
must be computed (i.e. Step 5 must be performed) and, in addition, the coef­
ficients £}"0, / = 0, ..., L,« of the inverse AR operator 

1 = 0 

and the coefficients $m\ / = 0, . . . , Lç of the inverse MA operator 

( = 0 

must be computed, where L^ and L? are chosen so that the inverse operators are 
sufficiently well approximated. Computer programs (Stockinger, 1985b) for the 
GM-estimation of ARMA models optionally allow the output of inverse AR 
and MA operators in order to determine L^ and L?, respectively. It is reasonable 
to choose L4 = 50 if the AR order p is not too large, say p ^ 3. 
Furthermore the matrix C(<j>(m), 0<m)) must be computed according to (1-18) and 
(111.25) and inverted. 

— In Step 4 the weights 

M/.<"> = w[r;(a<m)), d,.(a<m)), </>(m), 0<m), a(m)] , i = p + 1, ...,n , 

have to be computed for a Mallows type GM-estimator or a Schweppe type 
GM-estimator (111.28) or a Hampel-Krasker-Welsch type GM-estimator (111.31), 
and a diagonal matrix W(m) = diag(wp

m,
1,..., w(m)) has to be defined. 

— Step 6 and Step 7 try to diminish the function 

a(a(m)) = | t w(m)r^(a<m)) 
i = p+ 1 

(where the weights w(m) are regarded to be constant for a fixed step of iteration 
procedure) instead of fl(a(m), c(m+1)) (II.23).The computational methods, in particular 
the computation of the Gauss-Newton direction and the vector of the steepest 
descent, do not change. These steps are explained in more detail by Stockinger 
(1985a). 

— Before Step 8 is performed, the scale should be improved by 

(111.32) f 7
( m + 1 ) = med |r,.(a(m+1)) - med r>(a(m+1))|/.6745 . 

p + l S i S n p + l £ j § n 

III.2.3 Properties 

A formal Taylor series expansion indicates that under suitable regularity conditions 
an estimator of a defined by (III.24) has, for time series without additive outliers, 
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the property (Martin and Yohai, 1984a) 

y/n (aA - a) - - N(0, K(4>, 0, G)) 
where 

(111.33) K(<j>, 0, G) = a^-'SU'1 

with 

5 = En[A{, D + , </>, 6, a] f[Ah D + , </>, 0, <r] 

U = EJ/ilA,-, D + , 0 , 0, ff]D+ 

where D+ denotes a random vector whose possible realization is d+(a) (11.27), 

n[a, d+, <j>, 0, a] = w[a, d, <j>, 0, a] ad+a~2 

and 
ijAJa, d + , </>, 0, a] = dn[a, d + , 0, 0, a]jda . 

For a careful proof for the estimation of autoregressive models see Bustos (1982). 
For an AR(1) model without location it(4>i) = d;(0x) = y ;_i and the "largeness" 

of d ^ i ) is b,(0 l s <T) = <7_1(1 - </>2)1/2 >»,_! (III.30). Let a denote «/<-. Note that 
for an outlier-free process both the innovations divided by a and the fe;'s have 
a standard normal distribution. Asymptotic variances (111.33) of GM-estimators 
of the first-order AR parameter (j>i for outlier-free processes can be computed in the 
following way: 

Mallows type estimator 

S = [(1 - </>2) 2ir] " * P P # (5) +Hb) exp ( - a2/2) exp ( - b2j2) da db 

U = [(l - (j>\) 27T]"1 I I b ij/[(a) fl(b) exp ( - a2/2) exp (-b2l2) da db 

where ^[(a) = dij/^a^jda. 

Schweppe type estimator 

S = [(1 - 4>\) 2ri\'x P P r̂? ( - ^ M iPl(b) exp ( -g - /2 ) exp (-fe2/2) da db 

U=[(l-02)27r]-ir r 62
1A'1(^-^-)exP(-a2/2)exp(-52/2)dad/J. 

Hampel-Krasker-Welsch type estimator 

S =[(\ -4>2)2n]~ir r iA?(fll')exp(-a72)exp(-52/2)dad6 

C7= [(l - </.2)27r]-1 J | fe2iA;(a6)exp(-a2/2)exp(-62/2)dadfe. 

Expression (111.33) can also be used to compute the asymptotic variance of an 
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M-estimator of (j>1. For an outlier-free process 

S = [(1 - <$>\) my1 P p b2 xjj\(a) exp ( - a2/2) exp ( - b2j2) da db 

and 

J7 = [(1 - ^ ) 2 j v ] - 1 f J ^ 2 ^ i (a ) exp ( - a 2 / 2 ) exp ( -b 2 / 2 )d f l d / j 

is obtained. 

For the Monte Carlo results that will be presented in Chapter V the asymptotic 
variances of estimators for the first-order AR parameter were computed by numerical 
integration of the expressions stated. 

Expression (111.33) could also be used to determine the asymptotic variance of 
a least squares estimator of (f>1. This variance is known to be 1 — 4>2 (Box and 
Jenkins, 1976). 

If MA parameters have to be estimated, GM-estimators are not robust because 
an outlier at time i' spoils all ensuing residuals rt, i ^ i". One possible remedy is 
to use truncated residuals similar to the idea of estimators based on truncated 
autocovariances of the residuals (Bustos and Yohai, 1983). 

GM-estimators cannot be expected to be unbiased in the presence of additive 
outliers but the bias will be smaller than for M-estimators. The variance also can 
be kept smaller than for M-estimators. This will be demonstrated for small samples 
in Chapter V. 

111.3 DETERMINING OUTLIER TYPE 

Methods to determine whether an AR process is contaminated by innovation 
outliers or additive outliers, will be described in the following. 

In Section II.1.3 (formula (11.15)) it was shown that innovation outliers lead to an 
increased precision of M-estimators of AR parameters (compare Stockinger (1985a) 
for a graphical explanation). It is intuitively clear that such outliers should not be 
downweighted for forecasting purposes, e.g. in a GM-estimating equation. In 
contrast, additive outliers need to be downweighted if future values of the un-
observable Xt process are predicted. 

Since the appropriate treatments, e.g. the selection of an estimator, of the two 
types of outliers are different, it could be costly to mistake additive outliers for in­
novation outliers and vice versa. Thus in time series analysis there is a need to 
distinguish between different types of outliers in order to effectively deal with them. 



111.3.1 A Significance Test for Additive Outliers Versus Innovation Outliers 

One approach for constructing a significance test to distinguish between innovation 
outliers and additive outliers is suggested by the fact that although GM-estimators 
behave moderately well on an overall basis at both outlier situations, M-estimators 
are clearly superior if only innovation outliers occur (Denby and Martin, 1979; 
Martin and Zeh, 1978). 

M-estimators have unacceptably large biases if additive outliers are present whereas 
GM-estimators have attractively small biases and variabilities. Hence a significance 
test for testing the null hypothesis 

(111.34) HI0: model 10 holds (where the innovations distribution 

could also be Gaussian) 

versus the alternative 

(111.35) HAO: model AO holds 

based on the difference <j)M — (j>GM between an M-estimate and a GM-estimate, 
suggests itself. It can be shown that under reasonable assumptions the asymptotic 
distribution of d„ = yjn (<j>M — <])GM) is multivariate normal and has under H!0 

mean zero and covariance matrix 

(IH.36) vSJO = [Br >B2B;1 - c - n vj^, g) 

where Bx and B2 are defined by (III. 15) and the elements of C are given by ci} = 
= covariance (Yh Yj), 1 g i, j ^ p, and all expectations in computing Bt, B2 and C 
are taken under Hlo (Martin, 1979). 

The asymptotic distribution of 

T„ = SlVfJofi, 
is chi-squared with p degrees of freedom for HI0. A usable test statistic might be 
obtained by replacing VSJ0 by a good estimate and using %2

P critical values or perhaps 
critical values obtained via Monte Carlo. Further details and some encouraging 
Monte Carlo results are given by Martin and Zeh (1977) and Zeh (1979). 

111.3.2 Diagnostic Scatter Plots 

Distinctively different characters of the outlier configurations in scatter plots 
under H10 (111.34) and HA0 (111.35) may be used as exploratory indicators of outlier 
type. 

The scatter plot approach for assessing outlier type in an exploratory manner is 
based on the residuals 

(111.37) r, = yt - f fot-% , p + i ^ i ^ n , 
k=l 

from a GM-estimator fit. If 0 A is a good estimate then its value will be close to that 
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of </> for not too small sample size and the residual ri will be almost the same as 

p p 

(111.38) ut = yt - £ <j>kyt-k = at + », - £ M - * , p + 1 g i = » . 

Thus for each i the bivariate distribution of (Rt, Ri+1) should be close to that of 
(Ut,Ui+1). 

The scatter plot of the pairs (rt, ri+1) will resemble that of (ah ai+1) under Hw 

(III.34), because in this case V = 0 for all i. If the A;'s are Gaussian the residuals rt 

will produce a circular scatter plot. Outliers resulting from a heavy-tailed innovation 
distribution will be mainly along the abscissa and the ordinate of a scatter plot. 

If on the other hand V; =1= 0 due to additive outliers then Ut and Ui+1 will usually 
be dependent. In this case the outliers generally no longer lie mainly along the 
abscissa and the ordinate in the scatter plot. 

III.3.3 Robustified Fox Tests 

Fox (1972) considered the problem of detecting a single outlier at an unknown 
time i assuming that either model I (which is analogous to the additive outliers 
model) or model II (which is analogous to the innovation outlier model) is the true 
model. In particular, Fox assumes that the innovations are Gaussian with mean zero. 
In model II at is replaced by at + A with A unknown and model I produces only an 
additive outlier at time i. 

In addition to studying likelihood ratio tests, Fox considered simplified criteria 
which, for unknown i, would have the form 

(111.39) max Xt 

where 

(111.40) Xt = 2ijVAR1/2(2i). 

Under modell II Fox defines 

(111.41) 2i = yi-i$kyi_k, VAR(A^ = &2. 
k=l 

The estimates $ and & are approximate maximum likelihood estimates computed 
under the assumptions that At =# 0 and the null hypothesis Ai = 0 holds, respectively. 
For model I 

(111.42) • 2, = yt + [ i l?M+*(>>,_* + yl+k)ll *1'1, 
k=l 

VAR(2i) = &2ji$l 
where 

with - $ 0 = 1 and $j for 1 ^ j <| p computed assuming Vt = A # 0. 
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Before extending the above technique to the more realistic multiple outlier case, 
Martin and Zeh (1977) perform a robustification of (111.41) and (111.42) by using 
M-estimators and GM-estimators of </>, respectively. The reason is, that M-esti-
mators behave well under model II and GM-estimators behave well under model I. 
A robust scale estimator is used for a. 

The statistic for testing HI0 (III. 34) is (robustified FOX criterion) 

(111.43) RFOX = log (max A^/max ll„), p + 1 g i g n - p 

where lul and kKn are the versions of (111,40) obtained from the robustified expres­
sions (111.42) and (111,41), respectively. 

III.4 MODEL SELECTION 

IH.4.1 Robust Estimation of Autoregression Order 

For outlier-free time series the minimization with respect to p of either Parzen's 
(1974) CAT(p) or the Gaussian autoregression version of Akaike's (1974) AIC(p) 
function provides an estimate of the order p of an AR model. 

For perfectly observed Gaussian or non-Gaussian autoregressions Akaike's 
function is 

(111.44) AIC(p) = - 2 log/(y; </>A, fi, a, p) + 2(p + 2) 

where <j>A,fi and a denote maximum likelihood estimates, yT = (yu y2,..., y„), 
f(y; <j>A, (I, &, p) denotes the maximized likelihood for an AR(p) process and p + 2 
is the number of parameters estimated. In the Gaussian case and if the sample size n 
is reasonably large, AIC(p) is approximative^ equivalent to 

(111.45) AAIC(p) = log a2(p) + 2(p + 2)jn 

where &2(p) is an estimate of the variance of the innovations 

(111.46) a2(p) = 1 t (yi-ZUAY 
n — 2p — 1 i = P+i 

with </>A denoting a least squares estimate. 
It is well known that, given an i.i.d. sample, the variance estimator based on the 

sum-of-squared residuals it notoriously non-robust toward heavy-tailed distributions 
(see, e.g. Tukey, 1960). The same is true of the estimator 62(p) in innovation outlier 
situations (even if an M-estimator <j>A is used instead of a least squares estimator) 
and in additive outlier situations (even if a least squares estimator (j>A is replaced 
by a GM-estimator). Thus stoping rules based on such estimators would not be 
very reliable for either innovation outlier or additive outlier situations, and therefore 
a robust alternative to AAIC(p) is needed. 
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Using robustly centered data, a Mallows type GM-estimating equation (IH.5) 
could be obtained by differentiating the loss function 

(in.47) Uj;+*',o>tp)- i vaJ^'f'*') 
i=P+i \ a J 

with respect to <j>' and setting it equal to zero with ij/l = dQt(t)jdt. The fact that 
equation (III.4) cannot be obtained by differentiation of L(y; (j>', a', p) with respect 
to a', will be ignored. 

If Q,(t) = -21ogo(f) where g is the innovations density and vt = 1, then the 
following approximation is possible (compare Stockinger and Dutter, 1983). 

(111.48) - 2 l o g / ( y ; * A , / . , » , _ » ) » - 2 l o g f_ - g l y ^ ^ - ) = 
I = P+I a \ a J 

i = P+i a \ a J 

The right-hand side expression in (III.48) can be transformed to the representation 

(ni.49) £ logfiy2 + i l o g W ^ l ^ u 
i=p+\ \8J i=P+i \ a J 

= 2(n - p) log a + L(y; <t>A,a,p) . 

If only innovation outliers are possible the above equations suggest to construct 
a robust M-order-selection criterion by approximating AIC(p) (III.44) using g(') 
instead of - 2 log (•) (i.e. maximum likelihood estimates are replaced by M-estimates) 
and by using (111.48) and (HI.49), what results into 

(111.50) M(p) = - i_ І Qi\^Щ + 2loga + ^ 
n — p i = P+i [_ a J n 

2(p + 2) 

P 

where ij>A and a denote M-estimates. M-estimators, however, are not robust toward 
additive outlier situations and, therefore, instead of minimizing M(p) with respect 
to p in this case, p should be estimated by minimizing a function which uses GM-
estimates </>A and a 

(111.51) GM(p) = - i - i viSi\
y>-^~} 

n - p i=P+i L a J 

+ 2 1 o g . +
 2-^±A). 

n-p 
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III.4.2 Identification of ARIMA Models 

For outlier-free time series, Box and Jenkins (1976) suggested a procedure based 
on the sample autocorrelation function and partial autocorrelation function to 
identify an appropriate subclass of ARIMA models. 

However, the use of the standard autocorrelation function estimate and partial 
autocorrelation estimate can be very misleading in the case of contaminated 
data, because these estimators lack robustness (compare e.g. Polasek, 1982). One 
possibility of putting an end to these problems could be to adapt correlation and 
covariance methods for i.i.d. multivariate samples (see Devlin et al., 1975; Maronna, 
1976; Huber, 1977; Marazzi, 1980; Rieder, 1980) to the time series setting. Polasek 
and Mertl (1983) treat robust estimators of the autocorrelation function. 

Martin, Samarov and Vandaele (1983) suggested an iterative procedure for the 
identification of an ARIMA model. The usual Box-Jenkins approach based on the 
initial unfiltered data is used to specify an initial model. Next, the initial model is 
used to clean the data by robust filtering. A new model identification pass is based on 
the cleaned data. If for the raw data and the cleaned data the same model is identified 
and if the diagnostic checks on the estimation results (e.g. checks on over-and 
underspecification, residual analysis) do not reveal a model misspecification, we have 
finished. Otherwise the robust filtering has to be carried out on the cleaned data, and 
the same diagnostic checks have to be applied. 
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IV. ROBUST FILTERING AND ROBUST SMOOTHING 

In order to deal with robust filtering and smoothing a vector state-variable represent­
ation of ARMA processes will be described. Here, a filtered value is defined to 
depend only on previous observations, while a smoothed value is defined to depend 
on all given observations. 

A recursive algorithm for the computation of approximate conditional-mean 
(ACM) filters which are able to remove outliers from contaminated data, will be 
dealt with. 

Maximizing a likelihood function which is approximated (also by an ACM filter), 
leads to approximate maximum likelihood (AML) estimators. Proceeding further 
by replacing the negative of the log-likelihood by a loss function which uses a robusti-
fying rho-function yields approximation maximum likelihood type (AM) estimators. 
A relatively simple iterative scheme can be used to compute AM-estimators. Condi­
tional-mean M-estimators can be regarded as AM-estimators especially for AR 
models. 

Other methods for robust filtering and smoothing are provided, for example, 
by the robustified Kalman filter, L-smoothers, moving M-estimate smoothers and 
robustified splines. 

IV. 1 APPROXIMATE CONDITIONAL-MEAN (ACM) FILTERING AND 
SMOOTHING 

IV.1.1 State-variable Representation of Time Series Models 

An ARMA (p, q) process xx, ..., x„ (compare Section 1.3) which has mean of value 
zero and which is free of additive outliers, could be represented in the vector state-
variable form 
(IV.l) x ; = 4 ^ - , + a£ 

where the first coordinate (x^). of x ; is the value of the ARMA process at time i. 
But the second coordinate (x,)2 is not necessarily equal to x ^ ! Thus an ARMA 
(p, q) process contaminated by additive outliers can be represented by (IV.l) together 
with the equation 

(IV.2) y, = n + Hxt + vt 

where H = (1 ,0 , . . . , 0). 
We consider here only one particular state-variable representation for ARMA 
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(p, <l) processes. Assume p > q for the moment and let 

(IV-3) (_.,). - ^(x,._i)i + (x,__)_ - at 

where 

(IV.4) ( X | ._)_ = *_(_:,__). + ... + (^p(x i_p)1 - ___,_. - ... - V<-« • 

Then continue in this manner: 

(IV.5) 

(x ;) 2 = < / _ ( X І - I ) I + (x,-i)з - tat 

(x,)з = <Ѓз(x;-i)i + (x,_i). - ö2aг 

(x,)._i = ^>p_1(x,._1)1 + (x,- ,) . - ep_2a£ 

(x;)p = 0P(x,-i)i - <Vl a* 

with the stipulation that dt = 0 for i > 5. Here the coordinates (x,)2) •••, (x()p are 

chosen so that it is possible to construct ensuing ARMA process values (x i + 1 ) 1 ; 

(x,+ 2) i , . . . . 
The state transition matrix for representing ARMA models is 

(IV.6) Ф = 

1 0 0 . . . 0 0 " 
0 1 0 . . 0 0 
0 0 1 . . . 0 0 

_ 2 0 0 0 . .. 1 0 
,_! 0 0 0 . .. 0 1 

0 0 0 . . . 0 0 

and aj = —ai(l,d1,92,..., <9„-i). Correspondingly the covariance matrix Q of the 
a ;'s has elements 

(IV.7) ß н -
if max (i, j) g. q + 1 

)0 otherwise 

where 0O = 1. 
In the case of q >, p the above procedure leads to a state equation of dimension 

q + 1 and the first column of <P contains (pi, <p2, ••-, 4>q+i where (pk = 0 for k > p. 
Also an ARIMA (p, d, q) model with a mean of value zero can be represented 

in the vector state-variable form. Instead of <p(B) as in the ARMA (p, q) model, now 
<p(B) = cp(B) (1 — Bf is operating on xt. The order of <p(B) is p + d. 

The coefficients of the polynomial <p(B) in an ARIMA (1, 1, q) model, for example, 

can be shown to be equal to 

(IV.8) <pt = 1 + <pt 

<P2 = ~4>1-

Therefore the state-variable representation of an ARMA model can be carried over 
after replacing p by p + d, and thus, the dimension of the state transition matrix 
is max (p + d, q + 1). Note, however, that an autoregression with parameters 
<pu cp2,... does not yield stationary observations xt. 
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IV.1.2 ACM Filters 

We will use the following terminology: 

(IV.9) y' = (j/., ..., yt) the first i observations 

f(xt | y '~1) , i > 1 1 "state-prediction" density 
> = conditional density of 

(IV.10) / (x ; | y°) = f(x,), i = 1 j x ; given y '" 1 

(IV.H) fy(yt I y ' - 1 ) , i > 1 j "observation-prediction" 

/ / " i | y°) = / ^ « ) , i = 1 J density 

(IV.12) L("t|yl_1) prediction density for the first 

coordinate xt = (x£)t of x ; 

(IVT3) XA; = E{Xi | Y'} conditional mean estimate of X; given Y' 

(IV. 14) X A ; _ 1 = £{X ; | Y ' - 1 } conditional mean estimate 
of X; given Y ' - 1 

In the engineering literature XA
; is called a "filter" estimate; X A f J is called the 

one-step-ahead predictor. 
The filter and the one-step-ahead predictors of an ARIMA process itself xt = 

= (XOJ are X, = E{X{ | Y''} = (XA;), and X^1 = E{X, | Y ' - 1 } = ( X i " 1 ) ^ 
Under the assumption that the Xts and V's are mutually independent time series 
with {V} an i.i.d. sequences, we have 

Yf1 = E{Y; | Y - 1 } = E{Xt I Y - 1 } = X\-1. 

Thus the one-step-ahead predictors of xt and yt are identical, and we shall use 
Y|-1 and JC]-1 interchangeably. 

Computation of the exact conditional-mean XA
 t is difficult for non-Gaussian 

distributions Fv of the V's. Masreliez (1975), however, made the simplifying assump­
tion that the state-prediction density (IV.10) may be well approximated by a Gaussian 
density 
(IV.15) " f(xt | y - 1 ) « JV(x;; X*,'"1, M,) 

to establish a recursive computational algorithm for approximate conditional-mean 
(ACM) filters. The covariance matrix Mi in (IV. 15) is the conditional error covari-
ance matrix for the prediction of X;, i.e. 

(IV.16) Mf = £{(X; - X ; ' f >)(X, - X*i
t~

1y\ Y'-1} . 

For the definition of the ACM filter also the conditional filtering error covariance 

(IV-17) P ; = £{(X( - XA,) (X,. - XA
;)

T | Y'} 

is needed. 
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In the pure Gaussian situation XA
; , M ; and P ; , 1 :£ i s£ n, are obtained by the 

Kalman filter recursion (see, for example, Jazwinski, 1970) and M ; and P ; do not 
depend upon the given data yu ..., y„, what is a rather special feature of the Gaussian 
case. 

For the following ACM filter theorem it is assumed that the observations yt are 
generated by (IV. 1) and (IV.2) with location parameter \x = 0 and with <P, Fv and 
the covariance matrix Q known. 

Theorem (Masreliez). If (IV. 15) holds for i ̂  1, then XA
; is generated by the 

recursions 
(IV.18) X A

; = X A , r 1 + "-.ifr/C".) 

(IVT9) M ; + 1 = <2>P;<~T + Q 

(IV.20) P ; = M ; - ^ ( j ( ) m;mj 
and 
(IV.21) X*!"1-= _ _ _ V , 

where m; is the first column of M ; , 

(IV.22) ^ (v , ) = - (0 /0*) log/,(y ; | y
i _ 1 ) 

is the scalar-valued score function for the observation-prediction density and 

(IV.23) _",(*) = (0/0*) Vfot) . 

Martin (1981b) specifies initial conditions for the above recursions. The approximate 
X A

0 a n d M ! areXA
0 = E{X0} = OandMi = £{XiX~} = Cx, i.e. the unconditional 

mean and covariance of X,. In the case of stationarity, the latter satisfies the equation 
Cx = <i"C,_»T + Q. 

From (IV. 15) it follows that in particular 

(iv.24) /_(*i|-4-1)«M*«;^,rl.'»i«) 
where $\~l = (XAr *)i and mu is tn~ 1-1 element of M;. 

The observation-prediction densi ty/ , (* | y i _ 1 ) could be obtained by convoluting 
the prediction density fx(x; | y I _ 1) with the noise distribution Fv (Martin, 1981b). 
Unfortunately, in non-Gaussian situations it generally is difficult to proceed further, 
because the form of/(x ; | y i _ 1) is typically quite intractable. The simplifying assump­
tion (IV.24), however, helps. 

Because Y]'1 = 1'f1 we have 

(IV.25) / , ( * | y*"1) = [AT(Yr', » „ > _>] (*) = gdfr, - ?." l) 

where the density gdt is obtained by convolution 

(IV.26) gdt = N(0,mu)*Fr. 

We could go one step further and represent gdt in the form 

(IV.27) gd{r)=-gd(-) 
s; Vs./ 

61 



where 

gd = N(0, ct) * FKC2 

with 

(IV.29) FKci(r) = Fv(rlc2) 

and s;, cit c2 are approximately specified. This is not possible in general, if Fv is 
non-Gaussian. However, if the V;'s are distributed according to a contaminated 
normal distribution 

(IV.30) CN(v, au a2) = (1 - v) N(0, a2) + vN(0, a2

2), 

it is reasonable to set 

(IV.31) s, = (mu + a2)1'2 , 

(IV.32) ct = mjs2, c2 = ffi/sj 

and to use (IV.27) as an approximation. The approximations (IV.27), (IV.28), (IV.29), 
(IV.31), (IV.32) should behave reasonably well for any heavy tailed distribution Fv 

which is nearly Gaussian in the middle. Applying these approximations in Masreliez's 
theorem gives 

(IV.33) ^ ^ i ^ j ^ Z L ^ l l l 1 ] 

and 

(IV 34) TІ(УI) H*=F1 
where 

(IV.35) <//(r) = ~{djdr) log gd(r) . 

Usage of (IV.33) to (IV.35) transforms Masreliez's filter into the following filter: 

(IV.36) X\ = 0X V i + (m./5?) Si «A(r;/5;) 

with prediction residuals 

(IV.37) rt - y t - Yf1 = yt - (^X\^)t 

and the prediction residual scale s. given by (IV.31). The recursion for P ; is 

(IV. 38) Pt = Mi - (m;mT/s?) <A'(r;/s;). 

A filter which is given by (IV.36) to (IV.38), (IV.31) and (IV. 19) is referred to as 
an approximative conditional-mean (ACM) filter. 

IV.1.3 ACM Smoothers 

The conditional-mean X A

; = £{X ; | Y'} might well be replaced by the conditional-
mean XA" = E{X; | Y"}, 1 S i < n. For i = n we have X*n

n = X A„ which is a filtered 
value. XA" depends upon all observed data and is called a smoother. 
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It turns out to be rather easy to construct ACM smoothers using the ACM filter 
described in the previous section. 

Theorem (see, e. g., Martin, 1979c). Suppose tha t / (x ; | y i _ 1 ) = At(x;; X* '" 1 , M;) 
where X A | _ 1 = _ iXA

;_1 and X A
; = £{X ; | Y1}, 1 ^ i g n, is the ACM filter of the 

previous section with the approximate initial conditions. Then assuming that Mf+1 

exists, XA" satisfies the backward recursion 

(IV.39) XA? = XA
; + Pi$

TM;+\(XAn
i+l - XA | + 1 ) , 1 <J i % n - 1 , 

with the initial condition XAH = XA„. The smoothing-error covariance matrix 

(IV.40) P'l = E{(XA
; - XA?) (XA

; - XA^)T | Y"} 

satisfies the backward recursion 

(IV.41) P" = Pt + MP"+i ~ Mi+1) AJ 

with the initial conditions P" = P„ and 

(IV.42) A; = Pt<PTM7+\ . 

IV.2 APPROXIMATE MAXIMUM LIKELIHOOD TYPE (AM) 
ESTIMATES 

IV.2.1 Approximate Maximum Likelihood (AML) Estimates 

In this section the terminology (IV.9) to (IV.14) of Section IV.L2 will be used. 
Since it is assumed that the observations yi can be represented by the equations 
(IV.2) and (IV. 1), the conditional densities and expectations (IV. 10) to (IV.14) depend 
on the ARMA parameters aT = (<f>T, 0r, a) and on the distribution Fv of the V;'s. 
The notation will sometimes (but not always) make explicit the dependence on a. 

The exact log-likelihood may be expressed in the form 

(IV.43) log/(y; a) = log/,(>..; a) + £ log ff(yt | y '"- ; a) 
i = 2 

where y = (yu ..., y„f. 
As mentioned in Section IV.L2 it is not easy to evaluate fy(yt \ y i _ 1 , a) exactly. 

However, using the approximations (IV.27) to (IV.29), (IV.31) and (IV.32), which 
are based on Masreliez's simplifying assumptions (IV. 15), to evaluate expression 
(IV.25), and noting that s; and Y;

_1 depend on a, gives the following approximation 
for the log-likelihood: 

(IV.44) log/(y | «) » - £ log s;(a) + £ log gd \ h Z ^"!__).] . 
i-i f=i L sl*) A 

It is easy to check that XA \~1 = #XA
;_ t and thus the values Y,i_ x = 1\~l = (llr \ 

could be obtained from the conditional-mean values XA
; , 1 ^ i jg n. The X A

; 
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values can be obtained by the methods described in Section IV. L 2. Application 
of an ACM filter in (IV.44) results in our final form of approximate log-likelihood. 
Maximizing this approximate log-likelihood with respect to a yields an approximate 
maximum likelihood (AML) estimate. 

IV.2.2 Definition of AM-estimates 

Since the distribution Fv of the Vt will rarely be known in practice, ACM filtering 
(Section IV. 1.2) and AML estimation (Section IV.2.1) cannot be performed. Thus 
Martin (1981b) follows the usual M-estimation route by replacing the score function 
¥ (IV.21) by a good robustifying psi-function \\i (compare (II.3) —(II.5)) and by 
replacing the negative of the log-likelihood (IV. 44) by a loss function which uses a 
robustifying rho-function Q whose derivative is ij/. 

We shall call the filter by (IV. 19), (IV.31), (TV.36) to (IV.38) an ACM-filter 
even if IF is replaced by some good psi-function \[/ and the ACM-filter could be named 
"robust filter". The negative of the log-likelihood (IV.44) is replaced by the loss 
function 

(IV.45) L(«) = i log s,(«) + i Q r__L___|L_M] 

where f\~* and s;(a) are obtained from the ACM filter recursions. If g(r) = 
= — log gd(r) and \j/(r) = Y(r) = (djdr) log gd(r) then the minimization of L(a) 
is equivalent to the maximization of the approximate likelihood given by the right-
hand side of (IV.44). If, in addition, gd = N(0, l) the above approximation (IV.44) 
becomes exact, yielding the Gaussian likelihood and Y-~' = (<PXA,__)_ whereXA

;__ 
are Kalman filter estimates (compare Kailath, 1968). 

An approximate maximum likelihood type (AM) estimate of a is defined by any 
a which minimizes the loss function L(a). For additive outliers models AM-estimates 
appear to be the most reasonable analogues of Huber's (1964, 1973) M-estimates 
for location and ordinary regression (Martin, 1981b). With ample smoothness condi­
tions an AM-estimate is a solution of 

(IV.46) (-/.a) L(«) = i « _ _ _ i ____"/[__ , fc^q (*/*) Si -
i=l S; i = l S; St J 

_f ______ ^jl____].,. 
1 = 1 

IV.2.3 Computation of AM-estimates 

An optimization algorithm for minimization of L(a) is not yet implemented. 
The reason is that things are more complicated than in the case of the Kalman 
filter and Gaussian likelihood. Instead, a relatively simple iterative scheme can be 
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used. The details of this scheme will be given after the following comments, which 
indicate that the simple iterative scheme will yield parameter estimates which bear 
reasonable resemblance to AM-estimates while are obtained by direct minimization 
ofL(a). 

One-sided Outlier-interpolator Mode 

If we believe that the assumptions of an additive outliers model (compare Section 
1.4) are reasonable, what appears to be in many situations, then we set a\ = 0 
in the contaminated normal distribution (IV30), in the ACM filter recursions and 
in the AM-estimation equations. This results into 

(IV.47) s; = m\{2 

instead of (IV.31). The difficulty of the estimation problem is reduced by this assump­
tion, because it eliminates the need to estimate a\. 

On the other hand there are problems in which the nominal distribution for the 
additive noise V; is a non-degenerate Gaussian distribution with variance a\ which 
is positive and unknown. In such cases we will be forced to estimate a\ as well as 
<j>, 0 and a2. The optimization problem of minimizing L(a) (IV.45) appears then to be 
more difficult than if we set a\ = 0. 

If a\ is chosen to be zero, if the parameter a. is known and if \jj = \j/HA (II.5), 
Martin (1981b) prefers to call the ACM filter a one-sided outlier-interpolator. The 
reason is that most of the data will be unaltered (i.e. Xt = Y), while large outliers 
will be replaced by one-sided predictions (i.e. X, = Y\~x) (compare Martin (1979c) 
for a more detailed description). This behavior should be unaltered if a is replaced 
by a good estimate a like the AM-estimate obtained by solving (IV.46). 

The Simplified Algorithm 

Under the following moderate assumptions it is possible to rationalize a simple 
alternative to direct minimization of the AM loss function Lfa): 

A l) At a solution point a of (IV.46) the ACM filter uses a in place of the true value a, 
the filter is operating in the one-sided outlier-interpolator mode with Xt = Y-t 

most of the time. 
A 2) (djd4>) s; w 0, (dj80) st x 0. 

A 3) (djda) Yp1 = 0 . 
Usage of A 2 and A 3 results in the following significant simplification of the 

AM-estimation equation (IV.46) 

n ;=i \ s; |_ S; / S; da 
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and 

(lv.50) j. W*.H)*!-'^p.-t!-|_t. 
i = l S; |_ S; 

These equations have the same form as the maximum likelihood estimating equations 
for nonlinear regression with error density g and time-varying scale parameter 

S; = (mu)
1/2 a t». 

Using (IV.47) in the first row of (IV.36), noting that Y!-1 = £ | - 1 and using 
the simplifying assumption that s ; « a, allows us to write the estimating equation 
(IV.50) as 

(iv.5i) t ipK*> *)) *'c 1(xi-$
ir1) = o. 

. i = 1 

But if $i = Y most of the time, this equation provides an approximate solution 
to the least squares problem 

(IV.52) a(0', 9') = t (*i ~ ^ ! _ 1 ( ^ ' ' e')Y = m i n 

i = l 

because Y is independent of (j> and 0. This is essentially the usual least squares 
formulation of ARMA model fitting, except that the j».'s are occasionally replaced 
by one-sided interpolates and the usual approximations to the residuals when MA 
terms are present are replaced by approximations based on occasionally altered y/s. 

The foregoing explanations suggest the following iterative technique. Start with 
initial crude but robust estimates of (j>, 0, a and use the estimates to process the data 
yh i = 1, . . . , n, by an ACM filter. Use the resulting Xt's in a nonlinear least squares 
ARMA estimation program (use e.g. the algorithm described in Section II.3.2 
with i^(r) = t) to solve (IV.52) with the ^ ; ' s fixed. Iterate this procedure with care 
until there is little change in the estimates. Here is a more detailed description: 

Preliminary Estimates: 

P 0. Center the data with an ordinary location M-estimator. 

P I . Fit robustly a longish autoregression using the GM-estimation method (Section 

.111.1) t o compu te <j>~ = (<j>~, ..., <j>Z) and a. 

P 2. Use 0~ to compute preliminary ARMA parameter estimates 

0«» = (^w,...,^my, e(0) = (ef\...,e(0))T, a(0) 

using Durbin's (1959) idea; an alternative reference for Durbin's technique is 
Fuller (1976), pp. 281-283. These estimates in turn supply preliminary esti­
mates <P(0), Q(0) of the state transition matrix and innovations covariance 
matrix, respectively. 

P 3. Use the initial estimates <£(0), 0(o), <x(0) to compute an initial estimate Cx
0) 

of the covariance matrix for the state vector xt; this is done by solving C^0) = 
= $C(0)$T + Q. 
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Basic Iteration: 

0. Set j = 0 and a\ = 0, so that s ; = m['2. 

1. Run a good ARMA ACM outlier interpolator based on <j>v>, eU), aU), CU) 

backward in time using initial conditions for Masreliez's theorem (Section IV.L2). 
Thus we first compute 

x ^ = K,W^?n)^(y„/S^) 
where mU)

n is the first column of CU) and SU)
n is the 1-1 element of CU). The 

XR?n-i> •••> XR?n-2> •••>XR?I a r e computed by running the recursions (IV.36) to 
(IV.38), (IV.31) and (IV.19) backward in time. 

2. Now run the ACM filter in the forward direction using 
vU) _ v(i) m(j) _ mO') <jU) _ C(J') 
A t — AR_I , mt — mR j , ai — z>Rl 

as initial conditions. The "outlier-interpolated" or filtered series at iteration 
j is XU) = (X\%, 1 _ i _ n. 

3. Use XV, . . . ,X ( J ) as input to an ARMA model fitting routine and compute 
->U+» .*/+->. ,rO+1). 

4. Compute C^'+1} from <^"+ «, 0" + 1 ) , cr«+1). 

5. Let / 1 " + 1 ) = ( ^ ' + 1 ) T - <^(J')T, 0(J '+1)T - 0°')T). 
If | 4 ( i + 1 ) | < e4{ + 1 ) where e is a tolerance value and tu+1), 1 __ fc < p + _, 
is the estimated standard error for the coefficient estimates, then go to 7, else 
go to 6. 

6. Augment j = j + 1 and go to Step 1. 

7. Stop. 

IV.2.4 Conditional-mean M-estimates 

Martin (1979) defines conditional-mean M-estimates for autoregressive parameters. 
These estimates can be regarded as AM-estimates for AR models. Since things 
behave more clearly than in the case of ARMA models and since the idea is slightly 
different, this method of estimating AR parameters will be presented. 

Let an AR process with a location of value zero be given, where the process is 
possibly contaminated by additive outliers. Let y* = (yu..., y,) and XA

; = 
= £{X i |Y

i } be defined as in (IV.9) and (IV. 13), respectively. Let X; denote 

(.¥,__,...,2r._X 
A conditional-mean M-estimate (CMM-estimate) is a solution of the minimiza­

tion problem 

(IV.53) I t» = t Q P ' ~ f A ^ 1 = mm . 

where Q is a symmetric robustifying loss function and the scale estimate a is yet 
to be specified. 
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It can be checked that 

(iv.54) y;- 1 = E{Y, | Y ; - ' } = E{Xt I Y - 1 } = i r 1 = ( x A j ; l ) i = XAT</> 

In Section IV.1.2 fy(yt \ f*1) is approximated by gdt(y, - Y'r1) (IV.25) and the 
latter expression further by (1/s,) gd((yt - Pf 1 )/-.) (IV.27). In order to obtain 
L(«) (IV.45) - log gd(r) was replaced by g(r). If in (IV.43)/y(j'f | y i _ 1 ) is approximated 
by gf^^j - f'r1)^-) and if - log 0d(r) is set equal to g(r) and sf = tt, then it can 
be seen that minimizing L(</>) is equivalent to maximizing the autoregressive version 
of the log-likelihood (IV.43) approximately and minimizing L(<j)) corresponds to the 
minimization of L(a) defined in (IV.45). 

Since the solution of the minimum problem (IV.53) is a stationary point we have 

(IV.55) Z '[Xл

; + D{фл)ф 

where 

(IV.56) lHФ"Уk-%Å 

.,[*=i-Ii-]-. 

Ki = í,...,p. 

The estimating equation (IV.55) is rather hard to solve due to the presence of 
D ;(0A). There is some evidence in the form of both heuristic arguments and Monte 
Carlo (Martin, 1979), that the term I>i(</>A) $A may be dropped without seriously 
degrading the estimate. Thus we turn to the simpler approximate version 

tx",*fi___I__l... 
i=Pn L a J 

ling the estimate d could be to use tl 

n — 2p ;=p+i |_ a 

(IV.57) 

One method for obtaining the estimate d could be to use the side condition 

(IV.58) 

corresponding to Huber's (1973) proposal for estimating regression coefficients 
and scale simultaneously (compare (IL6)). 

Another method to obtain a is provided by the filter algorithms discussed in Section 
IV. 1. In order to solve (IV.57) we need to express XA

; as a function of <j> and y'" 
for the pth order autoregressive additive outliers model. Good approximate versions 
of the estimates XA; could be computed by Masreliez's filter theorem (Section IV.L2). 
Note that an AR (p) process can be written in the state-variable form (IV. 1) and 
(IV.2) by setting 

(IV. 59) Ф = 

J ) 0 . . . 1 0 

(IV.60) o, « ( a , _ . 1 , 0 , . . . , 0 ) T 

and X; defined as in this Section, i.e. ( x ^ = x ; _.,.. ., (x ;)p = xt-p. 



Because we will not know the distribution Fv of the V;'s and therefore the distribu­
tion (Y; | Y1^1) is also unknown, we have to replace the score function ¥y

; (IV.21) 
for the observation-prediction density with a bounded and continuous function. 
We can use (IV.33) to approximate Tt and we can further replace \j/(r) = — (<5/3r). 
. log gd(r) by (d/dr) g(r) = \j/(r), where i// is a usual psi-function. If V has the con­
taminated normal distribution (IV.30) with a\ = 0, then we can set sj = mu (see 
also (IV.47)) where m i ; is the 1-1 element of M ; (IVA6). Further details including 
some Monte Carlo results for various i/< shapes are given by Martin and De Bow 
(1976). 

With the above approximations 

(iv.61) ny^^Kyi-t'r'W 
si 

and 

(IV.62) mu x sf 

in mind, an attractive simplification of Masreliez's filter (IV. 18) is 

(IV.63) X ; = X' *Hñ 
with st obtained from the data-dependent auxiliary recursion (IV. 19) for M ;. It turns 
out that (IV.63) is a special case of (IV.36). 

Thomson (1977) and Kleiner, Martin and Thomson (1979) (compare also Huber, 
1982) used — in connection with spectral density estimation — a robust AR filter 
which is a further simplification of (IV.63) 

(IV.64) X{ = XA [ </» + sxj/ ìñ 
where s is a data-dependent but time-invariant estimate of the scale for the prediction 
residuals yt - Xj</>. For example, a might be determined by (IV.57) and (IV.58). 
The above filter is referred to as a fixed-scale filter. See also Masreliez and Martin 
(1977) for some theory about such filters when </> and are known. Martin (1979) 
prefers (IV.63) instead of (IV.64) because the scale factor st depends on the local 
character of the data and if \j/ is redescending then the version (IV.64) is unsafe, 
because it can then loose track of the data never to regain it. 

Notice that if </< and a are chosen to be the same in (IV.57) and (IV.64), what is 
hardly unreasonable, then it is not necessary to solve equation (IV.57) directly. 
For multiplying both sides of (IV.64) by XA

; = XA
;(</>) and summing over i shows 

that (IV.57) is equivalent to the Yule-Walker type normal equations (compare Box 
and Jenkins, 1976) 

(IV.65) t X V ( < K ) [ X ; ( r ) - X A I ( r ) < n = 0 . 
,' = P + I 
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The above equation invites the iterative solution 

(1V.66) £ X\(&) [XW) - X^V) ^ + 1 ] = 0, j = 1,2,... 
i = p+ I 

where XA
;(0

J') is obtained from (IV.64) with 4> = <j>J and (ft1 Is the least squares 
estimate. 

When the observed series yh ..., yn contains a relatively small fraction of outliers, 
the properly calibrated robust scale estimate a computed from (IV.58) should differ 
relatively little from the square root of the usual a2 computed from the residuals 
of the final iteration of (IV.66). Thus the latter simpler method which is applied 
in conventional least squares procedures, might be adequate. 

Some exploratory Monte Carlo results yielded smaller biases for CMM-estimates 
than for GM-estimates at non-Gaussian additive outlier situations. The corresponding 
variances were also typically smaller. Efficiences at the Gaussian situation were 
reasonably high. The Monte Carlo investigations also showed (not unexpectedly) 
that the performance of CMM-estimates is quite poor at heavy-tailed innovation 
outlier situations. 

IV.3 ROBUST FILTERING AND ROBUST SMOOTHING 

A remarkable method to estimate parameters of time series models is to perform 
a robust filtering algorithm or robust smoothing algorithm on the time series ob­
servations which could be contaminated by outliers, so that the outliers are replaced 
by reasonable values and then to estimate parameters by usual least squares. 

A fact to be considered in this context is that most filtering and smoothing algo­
rithms do not fully exploit the information in the data, e.g. they may neglect the 
correlations between neighboring points. Also the literature in general reveals no 
attempts to design robust smoothers and filters which are optimal for particular 
non-Gaussian model specifications. Nevertheless, methods which do not fully exploit 
the information in the data will be mentioned shortly below. An exception are 
the ACM filters and ACM smoothers described in Section IV. 1, because the filtering 
and smoothing algorithms assume that the series of interest satisfies an ARM A (p, q) 
model with additive outliers. Another exception is the robustified Kalman filter 
introduced by Masreliez and Martin (1977). The essence of this filter will be described 
in the next Section. 

IV.3.1 The Robustified Kalman Filter 

In order to construct a robustified Kalman filter, Masreliez and Martin (1977) 
begin to obtain robust Bayesian estimates xA of a vector x in the linear model 

(IV.67) y = Hx + v 

70 



for the following two distinct situations: 
(i) the state X is Gaussian and the observation error V is (heavy-tailed) non-

Gaussian (this situation is similar to a time series with additive outliers) 
(ii) the state X is heavy-tailed non-Gaussian and the observation error is Gaussian 

(this situation can be compared with a time series contaminated by innovation 
outliers). 

In order to apply the estimation procedure it is necessary to transform the linear 
model (IV.67), so that two certain distributional properties are fulfilled. A lemma 
insures the existence of an approximate transformation whenever V has a con­
taminated normal or elliptical distribution. 

Estimating x requires the knowledge of the covariance matrix of X, what is natural 
in the Bayesian context, but appears to be a strong restriction for practical computa­
tions. 

With the results for the linear model (IV.67) in hand it is possible to construct 
a dynamic filter type estimator through step by step implementation of single step 
robust Bayesian estimators. The model used now is 

(IV.68) x,-» tfjx,-! + a, 

(IV.69) y, = tf ;x ; + v, 

which is closely related to the state-variable representation (IV.l), (IV.2) of an ARMA 
model. Clearly, the simplifications <Pt = <P, Ht = H, Y ; = Yt and V ; = V; would 
lead to the construction of a filtered ARMA process. 

IV.3.2 L-Smoothers 

Perhaps the currently best-known type of robust smoothers are those based on 
moving order statistics as introduced by Tukey (1977). The most simple example 
of such a smoother would be a moving median of prescribed span. Often odd-span 
running medians are used. In contrast, Velleman (1975) proposed even-span running 
medians to reduce difficulties found in odd-span medians. Running medians are 
often combined with each other and with simple linear filters to improve their per­
formance. Velleman's (1980) article lists a collection of non-linear smoothers based 
upon running medians and presents methods for describing and comparing their 
performance, what is not quite easy in face of the non-linearity. A device which is 
often effective is called "twicing". To understand this device we denote the smoothed 
value of _v; by Sm(y^), and remark that a data smoother separates the sequence 
{yi} into the smooth {z;} = Smf_y;} and the rough {r;} = {yt — z ;}. The iterative 
improvement {z;} = Sm{>>;} + Sm{r^ is used to recover patterns from the residuals 
r ; and is called "twicing". 

By analogy to the use of the term "L-estimator" to describe any of a broad class 
of location parameter estimators based on order statistics we shall refer to smoothers 
based on moving order statistics as L-smoothers. 
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Papers on L-smoothers appeared in the engineering literature (Rabiner, Sambur 
and Schmidt, 1975; Justusson, 1977; Huang, Yang and Tang, 1979) and in econo­
metrics (Polasek, 1982b). This is no doubt due to the real need for some kind of robust 
smoothing to deal with outliers in time and space series, along with the fact that 
L-smoothers have rather obvious and intuitively appealing resistance properties. 

IV.3.3 Moving M-estimate Smoothers 

If L-smoothers are good robust smoothers, then it would come without surprise 
to find that moving maximum likelihood type estimates of location (Huber, 1964) 
provide useful robust smoothers. On can find pertinent discussions in the papers 
of Cleveland (1979, 1982) and Stuetzle (1979). 

IV.3.4 Robustified Splines 

Let {yi}, 1 ^ i ^ n, be the series to be smoothed, let Sm be a smoothing operator 
and let {z;} = Sm{yi} be the smoothed series. 

The theoretically cleanest approach to linear smoothing is through splines (Reinisch, 
1967): minimize the mean square of the second (or of a higher order) derivative of z 

(IV.70) ave{(z"i)2} -> min 

subject to a side condition of the form 

(IV.71) . ave{(yt - z,.)2} ^ const. 

The means are taken over a suitable range of ('-values. 
This approach can be robustified very easily (Huber's (1979) paper is a basic 

reference to this approach): we simply replace the square in (IV. 70) by a less rapidly 
increasing function Q. Past experience with location and regression estimates suggests 
that Q should be chosen convex with a bounded derivative \j/ = Q', for example 

(IV.72) Q(X) = ftV'2, . 2 [°X M = C 

v 7 v ' \c\x\ - \c2 for \x\ > c 

where the constant c regulates the degree of robustness. As Huber (1979) mentions, 
robustifying splines have been considered often but little has appeared in the literature 
(see however Lenth, 1977). 

IV.3.5 Problems with Robust Filters and Smoothers 

It should be noted that, in general, literature does not distinguish between filters 
and smoothers in the sense of Section IV. 1.2 and IV.L3, respectively. The terms 
"filter" and "smoother" are used interchangeably. 
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Although robust linear filters exist, robust smoothers are inherently nonlinear 
(see Kassam and Poor, 1985). Nonlinearity causes more problems. Nonlinear 
smoothers fall outside the classical framework of linear filter theory and are difficult 
to analyze mathematically. One difficulty is that it is not possible to characterize 
a nonlinear filter by its transfer function, which is a well known advantage of linear 
filters. Nonlinearity can also cause transfer of power from one frequency to another. 

However, nonlinear data smoothers provide a practical method of finding general 
smooth patterns for sequenced data confounded with heavy-tailed noise. 

The various approaches to robust filtering and smoothing described in this chapter 
all share the common property of being resistant toward outliers. A detailed under­
standing of their features in probabilistic terms, however, has been lacking for a long 
period, because there has been a scarcity of tools which are necessary for the careful 
statistical analysis of the behavior of nonlinear smoothers. Thus it has been difficult 
for potential users to determine which of several approaches, and which particular 
smoother within a given class, will be a good one for his problems. 

Mallows (1980a, 1980b) contributes significantly to the theory of nonlinear 
smoothers what should greatly enhance our ability to analyze proposed robust 
smoothers of many varieties. A very important aspect of his work is a theorem 
which characterizes the "linear part" of a nonlinear smoother, and provides an 
additive orthogonal decomposition of the smoothers into the linear part and a resi­
dual process. Presumably a good robust smoother would have a linear part which 
is "close" to the linear smoother which the user would prescribe for an outlier-free 
process, and a residual process which is relatively "small". It should be noted that 
Mallow's decomposition theorem is primarily of use for the analysis but not for 
the design of robust smoothers. 
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V. SOME RESULTS CONCERNING APPLICATION AND 
FURTHER RESEARCH 

A Monte Carlo investigation of methods for the least squares estimation, M-estima-

tion and GM-estimation of ARMA models will be presented. Monte Carlo generally 

reveals properties which are expected from theory. For outlier-free data the means 

of the estimated parameters differ scarcely, and the mean square errors of M-esti-

mators and GM-estimators are larger than those for least squares estimators. For 

the processes chosen here, with innovation outliers, the means of the estimated 

parameters also differ only slightly, but the sample relative efficiencies of M-esti-

mators are larger than the sample relative efficiencies of GM-estimators and of least 

squares estimators. In the presence of additive outliers the GM-estimation essentially 

yields better parameters and substantially smaller mean square errors than the least 

squares estimation and than the M-estimation. 

Several topics for further research concerning identification and estimation of 

various models, outlier detection, filters and spectral density estimation will be 

mentioned. 

V.l SOME MONTE CARLO RESULTS FOR GM-ESTIMATORS 

OF AR MODELS 

In order to study the behavior of various estimators of AR models, which were 

discussed in Section II. 1 and Section III. 1, AR(l) processes with location n = 0 

were simulated. The number of observations for each process is 100. The number 

of replications for each process is 50. The Vt's that cause additive outliers have 

a Gaussian mixture distribution CND(K, a3) = (1 - K) 50 + KN(Q, a2) with a\ = 

= 9 VAR Xt (compare Section 1.4). (For an AR(1) model, VAR Xt = a2j(l - <$>\), 

Table V.l. Simulated AR(1) processes. 

Abbreviation Фl V к 

A R G P 5 •5 0- 0-
A R G P 8 •8 0- 0-
ARЮCNP 5 •5 •1 0-
ARЮCNP 8 •8 •1 0-
ARAOP5 •5 0- •1 

ARAOP 8 •8 0- •1 
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where a denotes the scale of the innovations.) Abbreviations and values for $ , , v 
and K for processes with CN(v, 1, 11) = (1 - v)iV(0,1) + vJV"(0,121) - distributed 
innovations are given in Table V.l. 

Furthermore, processes with redistributed innovations without additive outliers 
were simulated for 0X = -5 (ARIOTP 5) and <£. = -8 (ARIOTP 8). Note that the 
CN(-1, 1, 11) distribution and the ^-distribution have both variance 2. 

Pseudo random numbers from the normal distribution with mean 0 and variance 1 
are generated by a comparison method implemented in the algorithm FL (Forsythe, 
Ahrens-Dieter) given by Ahrens and Dieter (1974). The algorithm FL uses a multi­
plicative congruental generator with factor a = 5 308 871 541 and module m = 23 5 

to generate pseudo random numbers U;, i = 1, 2 , . . . , uniformly distributed between 
0 and 1. 

Pseudo random numbers At, i = 1, 2 , . . . , with a CN(v, alt a2) distribution are 
generated in the following way. 

(1) Set i = 1. 
(2) Generate a pseudo random number U; from a uniform distribution between 

0 and 1. 
(3) Set A,- equal to a pseudo random number from a JV(0, a2) distribution, if U,- > v. 
(4) Set Ai equal to a pseudo random number from a N(0, a2) distribution, if U, _: v. 
(5) Stop, if enough A;'s are generated. 
(6) Augment i = i + 1 and go to (2). 

Pseudo random numbers Vh i = 1,2,...,from a CND(K,a3) distribution are 
generated by the following algorithm. 
(1) Set i = 1. 
(2) Generate a pseudo random number Uj from a uniform distribution between 

0 and 1. 
(3) Set Vt = 0, if Ui > K. 

(4) Set F; equal to a pseudo random number from a iV(0, a2) distribution, if U, 5S K. 
(5) Stop, if enough A,'s are generated. 
(6) Augment i = i + 1 and go to (2). 

Pseudo random variables with a f-distribution are generated by a modified re­
jection method given by Stadlober and Dieter (1985). 

For the estimation of AR models for the simulated processes it was assumed that 
the order of the model to be fitted were known, but no information about the para­
meters to be estimated would be given. Therefore starting values $ were determined 
by the Yule-Walker equations (Box and Jenkins, 1976) and the starting value a2 

was % — $!?! — .. . — <}>pfp, where % denotes an estimate of the autocovariance 
of the lag k for the given time series. These starting values were used to compute 
least squares estimates by the IWLS algorithm (compare Section II. 1.2) in the Monte 
Carlo study. 

Table V.2 lists the methods that were used to fit AR(l) models to the simulated 
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AR(l) processes. In the abbreviations the letters H, HA and B stand for Huber's psi, 
Hampel's psi and Tukey's bisquare psi, respectively (compare Section II.L1). 
The letters M, MA and S stand for M-estimators, Mallows type GM-estima-
tors and Schweppe type GM-estimators, respectively (compare Section III.LL). 
Clearly, LS stands for least squares. The starting values for one estimation in general 
are the results of the preceding estimation except for SH, where the starting values 
are the results of MB. The tolerance value for the estimations is e = -001. The 
locations u of the given time series is assumed to be zero. The estimating equation 
is (III.8), where the "largeness" of yi_1 is determined by (III.9). 

Table V.2. Types of estimations. 

Abbreviaťion Vl Vг 

LS Identity Identity 
M H џ/н. c ш 1-345 Identity 

MHA џ/HA. a = 1-4, b = 2-8, d = 4-75 Identity 
MB ц/в. c = 4-685 Identity 

MAH y/н. c = 1-65 equal \oy/г 

MAHA VHA- ° = 1 - 7 » * - * 3-4, t f = 5 0 equal to Vi 
MAB y/в. c = 5-58 equal to y/x 

SH Vн' c = 1 - 6 equal to џ/t 

SHA VHA'
 a = V7' b = 3 ' 4 ' d = 5-5 equal to y/x 

SB y/в. c = 6-0 equal to y/x 

For each estimator, except for the least squares estimator, the constants of the 

^-functions were chosen so that the asymptotic efficiency of the estimator relative 

to the least squares estimator is -95 for outlier-free data, where this efficiency is the 

ratio of the asymptotic variance of the least squares estimator and the estimator 

in question. With this setting of the constants of the psi-functions comparisons 

of the estimators make sense. The computation of the asymptotic variances is explai­

ned in Section III.2.3. 

In the case of ^ = ij/HA the IWLS algorithm is first run with ^ = $H, where c 

is equal to the constant a of \j/HA, to obtain an estimate for <r. If t/^ = $B the IWLS 

algorithm is first run with ^ = \I/H, where the constant is equal to the constant c 

of fg divided by *J5, because this \j/H(t) with - c/,/(5) <; t ^ c/^/(5) is similar to the 

increasing part of ^ ( 0 -

For each type of simulated processes the mean (MEAN), the mean square error 

(MSE) of the estimates of 4>i and the mean of the averages of the final weights wf0 

in the IWLS algorithm (MAVW) were computed. The MSE is a measure for the 

variability of the method of estimation and is defined by 

REP 

M S E = R E P - 1 X ( $ I . * -4>xf 
k=l 
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where REP denotes the number of replications for one type of simulated processes 

and $lik is the estimate of the true parameter value 0X for the fcth simulated process. 

The MAVW tells about the portion for the fcth simulated process. The MAVW 

for others than the least squares estimator can be expected to be smaller in the 

presence of additive outliers than in the presence of innovation outliers. 

The Table V.3 to V.6 summarize the results of the estimations for the simulated 

processes. EFF denotes the sample relative efficiency of the estimate with respect 

to the least squares estimate, i.e. the ratio between the MSE of the least squares 

Table V.3. Results of estimations (described in Section II. 1 and Section III. 1) of tj>% for outlier-
free processes. 

S i m u l a t e d processes 

E S T I M A T O R A R G P 5 A R G P 8 

M E A N M S E E F F M A V W M E A N M S E E F F " M A V W 

L S •462 1-23 1 0 0 1 0 0 •772 •572 1 0 0 1 0 0 

M H •459 1-35 •911 •961 •770 •666 •858 •960 

M H A •460 1-34 •919 •965 •770 •659 •867 •965 

M B •459 1-33 •921 •917 •770 •661 •865 •917 

M A H •460 1-35 •909 •962 •769 •679 •842 •960 

M A H A •461 1-33 •921 •966 •769 •672 •850 •964 

M A B •460 1-37 •895 •879 •769 •690 •829 •875 

S H •460 1-36 •901 •977 •770 •691 •827 •977 

S H A •461 1-32 •934 •983 •770 •674 •848 •982 

SB •461 1-31 •940 •945 •769 •665 •859 •945 

Table V.4. Results of estimations (described in Section II. 1 and Section III.l) of (j>l for processes 
with CiV-distributed innovations. 

S i m u l a t e d pгocesses 

E S T I M A T O R A R Ю C N P 5 A R Ю C N P 8 

M E A N M S E E F F M A V W M E A N M S E E F F M A V W 

L S •470 1-11 1 0 0 1-00 •776 •750 1-00 1 0 0 

M H •478 •600 1-85 •935 •780 •388 1-94 •935 

M H A •482 •532 2-08 •932 •782 •330 2-27 •932 

M B •482 •527 2-10 •896 •783 •323 2-33 •897 

M A H •472 •935 1-18 •917 •777 •487 1-54 •923 

M A H A •474 •923 1-20 •914 •778 •485 1-55 •922 

M A B •470 1-02 1-09 •845 •777 •498 1-51 •851 

S H •472 •798 1-39 •951 •780 •414 1-81 •950 

S H A •468 •925 1-20 •944 •781 •410 1-83 •949 

SB •468 •880 1-26 •927 •780 •393 1-91 •931 
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Table V.5. Results of estimations (described in Section II. 1 and Section III.l) of ̂ 1 for processes 
with ("-distributed innovations. 

Simulated processes 

ESTIMATOR ARЮTP 5 ARЮTP 8 

MEAN MSE EFF MAVW MEAN MSE EFF MAVW 

LS •493 •859 100 1-00 •777 •500 1-00 ' 1-00 
MH •495 •731 1-18 •940 •779 •420 1-19 •940 
MHA •496 •746 1-15 •941 •780 •415 1-20 •942 

MB •496 •729 1-18 •906 •781 •411 1-22 •906 
MAH •496 •779 1-10 •934 •780 •459 1-09 •933 
MAHA •497 •827 104 •935 •779 •475 105 •935 
MAB •499 •820 1-05 •861 •779 •490 102 •859 
SH •495 •794 1-08 •957 •780 •468 1-09 •956 
SHA •499 •846 1-02 •958 •779 •501 •998 •958 
SB •499 •821 105 •934 •779 •498 1-00 •935 

Table V.6. Results of estimations (described in Section II. 1 and Section III.l) of ^ for processes 
with additive outliers. 

Simulated pгocesses 

ESTIMATOR ARAOP 5 ARAOP8 

MEAN MSE EFF MAVW MEAN MSE EFF MAVW 

LS •211 9-47 1-00 1-00 •348 21-7 1-00 100 
MH •212 9-23 103 •935 •405 17-5 1-24 •922 
MHA •208 9-40 1-01 •932 •427 16-7 1-30 •915 
MB •207 9-45 1-00 •897 •403 18-0 1-21 •889 
MAH •297 5-51 1-72 •918 •545 8-06 2-70 •900 
MAHA •329 4-50 2-11 •912 •602 5-22 4-16 •890 
MAB •333 4-42 2-14 •844 •597 5-38 4-04 •832 
SH •282 6-33 1-50 •941 •553 7-73 2-81 •910 
SHA •334 4-67 203 •930 •657 3-36 6-47 •895 
SB •321 5-19 1-83 •915 •613 5-04 4-31 •898 

estimate and the MSE of the estimate in question. The columns denoted by MSE 
contain 100 times the mean square error. 

The following comments are referring to the results shown in Tables V.3 to V.6: 
The means of the estimated parameters differ only slightly for the outlier-free 
processes and the processes with innovation outliers (Tables V.3 to V.5), but 
substantially for processes with additive outliers. This results from the fact that the 
contamination by innovation outliers is rather mild. The sample relative efficiency 
of all estimators, except of the least squares estimator, for the outlier-free data 
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is a little bit less than the desired asymptotic relative efficiency of -95. Taking the 
sample relative efficiency as a measure for the performance of an estimator, the 
M-estimators outperform the GM-estimators, if the data contain innovation outliers. 
The Schweppe type estimators are superior to the Mallows type estimators with the 
same psi-functions for data with CiV-distributed innovations. Data with ("-distributed 
innovations - in contrast to the theoretical expectation — are slightly better esti­
mated by Mallows type estimators than by Schweppe type estimators and the mean 
square error for the Schweppe type estimator with Hampel's psi ARIOTP 8 is even 
larger than the mean square error of the least squares estimator. If additive outliers 
are present, GM-estimators give better results, or more precisely speaking, estimated 
parameters closer to the true parameters and smaller mean square errors. In particular, 
it is demonstrated that GM-estimators using redescending psi-functions have high 
efficiencies. For <j)1 = -5 the Mallows type estimators are superior to Schweppe type 
estimators with the same psi-functions, as expected from the theory. In the case 
of 4>i = '8, however, the Schweppe type estimators are superior to the corresponding 
Mallows type estimators. 

Some interesting sample relative efficiencies and means of estimates condensed 
in Tables V.3 to V.6 are graphically presented by Stockinger (1985a) in his Figures 
2.1 to 2.5 which offer a clear optical survey. 

V.2 SOME MONTE CARLO RESULTS FOR GM-ESTIMATORS 
OF ARMA MODELS 

The GM-estimators presented in Section II.2 and Section III.2 were applied to 
estimate the first-order AR parameter $ x ant the first-order MA parameter 0.. 
</>. was estimated for the 8 types of simulated AR(1) processes which were described 
in Section V.l. 01 was estimated for 10 types of MA(1) processes with location 
H = 0. The numbers of observations and replications are the same as for the AR(1) 
processes, namely 100 and 50, respectively. The V,s that cause additive outliers have 
a Gaussian mixture distribution CND(K, a3) = (1 — K) <50 + KJV(0, <r2) (compare 
Section 1.4), where <r3 is a multiple of the variance of the outlier-free process. (For 
an MA(l) model VAR Xt = <r2(l + 02).) Abbreviations and values for 0., v, K 
and <r3 for processes with CN(v, 1, 11) = (1 - v) JV(0, 1) + viV(0, 121) - distributed 
innovations are given in Table V.7. 

Not only AR(1) processes with redistributed innovations without additive out­
liers were simulated, but also MA(1) processes which have the abbreviations 
MAIOTM 5 for 6t = —5 and MAIOTM 8 for Qx = - - 8 . 

Starting values for AR parameters were computed by the Yule-Walker equations 
as it was also described in Section V.L Starting values for MA parameters were 
computed by a Newton-Raphson algorithm which was given by Wilson (1969) and 
which was also described by Box and Jenkins (1976). For this Newton-Raphson 
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Table V.7. Simulated MA(1) processes. 

Abbreviation h V к Ą 

M A G M 5 — 5 0- 0-
M A G M 8 - 8 0' 0- -
MAЮCNM 5 — 5 •1 o- — 
MAIOCNM 8 — 8 •1 0- — 
MAAO 1 M — 5 0- •05 9 VAR XІ 

M A A O 1 M 8 — 8 0- 05 9 VAR XІ 

MAAO 2 M 5 - 5 0- • 05 100 VAR XІ 

MAAO 2 M 8 — 8 0- •05 100 VAR X{ 

algorithm the order of the model to be estimated must be chosen, but nothing needs 
to be known about the parameters to be estimated. The algorithm of Wilson also 
gives a starting value for the innovations scale. For some time series the algorithm 
of Wilson does not give MA parameters which define an invertible MA process. 
In these cases the starting values for MA parameters were set equal to the true 
parameters. 

In addition to the estimators described in Table V.2 Hampel-Krasker-Welsch 
type GM-estimators (Section III.2.L) given in Table V.8 were used to estimate 
AR(l) and MA(1) models. Again the constants of the t/r-functions were chosen so 
that the asymptotic relative efficiency of all estimators, except the least squares 
estimator, of the first-order AR parameter is -95. If i/^ is redescending, the algorithm 
for the GM-estimation of ARMA models (Section III.2.2) was not run first with 
a monotone \j/u like the IWLS algorithm (Section II.1.2), because the scale now is 
improved by the medmed estimator (111.32) but not by using an equation like (III.4) 
for pure AR models. The starting values for a certain type of estimation in general 
are the results of the preceding estimation except that an estimation with a redescend­
ing ^j-function which is based on the estimation of the same type with Huber's 
i/^ and the estimations MAH, SH and HKWH are based on MB to make the GM-
estimators comparable. 

Table V.8. Types of estimations. 

Abbreviation yrl 

HKWH i/rB- c = 2-5 
HKWHA yrEA. a = 2-7, b = 5-4, d = 10-
HKWB yrB. c = 9-5 

Similar to Section V.l, the mean (MEAN) 100 times the mean square error (MSE), 
the sample relative efficiency (EFF) and the mean of the averages of the final weights 
w . m ) . i = p + 1,..., n, (MAVW) for various estimates $1 or $ t for various types 



of time series are given in Tables V.9 to V.17. When the algorithm to compute 
GM-estimates of ARMA parameters given in Section III.2.2. did not reach the re­
quired precision after 30 iterations, the computed estimate was excluded from 
further analysis. The algorithm failed in fairly few cases, namely a GM-estimator 
did not reach the required precision for about 1 percent of its applications. The reasons 
for the failure could be that the algorithm solves equations instead of a minimum 
problem and that the equations are nonlinear. Unfortunately it seems to be impossible 
to formulate a minimum problem. 

Table V.9. Results of estimations (described in Section II.2 and Section 111.2) of ^ t for outlier-
free processes. 

Simulated processes 

ESTIMATOR ARGP5 ARGP8 

MEAN MSE EFF MAVW MEAN MSE EFF MAVW 

LS •461 1-23 1-00 1-00 •772 •575 100 1-00 
MH •459 1-35 •916 •958 •770 •655 •878 •958 
MHA •459 1-35 •914 •963 •770 •658 •875 •962 
MB •459 1-35 •911 •914 •770 •660 •872 •913 
MAH •460 1-36 •905 •962 •771 •657 •876 •965 
MAHA •460 1-36 •906 •966 •771 •656 •878 •969 
MAB •459 1-40 •883 •879 •771 •672 •856 •881 
SH •459 1-39 •890 •974 •769 •676 •851 •974 
SHA •459 1-38 •896 •979 •769 •690 •834 •980 
SB •459 1-38 •894 •938 •769 •696 •827 •938 
HKWH •463 1-32 •937 •991 •770 •657 •876 •991 
HKWHA •459 1-42 •866 •993 •770 •657 •876 •993 
HKWB •458 1-44 •857 •978 •770 •653 •881 •979 

The estimates for the first-order AR parameter behave similarly to those fisted 
in Section V.I., giving evidence that the algorithm to compute GM-estimates of 
ARMA parameters introduced in Section III.2.2 is useful in the AR(l) case. Of 
course, in this section a Hampel-Krasker-Welsch type estimator is included in addition 
to the estimators already treated in Section V.L For CiV-distributed innovations 
the Hampel-Krasker-Welsch type estimator tends to be better than the Mallows 
type estimator but worse than the Schweppe type estimator. For .'-distributed innova­
tions the Mallows and Schweppe estimators seem to be superior to the Hampel-
Krasker-Welsch type estimator. The first-order AR parameter is best estimated by 
the Mallows type estimator for ARAOP 5 processes. In contrast, the Hampel-
Krasker-Welsch type estimator gives on the average better parameter values than 
a Mallows type estimator for ARAOP 8 processes. The efficiency of Hampel-Krasker-
Welsch type estimators is somewhere in the middle of the efficiencies of the two other 
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Table V.10. Results of estimations (described in Section II.2 and Section III.2) of 4>t for processes 
with CAf-distributed innovations. 

Simulated processes 

ESTIMATOR ARЮCNP 5 ARГОCNP 8 

MEAN MSE EFF MAVW MEAN MSE EFF MAVW 

LS •470 1-11 1-00 1-00 •776 •754 1-00 100 
M H •478 •609 1-82 •929 •780 •400 1-88 •929 
MHA •481 •543 2-04 •924 •782 •334 2-25 •924 
MB •481 •535 2-07 •877 •782 •326 2-31 •878 
MAH •471 •934 1-19 •904 •778 •493 1-53 •902 
MAHA •471 •985 1-13 •896 •778 •511 1-48 •898 
MAB •469 1-02 1-09 •815 •776 •512 1-47 •813 
SH •471 •818 1-36 •936 •780 •425 1-77 •936 
SHA •469 •959 1-16 •928 •778 •495 1-52 •931 
SB •467 •955 1-16 •888 •777 •479 1-57 •892 
HKWH •468 •926 1-20 •967 •779 •450 1-67 •964 
HKWHA •467 •974 1-14 •969 •780 •466 1-62 •965 
HKWB •468 •994 1-12 •952 •779 •482 1-56 •947 

Table V.11. Results of estimations (described in Section II.2 and Section III.2) of </>t for processes 
with t-distributed innovations. 

Simulated processes 

ESTIMATOR ARЮPTP 5 ARЮTP 8 

MEAN MSE E F F MAVW MEAN MSE E F F MAVW 

LS •493 •862 100 100 •776 •499 1-00 1-00 
M H •495 •713 1-21 •932 •779 •421 1-19 •931 
MHA •494 •737 1-17 •932 •780 •415 1-20 •931 
MB •495 •727 1-19 •885 •780 •403 1-24 •884 
MAH •496 •805 1-07 •917 •780 •452 1-10 •914 
MAHA •499 •831 1-04 •917 •781 •459 109 •914 
MAB •500 •818 1-05 •831 •781 •459 1-09 •827 
SH •495 •780 1-11 •943 •779 •461 1-08 •942 
SHA •499 •790 109 •942 •778 •531 •940 •941 
SB •498 •786 1-10 •902 •781 •453 1-10 •901 
HKWH •495 •821 1-05 •971 •779 •502 •993 •969. 
HKWHA •498 •859 1-00 •973 •779 •529 •943 •972 
HKWB •498 •847 102 •956 •779 •525 •951 •953 

types of GM-estimators, and the Schweppe type estimator has the highest sample 
relative efficiency for the processes with additive outliers. 

Analogous to Section V.l some interesting results of the estimations are graphically 
presented in Figures 3.1 to 3.5 in Stockinger (1985a). 
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Table V.12. Results of estimations (described in Section II.2 and Section III.2) of ^ , for processes 

with additive outliers. 

S i m u l a t e d processes 

E S T I M A T O R A R A O P 5 A R A O P 8 

M E A N M S E E F F M A V W M E A N M S E E F F M A V W 

L S •209 9-55 1 0 0 1 0 0 •347 21-8 1 0 0 1 0 0 

M H •212 9-23 1-04 •927 •413 1 7 0 1-28 •909 

M H A •208 9-39 1-02 •924 •427 14-5 1-51 •895 

M B •208 9-39 1-02 •877 •484 13-8 1-58 •850 

M A H •295 5-57 1-71 •912 •560 7-38 2-96 •887 

M A H A •332 4-33 2-21 •904 •624 4-55 4-80 •878 

M A B •331 4-38 2-18 •827 •627 4-36 5-01 •802 

S H •282 6-33 1-51 •932 •565 7-26 3 0 1 •900 

S H A •332 4-66 2-05 •922 •661 3-36 6-50 •885 

SB •330 4-71 2-03 •885 •660 3-36 6-50 •851 

H K W H •287 6-36 1-50 •963 •572 7-16 3-05 •931 

H K W H A •315 5-80 1-65 •964 •649 4-31 5-06 •930 

H K W B •318 5-73 1-67 •948 •569 4 0 0 5-46 •917 

Table V.13. Results of estimations (described in Section II.2 and Section III.2) of 0, for outlier-

free processes. 

S i m u l a t e d processes 

E S T I M A T O R M A G M 5 M A G M 8 

M E A N M S E E F F M A V W M E A N M S E E F F M A V W 

L S - • 4 8 4 1-18 1-00 1 0 0 - • 7 9 9 •522 1 0 0 1 0 0 

M H - • 4 8 2 1-31 •901 •958 - • 7 9 7 •607 •860 •958 

M H A - • 4 8 3 1-32 •899 •963 - • 7 9 7 •609 •858 •963 

M B - • 4 8 3 1-32 •897 •914 - • 7 9 8 •612 •853 •913 

M A H - • 4 8 6 1-29 •919 •963 - • 7 9 8 •581 •899 •963 

M A H A - • 4 8 7 1-29 •916 •967 - • 7 9 9 •580 •901 •967 

M A B - • 4 8 6 1-34 •887 •882 - • 7 9 8 •605 •864 •882 

S H - • 4 8 3 1-31 •902 •974 - • 7 9 8 •593 •881 •974 

S H A - • 4 8 5 1-33 •892 •980 - • 7 9 8 •585 •893 •980 

SB - • 4 8 5 1-35 •878 •938 - • 7 9 8 •595 •879 •938 

H K W H - • 4 8 4 1-34 •882 •991 — 7 9 8 •583 •896 •991 

H K W H A - • 4 8 4 1-34 •883 •993 - • 7 9 9 •568 •919 •993 

H K W B - • 4 8 4 1-35 •879 •978 - • 7 9 8 •573 •911 •978 

The estimated first-order MA parameters differ only very slightly for outlier-free 
processes and processes with innovation outliers. For processes with innovation 
outliers the least squares estimator in some cases has, which shows up as an unex­
pected phenomenon, a smaller mean square error than GM-estimators; the M-
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Table V.14. Results of estimations (described in Section II.2 and Section III.2) of 0 t for processes 
with CiV-distributed innovations. 

Simulated processes 

ESTIMATOR MAЮCNM 5 MAЮCNM 8 

MEAN MSE E F F MAVW MEAN MSE EFF MAVW 

LS —494 •804 1-00 1-00 — 800 •455 100 100 
M H —489 •606 1-33 •931 -•796 •340 1-34 •930 
MHA —490 •643 1-25 •927 —795 •365 1-25 •926 
MB —490 •626 1-28 •880 —795 •362 1-26 •879 
MAH —489 •921 •872 •908 —792 •391 116 •907 
MAHA -•487 1-20 •671 •901 -•785 •540 •844 •904 

MAB —487 1-25 •641 •822 -•784 •531 •857 •819 
SH —486 •853 •942 •938 -•792 •386 1-18 •940 
SHA —475 1-02 •790 •930 —787 •487 •935 •934 
SB —479 1-08 •746 •892 -•787 •493 •923 •893 
HKWH —477 •947 •848 •968 —790 •372 1-22 •968 
HKWHA —482 1-17 •686 •969 —789 •393 1-16 •969 
HKWB -•481 1-22 •660 •952 -•788 •397 1-15 •951 

Table V.15. Results of estimations (described in Section II.2 and Section III.2) of 0X for processes 
with f-distributed innovations. 

Simulated processes 

ESTIMATOR MAЮTM 5 MAЮTM 8 

MEAN MSE EFF MAVW MEAN MSE EFF MAVW 

LS -•509 •887 1-00 1-00 —811 •350 100 1-00 
M H -•510 •766 116 •930 —809 •309 113 •930 
MHA — 508 •858 1-03 •930 -•807 •353 •990 •930 
MB — 508 •823 1-08 •883 -•807 •354 •988 •883 
M A H —509 •740 1-20 •914 -•807 •320 109 •914 
MAHA —512 •815 109 •913 —808 •375 •932 •915 
MAB — 512 •792 1-12 •828 -•809 •363 •965 •824 
SH —508 •693 1-28 •942 -•809 •304 1-15 •943 
SHA — 5 1 3 •723 1-23 •940 —809 •393 •890 •942 
SB —513 •732 1-21 •900 —809 •388 •902 •901 
HKWH —508 •688 1-29 •971 — 8 1 0 •303 1-15 •970 
HKWHA —507 •727 1-22 •973 —808 •375 •933 •973 
HKWB —508 •752 1-18 •955 -•807 •390 •898 •954 

estimators have higher sample relative efficiencies than the least squares estimators 

except for MAIOTM 8 processes. The quality of GM-estimators expressed in well 

estimated parameters and high efficiencies, is revealed for processes with additive 

outliers, especially for MAAO 2 processes. 
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Table V.16. Results of estimations (described in Section II.2 and Section III.2) of 9t for processes 
with additive outliers. 

S i m u l a t e d processes 

E S T I M A T O R M A A O 1 M 5 M A A O 1 M 8 

M E A N M S E E F F M A V W M E A N M S E E F F M A V W 

L S — 3 1 2 4-43 1 0 0 1-00 - • 4 3 1 14-2 1-00 1-00 

M H — 3 2 2 3-97 1-11 •949 — 4 5 8 12-2 1-16 •947 

M H A — 3 2 4 3-92 1-13 •951 - • 4 6 2 11-9 1-19 •948 

M B - • 3 2 6 3-85 1-15 •902 - • 4 6 5 11-8 1-20 •900 

M A H - • 3 6 7 2-66 1-67 •942 - • 5 3 8 7-29 1-95 •931 

M A H A - • 3 8 3 2-31 1-92 •940 — 578 5-48 2-59 •920 

M A B - • 3 8 8 2-27 1-95 •857 - • 5 8 2 5-29 2-68 •840 

S H - • 3 6 1 2-85 1-55 •958 — 5 3 1 7-73 1-83 •950 

S H A - • 3 9 4 2-32 1-91 •956 - • 5 8 7 5-17 2-74 •940 

SB - • 3 8 6 2-34 1-89 •917 - • 5 8 5 5-30 2-67 •902 

H K W H — 365 2-83 1-57 •978 - • 5 4 0 7-31 1-94 •968 

H K W H A - • 3 8 1 2-54 1-74 •978 - • 5 8 0 5-61 2-53 •965 

H K W B - • 3 8 7 2-45 1-81 •963 — 581 5-53 2-56 •949 

Table V.17. Results of estimations (described in Section II.2 and Section III.2) of 0X for processes 
with additive outliers. 

S i m u l a t e d processes 

E S T I M A T O R M A A O 2 M 5 M A A O 2 M 5 

M E A N M S E E F F M A W V M E A N M S E E F F M A V W 

L S - • 0 7 3 18-6 1-00 1 0 0 - • 0 9 7 49-8 1 0 0 1-00 

M H - • 0 8 5 17-5 1 0 6 •938 - • 1 2 1 46-4 1-07 •936 

M H A - 0 9 6 16-9 1-10 •936 — 144 43-9 1-14 •935 

M B — 0 9 6 16-9 1-10 •889 - • 1 4 7 43-6 1 1 4 •887 

M A H — 2 5 6 6-54 2-85 •905 - • 3 6 1 19-7 2-53 •892 

M A H A - • 3 8 6 2-19 8-53 •868 — 5 6 9 5-88 8-48 •805 

M A B — 389 2-17 8-60 •796 - • 5 6 8 5-94 8-40 •740 

S H - • 2 4 5 7-10 2-63 •927 — 3 5 2 20-5 2-43 •914 

S H A — 3 9 7 2-26 8-25 •887 - • 5 6 7 5-98 8-33 •833 

SB - • 3 9 7 2-31 8-08 •852 — 5 6 5 6-13 8-13 •802 

H K W H — 2 5 2 6-84 2-73 •948 — 3 6 4 19-7 2-54 •932 

H K W H A — 3 4 6 3-73 5-00 •932 - • 5 2 7 8-16 6-11 •892 

H K W B - • 3 5 6 3-34 5-58 •916 — 5 2 4 8-36 5-96 •879 

Some interesting results listed in the Tables V. 13 to V.17 are graphically presented 
in the Figures 3-6 to 3-13 in Stockinger (1985a). 
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Comparison of the Results in Section V.l and Section V.2 

The means of the first-order AR parameter estimated by the method of Martin 
(1980), which was described in Section III.l, are in general very similar to those 
estimated by the method presented in Section III.2. But the means for the estimated 
parameters for ARAOP 8 processes lie closer to the true parameter in Section V.2 
than in Section V.L The sample relative efficiencies for parameters estimated from 
processes with ^distributed innovations or from processes with additive outliers 
tend to be larger for the method of Section III.2 than for the method of Section III.l. 
The sample relative efficiencies for parameters estimated from processes with CN-
distributed innovations, in contrast, tend to be less for the method of Section III.2 
than for the method of Section III.l. 

V.3 TOPICS FOR FURTHER RESEARCH 

The algorithms for a GM-estimation of ARM A parameters presented in Chapter III 
were successfully applied in a Monte Carlo study (compare Section V.l and Section 
V.2). The estimation of the first-order AR parameter and the first-order MA para­
meter was investigated by Monte Carlo because it is difficult to compare higher 
order models. Nevertheless it would be interesting to compare estimated higher 
order models. Computer programs (Stockinger, 1985b) already allow the GM-
estimation of ARM A (p, q) models with locations and with arbitrary orders p and q. 
These computer programs offer good hope for interesting research also for data 
from practical problems. In fact, GM-estimation of AR models was applied for the 
detection of outliers in arrhythmic pressure pulses (Stockinger, 1984; Stockinger, 
Pfeiffer and Dutter, 1984). 

The methods for the GM-estimation of ARMA models presented in Chapter II 
and Chapter III could be improved by incorporating backforecasting routines (Box 
and Jenkins, 1976). 

ARIMA model parameter estimates may be obtained similar as ARMA model 
parameter estimates. One computational method is to express the nonstationary, 
generalized autoregressive operator <P(I?) = (p(B) (1 — B)d in closed form as auto-
regressive operator of order (p + d). However, it is not entirely clear to us in which 
way instationarity affects parameter estimates. Another conventional method for 
dealing with ARIMA models is to take appropriate differences to get an ARMA 
model. If the time series contains outliers, however, this procedure becomes less 
attractive. The reason is that differencing increases the number of outliers. For 
example, first differences produce two outliers for every isolated outlier in the original 
series. If the fraction of outliers is very small, we may well get away with taking 
differences and then applying a robust fitting procedure. Such an approach, however, 
becomes unattractive as the fraction of outliers increases and alternative robust 
methods are then needed for dealing with ARIMA models. 
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A proof of the robustness of autoregressive-errors M-estimates (Section II.2.1) 
for the location of ARMA (p, q) models is outstanding. 

The exact computation of the asymptotic Cramer-Rao lower bound of prewhiten-
ing-based location M-estimates (Section II.2.3) at additive outlier models did not 
yet succeed, but it is hoped that these estimates provide high absolute efficiencies. 

The key to Masreliez's filter theorem in Section IV.L2 is the assumption that the 
state-prediction density is a Gaussian density with appropriate mean and covariance. 
This assumption will rarely, if ever, be satisfied exactly. Martin (1979c), however, 
presents a continuity theorem which lends support to the intuitive notion that the 
conditional density in question will nearly be Gaussian in a strong sense when 
the additive noise is nearly Gaussian in a comparatively weak sense. Note however, 
that here a difficult problem area is presented in which clean theoretical results seem 
to be unlikely. It is not yet entirely clear whether or not the simplifications (IV.63) 
and (IV.64) of Masreliez's filter are good ideas. 

Other methods for minimization of the loss function L(a) (IV.45) could be esta­
blished, e.g. direct minimization of L(a) could be tried. Another possibility is to 
extend the approximate M-estimates from one-sided filter based estimates to two-
sided filter ("smoother") based estimates. 

Since time series analysis based on a wrong model is worthless, it is very important 
to identify the correct model. Thus further investigation of robust model selection 
which often uses the autocorrelation function and the partial autocorrelation function, 
seems to be valuable. Careful study of order-selection rules, e.g., of those described in 
Section III.4.1, is clearly needed (compare Shibata, 1976). It is not yet known how 
many iterations of the identification procedure described in Section III.4.2 are 
sufficient in general. 

It is not entirely clear how the robustified Fox test (Section III.3.3) could be applied 
in practice. Methods of determining the outlier type if more general models than AR 
models are used, are urgently called for. 

Robust estimates of parameters for time series models could help to detect certain 
failures of time series models. One possible model failure would declare a "normal" 
observation to be atypical. Thus we are faced with a model failure if it is known 
that a certain observation is not an outlier, but in the sense of the fitted time series 
model it is an outlier. Methods to diagnose the possible inadequacy of the model 
contemplated would be very important. 

Some good methods to detect outliers in time series (e.g. by residual analysis) by 
robust parameter estimates should be found out. A possibility to detect outliers 
would be to compare real data with simulated data in an appropriate manner. 

Since missing data which are a frequently emerging problem in time series, can be 
regarded as a special version of outliers, outlier-handling techniques could be modified 
to behave very well on missing data situations. 

Once an appropriate, robustly estimated time series model is found, it should be 
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relatively easy to forecast future values and/or to replace outliers by reasonable 
values. Additionally, backforecasting routines would become more reliable. 

Box and Tiao (1975) introduced an "intervention-analysis" technique for time 
series model fitting and analysis if the starting time of a potential change in model 
structure is known. In situations where intervention analysis is an appropriate tool, 
robust model fitting procedures may play a useful role which remains to be investigat­
ed. The residuals from a robust filter or smoother, for example, may provide guidance 
for selecting the form of the potential change. 

With robust time series model parameter estimates available it is possible to estimate 
spectral densities robustly. Large progress in this direction has already been obtained 
(Kleiner, Martin and Thomson, 1979; Martin and Thomson, 1982; Martin, 1983; 
Martin, 1984), but detailed investigations could still be attempted. 

In this chapter and in the foregoing chapters the GM-estimation and techniques 
of robust filtering and smoothing were treated in order to bound the influence of 
outliers. Of course, other possibilities of estimation exist. Estimation based on the 
autocovariance of the residuals was investigated by Bustos and Yohai (1983), and the 
asymptotic normality and consistency of these estimators are proved in Bustos, 
Fraiman and Yohai (1984). One-step maximum likelihood type estimators were 
investigated by Lee (1981), Lee and Martin (1982) and Lee and Martin (1982b). 

Much more theoretical robustness properties, thorough studies and comparisons 
of various methods of robust estimation are required before firm conclusions may 
by drawn, although some Monte Carlo studies have been in the expected direction. 

Obviously more complex outlier-generating models than those given in Section 
1.4 will be more appropriate for many time series occurring in practice. Things are 
complicated enough, however, with just the innovations outlier model and additive 
effects outlier model. 

Other time series models than ARIMA models are possible and perhaps some­
times more adequate. Some examples of other models may be found in Hampel et al. 
(1982). Most work in literature, however, concentrates on ARIMA models. 
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