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INTRODUCTION

This monography gives a survey about recent work on robust time series analysis.
After short introductions to different topics, investigations and new results are
reported. Although the choice of literature is very subjective and the list of references
is far from being complete, we have also put some unpublished entries which might
be difficult to obtain from public libraries but they were relevant for our research.

In the first chapter we review different concepts of robustness for independently,
identically distributed observations as well as for time series. Min-max robustness,
efficiency robustness and qualitative robustness is treated in more details.

Consistency and robustness properties of least squares estimators of autoregressive
integrated moving average parameters is dealt with, where the given time series is
possibly contaminated by outliers. The least squares estimation behaves differently
well in cases of considered two types of outliers. The bad performance of least
squares estimators for contaminated data shows the necessity of robust estimation
methods, methods which are robust toward outliers and wrong specification of the
model.

Chapter II deals with definitions, computational methods and properties of
maximum likelihood type estimators (M-estimators} for pure autoregressive
models as well as for ARMA models. In contrast to least squares estimators, M-
estimators are, in particular, efficiency robust if the given time series is contaminated
by innovation outliers. Two estimation methods which can be used advantageously
for time series including additive outliers, are outlined.

An appropriate generalization of the maximum likelihood type (M-)method yields
more satisfactory estimates of ARMA parameters in the case that the given time series
is contaminated by additive outliers. Chapter III deals with definitions, computational
methods and properties of generalized maximum likelihood type estimators (GM-
estimators) for pure autoregressive models as well as for ARMA models. In additive
outlier situations GM-estimators have, in particular, the following properties.
GM-estimators do. not require independently, identically distributed outliers. GM-
estimators have a positive breakdown point, a bounded influence curve, considerable
robustness and much smaller bias than M-estimators and least squares estimators.

The properties of M-estimators and GM-estimators of AR parameters can be
used to create tests which are able to determine the type of outliersin a time series.
Robustified methods for the identification of AR models and ARIMA models are
mentioned.

In order to deal with robust filtering and smoothing a vector state-variable repre-
sentation of ARMA processes is described in Chapter IV. Here, a filtered value is
defined to depend only on previous observations while a smoothed value is defined
to depend on all given observations. A recursive algorithm for the computation
of approximate conditional-mean (ACM) filters which are able to remove outliers
from contaminated data, is dealt with.



Maximizing a likelihood function which is approximated (also by an ACM filter),
leads to approximate maximum likelihood (AML) estimators. Proceeding further
by replacing the negative of the log-likelihood by a loss function which uses a robustify-
ing rho-function, yields approximation maximum likelihood type (AM) estimators.
A relatively simple iterative scheme can be used to compute AM-estimators. Condi-
tional-mean M-estimators can be regarded as AM-estimators especially for AR
models. Other methods for robust filtering and smoothing are provided, for example,
by the robustified Kalman filter, L-smoothers, moving M-estimate smoothers and
robustified splines.

Chapter V presents a Monte Carlo investigation of methods for the least squares
estimation, M-estimation and GM-estimation of ARMA models. Monte Carlo
generally reveals properties which are expected from theory. For outlier-free data
the means of the estimated parameters differ scarcely, and the mean square errors
of M-estimators and GM-estimators are larger than those for least squares estimators.
For the processes chosen here, with innovation outliers, the means of the estimated
parameters also differ only slightly, but the sample relative efficiencies of M-estima-
tors are larger than the sample relative efficiencies of GM-estimators and of least
squares estimators. In the presence of additive outliers the GM-estimation essentially
yields better parameters and substantially smaller mean square errors than the
least squares estimation and than the M-estimation.

Several topics for further research concerning identification and estimation of
various models, outlier detection, filters and spectral density estimation are discussed.
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I. MODELS AND CONCEPTS OF ROBUSTNESS

This contribution is thought to be a first and introductory chapter in a series
of five chapters.

We will review different concepts of robustness for independently, identically
distributed observations as well as for time series. Min-max robustness, efficiency
robustness and qualitative robustness will be treated in more details.

Consistency and robustness properties of least squares estimators of autoregressive
integrated moving average parameters will be dealt with, where the given time series
is possibility contaminated by outliers. The least squares estimation behaves differen-
tly well for two types of outliers which will be considered. The bad performance
of least squares estimators for contaminated data will show the necessity of robust
estimation methods, methods which are robust toward outliers and wrong specifica-
tion of the model.

I. 1 GENERAL CONCEPTS OF ROBUSTNESS

Loosely speaking, a robust estimator is one whose performance remains quite
good if the true distribution of data deviates slightly from the assumed one. Data
sets for which often the Gaussian model is assumed, sometimes contain a small
fraction of outliers. More realistic models for such data sets are provided by heavy-
tailed distributions. A large portion of the literature on robustness, e.g. Dutter
(1980), treats location and linear regression models with independently, identically
distributed errors. A relatively small number of contributions, e.g. Dutter (1983),
Polasck and Mertl (1983), deal with robust estimation of covariances. In this section
some concepts of robustness that have been primarily developed in the independent
observations context will be discussed.

There are different possibilities to judge the robustness performance of an estimator,
namely by the concepts of efficiency robustness, min-max robustness and qualitative
robustness.

Efficiency Robustness

Efficiency robustness requires — roughly speaking — high efficiencies of an
estimator in a neighborhood of an assumed distribution (Tukey, 1960). Efficiency
robustness can be defined more exactly as follows (Martin and Yohai, 1984a):
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Let T, = T,(Yi, ..., Y,) be an estimator of a scalar parameter p in the distribution
Pyof Y = (Yy, ..., ¥,), a sample of size n, and let EFF (T, , P,) denote a suitably
defined efficiency of T, at P,. For example we might havc

VARp,» (known estimator of g with the smallest variance)
VARp . (T,)

EFRT,, P}) =
or we might have

EFF(T, P — e P
VAR, (T,)
where Veg(P,) is the Cramer-Rao lower bound of the variance at Pj.

When the focus is on asymptotic efficiencies, the estimator is denoted by T, the
distribution for the process {Y;},;», is denoted by P7, and the efficiency of Tat Py
Kcz(_f’f?i)

ValT)
where V,,(T) is the asymptotic variance of \/(n) T, at P}

Let P be the dssumed distribution (which is often called nominal distribution)
for the ddld (typically P is Gaussian), and let P;’y, Py, ..., Pig be a set of distri-
butions which are in some sense “‘near” to P;. Then an estimator T is said to be
efficiency robust if T has high efficiency at P;°, and also at P, ..., P¢. High

¥
efficiency at P, will usually mean an efficiency in the range between 90% and 95%.

EFFT, P?) =

Min-Max Robustness

Huber’s (1964) min-max rebust location estimates minimize the maximum
asymptotic variance over certain uncountably infinite families of distributions.
More precisely, this concept of robustness can be formulated as follows: Let V{T, P)
denote the asymptotic variance of an estimator T at distribution P, and let T denote
a family of estimators, while P denotes a family at univariate distributions. A min-
max robust estimator Ty solves the problem

inf sup (T, P) .
TeT PeP

For more min-max theory and results sec Serfling (1980) and Huber (1981).

Qualitative Robustness

Hampel’s (1968, 1971) concept of qualitative robustness requires equicontinuity.
of an estimator on a set of distributions of the data. This concept is summarized
in the following.

Let Yy, ..., Y, ... be independently, identically distributed (i.i.d.) random variables
with values on a complete and separable metric space (2, d) with metric d. In most
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cases Q is a Euclidean space. Let 2" and Q% be the Cartesian product of n copies
of © and countable copies of Q, respectively. Let B denote the Borel-s-algebra
on Q and let B” denote the corresponding product -algebra on Q.

An g-neighborhood (¢ > 0) of Be B is defined by
B':{xeQ|infd(x,y) < ¢}.
yeB

For the measurable space (2, B) let p{Q) denote the set of all probability measures
on B.
For F and G in p(Q) the Prohorov distance of these measures is defined by

7 (F, G):=inf{e > 0| forall Be®B, F(B)< G(B)+¢}.

For a given F e p(Q) let F" denote the corresponding product measure in p(Q").
Let T,: Q" — 0 be a sequence of estimators where the parameter space (9, y) is also
a complete and separable metric space.

The sequence of estimators {T,},»,, i qualitatively robust at F € p(Q), if, given
¢ > 0, there exists § > 0 such that, for all n = n, and for all G € p(Q)

m/F, G) < 6 = n(&T, | F"), &7T,| ") < ¢,

where £(T, | F") denotes the law of T, under F".

This definition of qualitative robustness requires, uniformly in sample size n,
that the distribution of the estimators does not change much when there is a small
change in the marginal distribution of the observations, which might be produced
by one or both of

(a) a contamination of a small fraction of observations with gross errors (outliers),

(b) small errors in all the observations (e.g. rounding or grouping errors).

Influence Curve and Breakdown Point

Since qualitative robustness gives no possibility to distinguish between more or
less robust estimators, Hampel (1968, 1971, 1974) introduced the influence curve and
the breakdown point.

Let 7 denote a vector valued mapping of a subset of p{Q) into the k-dimensional
Euclidean space R* and let F be in the domain of T. Let d, denote the degenerated
distribution having all its mass in y € Q. The influence curve of T for F is defined
pointwise by

1Cs y) = lim T(1 —O)F +15,] - TLF)_
-0 t

The influence curve describes the standardized influence of an infinitesimal term at
a certain position, on an estimator.
The breakdown point is essentially the largest fraction of contamination, which
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does not ruin an estimate (see Donoho and Huber, 1983, for a good and exact
definition).

There are also other tools to measure the robustness of estimators, e.g. the gross-
error sensitivity, the local shift sensitivity and the rejection point (compare Dutter,
1980). The infinitesimal approach to robustness is alteady documented in a book
(Hampel et al., 1986). :

1. 2 CONCEPTS OF ROBUSTNESS FOR TIME SERIES

Efficiency Robustness and Min-Max Robustness

For time series parameter estimation problems, efficiency robustness and min-max
robustness are directly applicable concepts, because these concepts do not require
independent (possibly vector valued) data. Efficiency robustness for vector parameters
can be defined similarly to that of scalar parameters by using an appropriate defini-
tion of multivariate efficiency. Zeh (1979) investigated efficiency robustness of
estimators of time series models using different measures for multivariate efficiency.

Influence Curve and Breakdown Point

Kuensch (1983b) and Martin and Yohai (1984b) give definitions for influence
curves of parameter estimators in time series models. The definition of breakdown
points for time series parameter estimators must pay attention to the detailed nature
of the failure mechanism. For instance i.i.d. gross errors on the one hand, and
highly correlated or patchy gross errors on the other, may yield different breakdown
points. Martin and Yohai (1984a) comment on breakdown points for time series
parameter estimators.

Qualitative Robustness

The problem which remains is providing an appropriate definition of qualitative
robustness in the time series context. One possibility, but with not entirely satis-
factory theory, is to use an asymptotic version of qualitative robustness (Martin,
1979), requiring continuity but not equicontinuity and replacing estimator sample
distributions with asymptotic distributions. Thus an estimator T is asymptotically
qualitatively robust at F e p(Q), if, given & > 0, there exists 6 > 0, such that for all-
GepQ)

n/F, G) < 6= n(&T|F),LT|G) <e
where 2T | F) denotes the asymptotic distribution (the “law™) of T for distribution F.

In order to, at least partially, cover non-i.i.d. observations, Hampel (1971) intro-

duced the concept of qualitative m-robustness which is thought for observations
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which are dependent in a certain weak sense. In contrast to the definition of qualitative
robustness, which is based on marginal distributions F and G, the definition of
qualitative n-robustness is based on multivariate probability measures.

Using the qualitative n-robustness as a starting point, Papantoni-Kazakos and
Gray (1979) define qualitative robustness of estimators on stationary observations.
The authors substitute the generalized Ornstein metric for the Prohorov metric
to measure the distance of sample distributions of stationary processes. Cox (1981)
thinks that the generalized Ornstein metric is not superior to the Prohorov metric
and presents other metrics on distributions of stochastic processes in order to define
qualitative robustness for dependent data. Infinitesimal robustness for autoregressive
processes was considered by Kuensch (1983a). Bustos (1981) also did some work
on qualitative robustness for general processes.

Resistance

Boente, Fraiman and Yohai (1982) propose a new approach to qualitative robust-
ness, based on the concept of resistance (compare Mosteller and Tukey (1977)). This
approach has the advantage that it may be applied without special assumptions
on the probability model for the observations, e.g. they may be dependent or non-
identically distributed. The concept of resistance can be formalized as follows:

Given X" = (x4, ..., x,) and ¥ = (y,, ..., »,) in @', define a distance d,” on Q"

dF(x", y") := inf {& | number of {i | d(x,, y;) Z &} < ne}.

Therefore two points of " have a distance smaller or equal than ¢, if for one point
a fraction not greater than & of observations are replaced by arbitrary outliers, or
il all the observations of one point are perturbed by round-off errors smaller than ¢.

A change of T,, which is caused by a change — characterized by 6 > 0 — of
x" e Q" is defined by

AT(x,8) = sup {|Ty") — Tee)| [ 45 (" %) < 6, d; (#, %) = 5}

The following definition formalizes the data oriented concept of resistance. Let
X = (Xg, .., X, ...) € Q% and X" = (x4, ..., x,). Then {T,},,, is resistant at x if,
given ¢ > 0, there exists 6 > 0 and n, such that

AT (x",8) <& forall n=n,.

The following definitions of strong and weak robustness represent alternatives
to Hampel’s definition of qualitative robustness. Let F* € p/Q%). {T,}, 5, is strongly
robust at F* il

F*([{T,} 4z, is resistant at x|) = 1.
{T,}\5, is weakly robust at F® if, given ¢ > 0, there exist &

F([AT/x" &) <62 1 —¢ for all n

0 and n, such that

VAR
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Although the latter definitions of qualitative robustness are very useful and trans-
parent, it is not trivial to prove qualitative robustness of implicitly defined estimators
(e.g. M-estimators).

1. 3 AUTOREGRESSIVE INTEGRATED MOVING AVERAGE MODELS

A widely used method to describe the mechanism that generates and explains
a univariate time series or process

(L.1) Visoer Va

is the estimation of an autoregressive integrated moving average model of orders
p, d and q (ARIMA (p, d, q) model) (sce Box and Jenkins (1976))

(12 ®(B) (i = p) = 0B) a;

where 0/B) and &{B) denote the moving average operator and the nonstationary
autoregressive operator, respectively, i.e.

0B)=1—0,B— ... — 0B
and
®(B) = ¢(B) (1 — By’
where ¢(B) denotes the autoregressive operator
#(B)=1— ¢B~ ...~ $,B

with the backward shift operator B (By; = y,_,), autoregressive parameters ¢, ...
... ¢, and moving average parameters 8,, ..., 0,. If d = 0, then it is reasonable to
use a location parameter p + 0. The a;’s are realization of i.i.d. random variables
A; with a symmetric distribution G with mean zero and scale . The density of G
will be denoted by g. The A;’s are called innovations.

For all subsequent considerations the stationarity of the autoregressive operator
and invertibility of the moving average operator is supposed. Therefore the roots
of each of the characteristic equations

¢B)=1—-¢,B—..—¢,B =0
and
6B)=1—-6B—..-0,B" =0,
B now denoting a variable, must lie outside the complex unit circle.
Box and Jenkins (1976) propose to estimate d by “differencing” the given time

series (I.l), i.e. by regarding the differences of subsequent observations as a new
time series, until the autocorrelation function of the new time series decays quickly.
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If a value for d is determined there only remains the problem of estimating an
autoregressive moving average model of orders p and q (ARMA (p, q) modcl)

(1.3) ¢(B) w; = 6(B) a;
where w; = (I — B)? p, denotes an observation of the d-times “differenced” time
series (I.1).

In the following we will assume d = 0 and w; = y, and concentrate on the estima-
tion of ARMA (p, g) models.

Special cases of an ARIMA (p, d, g) model (L2) are the moving average model
of order g (MA (q) model)

(L.4) yi — u=0(B)a,

and the autoregressive model of order p (AR (p) model)

(1.5) &(B) (v — 1) = a;.
After defining the intercept

(L6) Aim = $6)

the AR (p) model (1.5) can be written as a linear regression model with parameter
vector

(L7 Bi=(4 ¢r o b))
1.4 TIME SERIES OUTLIER MODELS

We assume that realizations x; of random variables X satisfy the ARIMA (p, d, q)
model (1.2) to be estimated. The time series (1.1) is called to be outlier-free, if y; =
=X, i = 1,...,n, and G, the distribution of the innovations, is Gaussian.

When considering the problem of estimating time series parameters robustly,
there is a need of characterizing time series contaminated by outliers in appropriate
probabilistic models. Since complete probabilistic models are difficult to formulate
(Marlin, 1979), it seems imperative to begin with specifying simple outlier generating
models, which are able to represent real data with outliers. In practice, outliers
behave often as follows (Martin, 1979, 1980):

For a possible outlier behavior, the character of the outliers is consistent with
the remainder of the sample path except for an initial jump. A second possibility
is that of isolated or gross-error outliers which might be due to various reasons
like recording errors. A third possibility is that of patchy type outliers whose be-
havior appears somewhat or totally unrelated to the behavior of the remainder
of the sample. This type might be due to a brief malfunctioning of a recording
instrument.

Now we want to capture some of the essence of the above kinds of behavior with
appropriate formal models.
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The first kind of behavior might be obtained by an innovation outlier (10) model,
which is given if the y;'s are equal to the x;’s and if the innovations distribution G
is symmetric and heavy-tailed. Outliers generated by an IO model are called innova-
tion outliers (10's). G could be a t-distribution or a contaminated normal

(1.8) CN(v, 64, 05) = (1 = V) N(0, 67) + vN(0, 63)

where N(0, 6?) denotes the normal distribution with mean 0 and variance 62 and
o3 > o; and v is small.

For the second and third kind of behavior the following additive outlier (A0)
model may be the simplest appropriate representation. Additive outliers (AO’s)
(which are generated by AO models) are given if

(19) . V=X, +V

where the innovations A; are normally distributed and the V’s are random variables,
distributed independently of X; and whose marginal distribution satisfies P(V; = 0)
= 1 — y with y not too large. For time series occurring in practice y is in the range
from .01 to .25.

Independently and identically distributed V;’s model the gross-error situation.
The distribution of the ¥;’s could be a Gaussian mixture distribution
(1.10) CND(y, 03) = (1 — v) 6, + 7N(0, 63)
where 8, denotes the degenerated distribution having all its mass in the origin.

Patchy type additive outliers can be obtained if the independence assumption
for the Vs is dropped.

These types of outliers were first mentioned by Fox (1972). He considers two
types of outliers: those which affect only the observation on which they occur (Type I
outliers) and those which affect successive observations as well (Type II outliers).

Gastwirth and Rubin (1975) study the behavior of some robust estimators of
location for a first-order autoregressive process with a double exponential marginal
distribution. This process is a special version of an IO model.

Also Abraham and Box (1979) use both AO and IO models to consider inferences
about the parameters of a possibly contaminated autoregressive process. However,
they call their outlier generating models “aberrant observation model” and “aberrant
innovation model”, respectively.

Some outlier-handling techniques require the specification of the data points which
have to be treated as outliers, e.g. Brubacher (1974), Jones (1980). Since it is not
likely to have this specification (see however Chernick, Downing and Pike, 1982)
those techniques will not be discussed in this series of contributions.
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L5 LEAST SQUARES ESTIMATION OF AR MODELS

If p = 0 the AR (p) model (1.5) can be written in the lincar model form
y=2Z¢ +a

where y = (yp+1s s .Vn)T7 ¢ = (‘/’13 s ¢p)Ts a= (ap+17 oo an)T and Z = [z,wh
. 2,7 with z; = (yi-1, ..., ¥i—,)". The least squares estimator ¢* is defined by
the solution of

(L11) > (vi—2z¢') =min.
i=p+1
Mann and Wald (1943) show that even without a Gaussian G, if the fourth moments
of A, exist and are finite and y; = x;,i = 1,..., n, then \/(n) (¢ " — ¢) has a limiting

normal distribution and ¢*(Z"Z)™! is the asymptotically correct expression for the
covariance matrix of ¢”. Therefore we can treat the problem of estimating auto-
regressive parameters like the classical regression problem.

Consistency and Robustness Properties for IO Models

It is well known (Martin, 1982) that the least squares estimator T = (, $"T)
(1.7) — which can be defined similarly to ¢* — is asymptotically normal and asymp-
totically efficient when the innovation distribution G is Gaussian. The same is true

for both the innovation scale estimator &, obtained from the sum of squared
residuals, and the “autoregressive-errors” location estimator

(112) f= -3 6).

In classical theory (Anderson, 1971) it is proved that ¢* is consistent if the variance
of the innovation is finite.

But some data may be better represented by AR models with innovations which
have infinite variances. This has raised the question of whether the classical estimators
are still reliable when innovation variances do not exist. A partial answer was obtained
by Kanter and Steiger (1974). They show that ¢ is consistent if G is a symmetric
stable law of index & € (0, 2], which is defined by

j exp (itx) dG{x) = exp (—c||*)

forsome ¢ > 0.
Yohai and Maronna (1977) have shown, more generally, that a sufficient condition
for consistency of ¢ is
E{[log|a|]*} < 0,
where [x]* denotes the positive part of x. This condition cannot be weakened
since it is necessary for the existence of the stationary autoregressive process.
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Hannan and Kanter (1977) have shown that if G belongs to the domain of attrac-
tion of a stable law of index « (0, 2), then ¢* converges in probability to the true
with rate T/, and therefore faster than T"/? as in the finite variance case.

The results from Kanter and Steiger (1974), Yohai and Maronna (1977) and
Hannan and Kanter (1977), however, are based on the assumption that the location
parameter yu is known.

¢" is asymptotically qualitatively robust in the sense, that its asymptotic covariance
matrix ¥,. (the covariance matrix of the limiting distribution of \/(n)(¢" — ¢))
is independent of the innovation distribution, at least provided that the innovations
have finite variance. This fact is somewhat obscured by the common practice of
writing

Vyr = 6*C™!

where the elements of C are given by ¢;; = covariance (Y,-, Y;),1 £1i,j £ p. However,
C = ¢2C where C is the covariance matrix for innovations with unit variance. Thus
Vg » is better written as

(113) Vo =C7!

where C depends only upon ¢. This behavior was pointed out first by Whittle (1952).
In fact, the distribution-free property exhibited in (1.13) is an asymptotic analogue
of Hampel’s (1971) qualitative robustness concept, provided that only innovation
outliers are possible and the innovation variance is finite (Martin, ]98I).

In sharp contrast to ¢”, the least squares estimators of the location p and the
innovations scale ¢ are not robust in the above sense.

On the other hand ¢” is not efficiency robust toward heavy-tailed innovation
distributions, i.e. arbitrarily small departures of G from normality may cause arbitra-
rily large asymptotic variances of ¢* (Maronna, Bustos and Yohai, 1979). This can
be seen easily by computing asymptotic efficiencies. Straightforward calculation
(Martin, 1981) shows that the large sample information matrix for ¢* is

Iy =0a?i(g) C

where i(g) = E{0 log g(a, )jop}? is the Fisher information (for location) for an
innovation density g with finite variance. The Cramer-Rao lower bound V, o
for the variance of ¢* is the inverse information matrix.

Taking the pth root of the ratio of determinants as a multivariate measure of
efficiency (compare Anderson, 1971) gives '

) det ¥, e o
(L14) EFF(LS, g) = (ﬁﬂ) = (?i(g) " .
(v L

But this is just the p-th power of the asymptotic efficiency of the sample mean for
i.i.d. random variables, and the latter is notoriously lacking in efficiency robustuness
toward heavy-tailed G’s. Computing the efficiency of 2 yields also the right hand side
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expression in (I.14). The efficiency of ¢ is the same as that of the sample standard
deviation calculated for ii.d. data. The latter estimator has even less efficiency
robustness than the sample mean (Tukey and Harris, 1949, Tukey, 1960). Considera-
tion of the Cramer-Rao lower bound

1-¢2 1
V, op = —
¢1,CR o2 i(g)

for the first-order AR parameter, where 1 — ¢? is the asymptotic variance of ¢,
(Martin and Jong, 1976), makes it transparent how heavy-tailed distributions dimi-
nish the Cramer-Rao bound and therefore also the efficiency EFF(LS, g) (L.14);
for ¢* can become arbitrarily large in arbitrarily small neighborhoods of the Gaussian
distribution while i(g) remains relatively stable.

Consi y and Robust Properties for AO Models

If a time series contains additive outliers, ¢ not only lacks efficiency robustness
but also suffers from serious bias problems. Martin and Jong (1976) and Denby
and Martin (1979) show that the vatiance of ¢, can be very large. Bias problems
for the first-order AR parameter will be explained in the following. The bias for
ﬁfsl is

B(d;) = ~1oyf(ox + o7)
assuming finite variance o3 and oy for X; and i.i.d. V,, respectively (L.9). This bias
vanishes only if ¢, = 0 or if ai,/a'f, — o0, what corresponds to an innovation outlier
model. B(¢,) can be disastrous for rather mild contaminations through V;’s. For
example if V; is CND (.1, 10) distributed (I.10) and 0% = 1, then B($,) = —¢,/2,
i.e. the bias is 50%. .

Certain additive outliers can produce the effect that some of the roots of the
characteristic equation </>(B) = 0 lie on the unit circle, therefore ¢* has a breakdown
point of value zero (Martin, 1980).

1.6 LEAST SQUARES ESTIMATION OF ARMA MODELS

In contrast to AR models, the estimation of MA and ARMA models is always
a nonlinear problem. Box and Jenkins (1976) treat the estimation of ARMA models
for outlier-free time series. Their methods unfortunately give no reliable results
if the given time series contains outliers. (Compare Martin and Jong (1976) and
Denby and Martin (1979) for the first-order autoregressive parameter.) The authors
present a conditional maximum likelihood estimator of (¢”, 8", o), where the not
observed values y,_,,...,y, and a,_,, ..., ao must be chosen in advance. For
a fixed scale ¢ this estimator js equivalent to a least squares estimator with the same
conditions. A conditional least squares estimator of a := (97, 87, 1) is, however,
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more conveniently computed by solving
n
(L.15) S ri(@) = min
i=p+1

where the minimum in @’ has to be achieved and what avoids the problem of fore-
casting or, more simply, choosing observations that were not observed. The residuals
(L16) re) = 0Y(B) ¢'(B) (v, — )
where an AR or MA operator marked by a prime use arbitrary AR parameters
@' or MA parameters ', respectively, can be computed recursively by the following
algorithm:
(1) Assumey; = pand r(a’) =0,/ £ 0.
(2) Seti=1. .
(3) Compute ri(a,) = —u)— ¢\ — )= ... = ¢;(yi—~p - lly)

+ 0o g() + o O (o).
(4) Augment i =i + 1.
(5) If i < n go to (3), else stop.

Box and Jenkins (1976) also propose an unconditional maximum likelihood
estimator of (¢", 87, o), where the so-called technique of back forecasting is used
to estimate values y;, i < 0, that were not observed. If n, the number of observations,
is not too small, the unconditional maximum likelihood estimator is well approxi-
mated by an unconditional least squares estimator. Since maximum likelihood
estimators take into account the dependence of the observations of a time series,
usage of least squares estimators is justified.

If the given time series is outlier-free, then the least squares estimator a” is asymp-
totically efficient (Martin and Yohai, 1984a) and, if the variance of G is finite, than

J) (@~ 2) £ N(0.K(. 0. G)

where - denotes convergence in distribution and the (p + ¢ + 1) x (p + g + 1)
covariance matrix Vs = K(¢, 0, G) of the limiting normal distribution is given by

C* (¢, 0) 0
(1.17) K(¢= o, G) = 0T VAR(G) (1-6, - e 6,,):
(1=6, == 9,
where the matrix C* (¢, 8) is symmetric and has the clements
Clh =125151+k—j, if jsksp
=0
(I.IS) C}k,,ﬂ.k = ,Zoclél-l-k<j5 if j£p, k2q, j£k
Cf,p+k =Zél§l+j~ka if j€p, k2q, k£j
i=o
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Covjpte = ZEI%!M—,’, if jsk=gq,
i=o

where &, and {, denote coefficients in the inverse AR operator and MA operator,
respectively

(1.19) ¢~} B)Y &B' and 07Y(B) =Y (B
1=0 1=0

Notice that the upper left-hand block of (L.17) gives the asymptotic covariance
matrix of (7, 0"T). Thus, if VAR(G) < w0, (¢*", 87,) is asymptotically qualita-
tively robust. On the other hand the asymptotic distribution of i depends on G.

The asymptotic efficiency of " can be measured by the ratio of the trace of the
asymptotic covariance matrix of the maximum likelihood estimator of the trace
of V5. A maximum likelihood (ML) estimator can asymptotically be obtained by
solving

n

(1.20) — ¥ Ing(r{e')) = min

i=p+1
and is asymptotically efficient even in the presence of innovation outliers (Martin
and Yohai, 1984a). The asymptotic covariance matrix ¥, of this estimator is given by

121 Vi = k{7, G)K(¢, 6, G)
where ¥ = —g'/g,
K(¥, G) = Vi ¥, G)/VAR(G) = [i(G) VAR(G)] ™

with Vj, (¥, G) = EgW*(A)/EG¥'(A) the asymptotic variance of the location ML
estimator (Huber, 1964), and i(G) is the Fisher information for G, and K(¢, 8, G)
is given by (L.17).

Using the above described measure of asymptotic efficiency shows that the effi-
ciency of the least squares estimator is just k(¥, G). It is well known (Huber, 1964).
that for any v-neighborhood of the N(0, %) distribution

G, := {G|(1 = v)N(0, %) + vF, v > 0}

with F symmetric, k('7, G) may be arbitrarily small. Thus " lacks efficiency robust-

ness in the presence of innovation outliers.
a” is neither efficiency robust nor unbiased, if the given date contain additive
outliers (Martin and Yohai, 1984a). Martin (1980b) gives more interesting facts

about the estimation of time series models.
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II. MAXIMUM LIKELIHOOD TYPE ESTIMATION

Using Chapter I as a starting point this article will continue in treating the estima-
tion of autoregressive moving-average (ARMA) models.

Definitions, computational methods and properties of maximum likelihood type
estimators (M-estimators) for pure autoregressive models as well as for ARMA
models will be dealt with. In contrast to Jeast squares estimators, M-estimators are,
in particular, efficiency robust if the given time series is contaminated by innovation
outliers.

Two estimation methods which can be used advantageously for time series includ-
ing additive outliers, will be outlined.

1I.1 MAXIMUM LIKELIHOOD TYPE ESTIMATION OF AR MODELS

We now concentrate on estimating an autoregressive model of order p (AR(p)
model) (L.5). The appropriate representation of the AR(p) model for the following
considerations is the linear regression model

(1) y=2Zf+a

with parameter vector B = (4, ¢y, ..., ¢,)" (compare (L6) and (L.7)) and where

Y = (¥p+15--» ¥a)' denotes a vector of observations, a = (a,1, ..., a,)" denotes

a vector of realizations of innovations and Z = (z,,, ..., 2,)" with z; = (L, ¥iege oo
T

ceo Viep) -

Section 1.5 dealt with the least squares estimation of g and the innovation scale o.
In particular, the least squares estimator of ¢ is consistent and asymptotically
qualitatively robust, even it the innovations distribution is heavy tailed. However,
we could miss efficiency robustness of the least squares estimator of § in the presence
of innovation outliers. Therefore we could be interested in a possibility to obtain
an efficiency robust estimator of f if the given time series is contaminated by innova-
tion outliers. .

The attractive small sample robustness as well as asymptotic efficiency robustness
properties of maximum likelihood type estimators (M-estimators) for regression
proposed by Huber (1973), naturally suggest that for robust autoregression, one uses
the analogue of the regression M-estimators (Martin and Jong, 1976). Thus a first
step toward robustness is given which unfortunately still has deficiencies in the additi-
ve outliers case.



I1.1.1. Definition

An M-estimator B* is defined by

n T’
(112) T o (L':j ’l) = min
i=p+1 &

where ¢(+) is a symmetric robustifying loss function (Relles, 1968), and & denotes
an estimate of the innovations scale. & is used to ensure the scale-invariance of the
minimum problem. The maximum likelihood estimator of f can be obtained by
using o(+) = —log g(+), where g(+) denotes the density of the innovations. The
o-functions are often given in the form of their first derivatives (1) = do(r)/d!.
Various -functions are listed in Dutter (1980). Examples are

Huber’s monotone psi-function (Huber, 1964)

t N
/ =
(1L3) Yul®) {c sqn{f) | > ¢
where sgn () = 1 fort > O andsgn (1) = —1fort <0,
Tukey’s redescending bisquare psi-function (Beaton and Tukey, 1974)
2 Jil = (e s e
(114) vlt) = {0 >,
and

Hampel's three part redescending psi-function (Hampel, 1968)

t !r] <a

_ Jasgn(1) a<l]<b

(1Ls) Vual) = alt —dsqn()]f(b —d) b<|t|=d
0 d < i

The purpose of a g-function and, equivalently, of a -function, is to bound the
influence of a large residual y, — zI B’ on the estimation. According to its purpose,
a W-function should be odd, bounded and continuous. If innovation outliers are
possible, the identity function () = t isa bad choice for ¥, because in this case (11.2)
defines a least squares estimator.

The scale o could be estimated from the observations yy, ..., ¥;, ..., ¥, Huber
(1973) proposed to estimate ¢ and B simultaneously through solving (11.2) and the
side condition

(IL6) SR S S (L:;_Y) —

n—2p—1i=p+1

if a monotone psi-function — like ¥, — is used. The constant b is selected so that
& is asymptotically consistent for ¢ if the y/'s are free of outliers and the innovations
distribution is Gaussian with mean zero and standard deviation o, i.e. b = Ey 1,
{¥(4)} where A is a random variable with distribution N(0, 1).



II. 1.2. Computational Methods

The minimum problem (I1.2) and the side condition (I1.6) can be combined to the
more general minimum problem

- T N
(11.7) WHp,e')= 3 o (Xi—:r?z‘i> ¢’ + ¢’ = min
i=p+1 o
where the minimum in both g’ and ¢’ has to be achieved and ¢ = {(n — 2p — 1) b2
(see Dutter, 1975).
Differentiating h(f’, o’) with respect to ¢’ and B’ and equating the resulting ex-
pressions to zero yield

n AN, 9N
(TL8) . Sy (LJ) =c
i=p+1 o :
with x(f) = ¢ y(f) — e(t) and a system of equations defining $* for a known o,
" _ Tpa
(1L.9) | > v (K Y=o,
i=p+1 &

Note that (H.9) can be written as follows.

(11.10) 0=3 ¥ (i;) = S w(ri/f) z

i=p+1

where r; denotes the residual r; = y; — z} .

This shows that M-estimators can be regarded as weighted least squares estimators
with weights w; = ¥(r,/6)/(r;/¢). Unfortunately the weights w; depend on the residuals
and therefore on B*, hence (11.10) is only an implicit equation. The following iterated
weighted least squares (IWLS) algorithm, however, could be used to estimate B
and ¢ simultaneously. A convergence proof for the estimation of linear models is
given by Dutter (1975). Of course, the so-called H-algorithm (Dutter, 1980; Dutter
and Huber, 1981) could also be used to compute M-estimators of § and .

IWLS algorithm

Let starting values $® and ¢, and a tolerance value ¢ be given.
1. Set the iteration counter m = 0.
2. Denote #™ =y, — zip™, i=p+ 1,..,n
3. Compute a new value for o using (I1.8)

LYy () ()2

SN2 _ -
( ) ci=pr1 \o™

4. Calculate weights

W(.m) _ (//(rgm)/a_(m{vl))/(r(im)/o,(m-(- l)) lf r(‘_m) :#: 0
: 1 otherwise
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where i = p + 1, ..., n. Define a diagonal matrix W with w; as its (i — p)th
diagonal element.

S. Solve
S (4 — ) W = i
i=p+1
for 7™, which could be computed by
7 = (ZTw(M)Z)*l ZTW("‘)y — l;(m)
where Z and y are defined by (IL1).
6. Compute new values for f by
BED = By gy
where 0 < @ < 2 is an arbitrary relaxation factor.
7. Stop, if
o™ — g+ D] < ggtntn)
and if the difference between the parameters is less than ¢ times their approximate
standard deviation, i.e.

|ot™] < ga™ ¥V /2 k=1,..,p
where z** is the kth diagonal element in (Z7Z)"".

8. Augment m = m + 1 and go to 2.

The IWLS algorithm described above can only be used for a monotone . But
using redescending psi-functions, e.g. Tukey’s ¥, (IL4), yields higher efficiencies
at extremely heavy tailed distributions than the monotone psi-functions, e.g. Huber’s
Yy (IL3) (Andrews et al., 1972; Denby and Larsen, 1977). For a redescending ¥
the IWLS algorithm must be modified as follows: An estimated value for the scale
must be given and Step 3 must be omitted.

It must be considered that for a redescending ¥ the estimating equation (I1.9)
could have multiple roots. Therefore the following overall computational strategy
is advisable when using a redescending y:

Step 1: Set y(¢) = ¢ to obtain least squares estimates § and ¢ from the IWLS algo-
rithm.

Step 2: Use the least squares estimates as starting values for an IWLS algorithm
with a monotone and bounded /. Typically 3 or 4 iterations will be sufficient.

Step 3: Use the results of Step 2 as starting values for an IWLS algorithm based on
redescending ¥, which does not iterate o.

The motivation for the above strategy is rather obvious. It is hoped that the
estimates based on a momnotone y are close to the “appropriate” solution of the
estimating equation (I1.9) based on a non-monotone .
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11.1.3 PROPERTIES

Consistency and Robustness Properties for 10 Models

Under regularity conditions consistency and asymptotic normality of p* are
obtained for time series containing innovation outliers with finite innovations
variance (Martin, 1978a).

The asymptotic covariance matrix of §* is found to be (Martin, 1979)

(1L.11) Vo = Vi, g) D71

where V,,(¥, g) = E¥*(A)[EZW'(A4) is the asymptotic variance of a location M-
estimator at innovation density g (G denotes the innovations distribution) (Huber,
1964) and -

(IL12) D= E@d) = [}_,_iﬁf,]

with 1a(p x 1) vector of 1’sand C the (p x p) moment matrix with elements C;; =
= covariance (Y;, ¥;),1 £ 1,7 £ p.

An inversion formula for partitioned matrices yields

21T —1 i Te—1
(1113) | e
-uc'y } o Cct

The 1-1 element of (I1.13) is the variance of the intercept 4. The lower-right (p x p)
part of (IL 13), V,,(¥, g) C™*, is V., the covariance matrix of ¢". The covariance
matrix of the least squares estimator ¢* is contained as a special case in (I1.13),
because V. (i, g) = o> for (1) = 1.

Taking — analogously to (1.14) — the pth root of the ratio of the determinants
of the Cramer-Rao lower bound Vj cr and of the asymptotic covariance matrix
V4. as a multivariate measure of efficiency gives

det ¥, cx\''? =
(11.14) EFF(M, g) = (—“’) = (Vo> 9) ilg) ™

det Vs
where i(g) denotes the Fisher information (compare (I.14)). But this is just the pth
power of the asymptotic efficiency of a location M-estimator based on ¥, at an error
density g. Therefore, an M-estimator of ¢ has thc same attractive asymptotic
efficiency robustness as a corresponding location M-estimator for i.i.d. data. Martin
(1982) treats efficiency robustness of ¢* in more details. .

An M-estimator of ¢ can have far greater precision (i.c. smaller variance) than

a least squares estimator, because in (IL13) C = ¢>C where C depends only on ¢
(compare Section 1.5) and because with a good choice of ¥ the value of Vi,,(¥, 9)
is relatively stable ‘while o2 takes on atbitrarily large values for arbitrarily small
heavy tailed deviations of g from normality. The M-estimation of an AR(1) model
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provides a particularly transparent special case because
1 —

(1L.15) Vi, = af’f Vil 9)

1

(Denby and Martin, 1979).

If the y-function which is used in (IL9) is bounded, then for cach fixed j the
function f(z, y) = y((y — z'B)/6) z is bounded in the scalar y. but unbounded
in z. Correspondingly it turns out that the influence curve for f* is bounded in y
and unbounded in z. This feature would be appropriate if one could be sure that the z
portion of the model (HAI) is correctly specified. The z portion is correctly specified
for outlier-free time series and for time series with innovation outliers.

An M-estimator of ¢ is — in contrast to a least squares estimator ¢" — not
asymptotically qualitatively robust if innovation outliers are possible because the
asymptotic covariance of ¢ depends on the innovations distribution G. However,
this is hardly a serious deficiency because an M-estimate has greater precision than
a least squares estimate.

Consistency and Robustness Properties for AO Models

In the presence of additive outliers M-estimators can have an inflated variance
and finite sample biases and asymptotic biases which can be as catastrophic as those
of least squares estimators (Denby and Martin, 1979; Martin and Jong, 1976).

In the presence of additive outliers an M-estimator of ¢ is no longer efficiency
robust (Martin, 1979) and has a breakdown point of value zero. The latter fact is
not surprising since — in terms of regression analysis — additive outliers produce
an errors-in-both-variables problem, and M-estimators do nothing to cope with
errors in the “independent” variables (Martin, 1980).

For time series observed with additive outliers there is a z misspecification in the
linear model (II.1). When such deviations from the ideal model are possible the
influence curve is unbounded. Compare also Dutter (1980) for details of the influence
curve for linear regression.

Summarizing we can say that an M-estimation of AR parameters is advisable
if the given series is outlier-free or contain innovation outliers, because in these
situations clean asymptotics and efficiency robustness can be achieved. For time
series contaminated by additive outliers, however, M-estimation is almost worthless
and therefore other methods of estimation are needed.
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I.2 ROBUST ESTIMATION OF THE LOCATION OF ARMA MODELS
IL.2.1. Autoregressive-Errors M-estimator for AR Models

Since the location g is related to the intercept A by (1.6}, it is appropriate to call

(L16) =) —gﬁi)

an autoregressive-errors M-estimator of y, if p~ = (Z,(ﬁl, vty (ﬁp)T is an M-estimator
of . It can be shown (Martin, 1978b) that £ is a consistent and robust M-estimator
for innovation outlier situations if f* is a suitably chosen M-estimator.

Let a* denote an estimator of o = (o, oy, ..o; Upyy)T = (1, Py, ..oy )" Let
B = h(x) denote the transformation from « to f and let H denote the matrix of partial
derivatives of h(x) with respect to a, i.e. h;; =(/der,) hfx).

If p* is consistent and asymptotically normal with covariance matrix V., then a*
is also consistent and asymptotically normal with covariance matrix
(11.17) Var = H™ 'V (H)™L.
For the following consideration a finite innovations variance is assumed. The asymp-
totic covariance matrix of an M-estimator B* is given by (II.11) and therefore,
the asymptotic covariance matrix of the corresponding &* = h™'(8") is

4 [
(1= )2 o

(L1 Vi = (DH) ! Vi ) = | me S Vil 0)
where V,,(, g) is defined as in (1IL.11) and C is defined as in (IL.12).

Martin (1981, 1982) shows that the efficiency of the autoregressive-error M-estima-
tor fiis
(1.19) EFF(i0, 9) = [i(9) Vot 9)] -
Expression (1L 19) is equal to the efficiency of an ordinary location M-estimator
for i.i.d. errors. The upper-left element of V¥, (IX. 18) differs from the usual location
M-estimator asymptotic variance V,(i, g) for i.i.d. errors only by the scale factor

P
(1 — X @)% 1t follows that Huber’s (1964) min-max robustness results hold for
i=1

autoregressive-errors M-estimators of location over families of distributions with
finite variances, .
The autoregressive errors M-estimator fi (IL.16) is almost worthless if a time
series contains additive outliers, because the same is true for the M-estimator ¢*.
One might use some other procedure, such as the generalized M-estimation (which
will be described in Chapter III), to obtain robust estimators A and ¢*. A difficulty
with the latter approach is that although the estimator of x will be robust, it will not
necessarily be consistent unless £ and ¢* are consistent as well as robust. (Gencrali—
zed M-estimators are robust but not consistent for additive outlier models.) However,
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it is possible to construct a robust and consistent estimator of y from robust but not
necessarily consistent estimator 1 and ¢ (Martin, 1979b).

Lee and Martin (1984) give more information about the computation and the
properties of location M-estimators for ARMA models.

11.2.2. Robustly Centered Data

It is also possible to estimate autoregressive and moving-average parameters for
observations that were robustly centered by an ordinary location M-estimator as
defined by Huber (1964). This is analogous to the usual approach for estimating
ARMA parameters by least squares where the sample mean is used to center the data.
One might hope that the M-estimator f is efficiency robust for the outlier models
considered here, because the sample mean is asymptotically efficient for a wide
class of correlated Gaussian processes (Grenander and Rosenblait, 1957). While
some caution is appropriate until the robustness properties of the M-estimator fi
are better understood (sec, for example, Wegman and Carroll, 1977), Monte Carlo
experience (Zeh, 1979) indicates that use of /i will not impair the robustness properties
of the ensuing estimator of ¢.

11.2.3. Prewhitening-Based M-Estimation of the Location

For the following considerations we assume that observations y; are generated
by random variables Y; = X; + V; (compare (1.9)), where the random variables
X, + V, are identically and symmetrically distributed but are not necessarily inde-
pendent.

For simplicity we assume that X; + V; is an outlier-free or contaminated AR(I)
process, i.e. X; is an AR(1) process and V; # 0 for an additive outlier process.
(Generalizations to higher-order autoregressions are straightforward.) A robust
estimator ¢, of the first-order autoregressive parameter can be used to prewhiten
the observations robustly

(11.20) U=y — Gy, 250S 0, up=y,.

The u;’s can be used to compute an ordinary location M-estimate 4 by solving
(compare Martin, 1981b)

(11.21) i:*iuz +y [m ;lf} —o.
i g

6(1 — ¢,) i=2
Then a prewhitening-based M-estimate /i, of the location can be computed
(11.22) iy = (1= §,).

If ¢, 2 ¢, |¢po| < 1, 6 £~ 0 and the distribution of (X, + V,) — ¢o(X, + V})
is symmetric (what is the case if the Vs are i.i.d. and have a symmetric distribution),
then f1, is, under reasonable conditions, a consistent and asymptotically normal
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estimator of u. Martin and Lee (1970) found high efficiencies of 4, relative to ordinary
M-estimators of .

It might be noted that when ¢, is an M-estimator or generalized M-estimator
and V; = O for all £, then the asymptotic variance of i, is

(1~ ¢:)7 Violih, 9)

which is exactly the same as the asymptotic variance obtained by estimating p with
an autoregressive-errors M-estimator (I1.18) for a time series which is possibly
contaminated by innovation outliers. The main advantage of prewhitening appears
in additive outlier situations. Both M-estimators and generalized M-estimators of 1
and ¢ are asymptotically biased toward additive outliers and these estimators use
no constraints that would insure consistency of an autoregressive-errors M-esti-
mator of u. However, the implied constraint of the prewhitening step in computing
11, forces consistency.

I3 MAXIMUM LIKELIHOOD TYPE ESTIMATION OF ARMA
MODELS

I1.3.1. Definition

Section I.6 illustrated the distribution-free asymptotic behavior, i.e. the asymptotic
qualitative robustness, of least squares estimators of autoregressive moving-average
parameters ¢ and @, but Section 1.6 also revealed the lack of efficiency robustness
of these estimators in the presence of innovation outliers.

The maximum likelihood estimator defined by (1.20) is asymptotically efficient,
but it can be computed only when it happens that the innovations density g is known.
Since g in general is not known, it is also possible to use the maximum likelihood
estimator in practice. However (1.20) suggests to define the following class of maxi-
mum likelihood type estimators (M-estimators) a* = ($*7, 0*7, 2)" by

(11.23) g, 8)= Y o |:r_,_ix)] = min
i (2

where r,(a’) denotes a residual (1.16). The o-function has the same purpose as that
that in (IL.2), namely to bound the influence of large residuals on the estimation and
therefore the g-functions used for an M-estimation of AR parameters can also be
used here. .

Similarly as in Section IL.1.1 « and ¢ may be found simultaneously through solving
(IL.23) and the side condition

(11.24) LIS <L(E‘_)>= b

n=2p-g— L\

if a( monotone psi-function — like ¥ (IL3) — is ysed. The constant b is the same as
in (TL.6). ’
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The minimum problem (I1.23) and the condition (I1.24) can be combined to the
more general minimum problem

(11.25) ha' oy = Y o(ﬁ(a—)) ¢’ + ¢’ = min.

i=ptit o’

where the minimum in both «’ and ¢’ has to be achieved and ¢ = (n — 2p — q — 1).
. bJ2.

If it} denotes dg{t)/dt, differentiating of (11.25) with respect to ¢ and setting
the resulting expression equal to zero yield the system of estimation equations

(11.26) ] (r—t‘—)> (2" =0

i=p+1

where ;" (a") denotes the vector of the first derivatives of the residual r{2")

(11.27) (@) = @la") . —orfa)on)"
with
(11.28) —or{eNou=(1~d, ... — (1 =0, — ... -8
and

d/ar) = (5,0 4(a), o sim {0ty @), o (et )T,
(11.29) sif(@h) = ~orfa")|od; = $7'(B) ri- ()
(11.30) ti_fa”) = —orf{a")fo0; = =07 (B) r,_j(a").

Similar to (I1.10) equation (11.26) can also be written as a weighted least squares
problem with weights w, = y(r{«")/6)/(r{«")/8); the least squares problem, however,
is nonlinear.

11.3.2. Computational Methods

Before an algorithm to compute M-estimates of a and o is described, algorithms
to compute the first derivatives of the residuals with respect to AR parameters (11.29)
and with respect to MA parameters (I1.30) are given.

Computation of the first derivatives of the residuals with respect to AR parameters
(1) Sets;/@’) =0for j=1-—p,2—p,...,0.
(2) Seti=1.
(3) Compute sfa’) = ¢} s;—4(&') + ... + ¢} 5;-,(«) + r{«).
(4) Augmenti =i -+ L.
(5) Ifi < n — 1 go to (3), else stop.
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Computation of the first derivatives of the residuals with respect to MA parameters

(1) Settfa)=0for j=p—29+1, p—2g+2,...,p—q.
(2) Seti=p—qg+ L
(3) Compute 1a') = 07 t;_4(e) + ... + 05 1;_fa’) — r(az)
(4) Augment i =i+ 1.
(5) Ifi £ n — 1 goto(3), else stop.
Residuals can be computed by the recursive algorithm given in Section 1.6.

The minimum problem (lI.25) can be solved iteratively by adapting the WS-
algorithm (W-Sophisticated) which was applied by Dutter and Huber (1981) for the
nonlinear robust regression problem. The WS-algorithm consists of the iterated
weighted least squares (IWLS- or W-) algorithm and uses the algorithm of Nagel
and Wollff (1974) to solve the nonlinear least squares problem. The algorithm of
Nagel and Wolff is based on a linear compromise between the Gauss-Newton
procedure and the method of steepest descent. The motivation for the step of the
WS-algorithm may be seen in Dutter and Huber (1981).

An Algorithm for the M-estimation of ARMA parameters

Let starting values «'® and ¢(®, a tolerance value ¢ > 0 and a constant ¢ as in
(11.25) be given.
L. Compute residuals *® = (r,, (), ..., r,{«@).
2. Set the iteration counter m = 0.

3. Find an improved scale

T [

¢ i=p+t o

where (1) = 1 x(t) — o(t). '
4. Calculate weights
. Wi = e (™) o™ DY (r ) g+ DY
if #fa®™) # 0, otherwise w{™ =1, i = p + 1, ..., n; define a diagonal matrix
W with w™ as its (i — p)th diagonal element.

5. Compute the first derivatives of the residuals with respect to the parameters ’
s,(a™) = —0r, 1 (@™)0d, ..., 5, (2™) = —or{a™)|0¢;
tpﬂ_q(oc(”") = =81y (@™)[06,, ..., 1, (a™) = —ar,(a™)/20,,
— orf@™)on = (1~ ¢ — ... = )1 — 6 — ...~ 6),
i=p+ Lo and for i = p + 1,..., n form the vectors

86 = (518, o 50 ), 1 (&), o1 ()T
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hl

7a.

7b.

Tc.

and
8 (a™) = (@T(z™), —or{a™)/ou)" .
Let D™ denote the matrix [d;, (), ..., d) @™)]" .

Solve

»
¥ {rfam) — g (@) 22 W™ = min .
i=pri

for the (approximate) direction ©™ of the Gauss-Newton method, i.e. solve

Homgm = ym

where H™ = DMTpmpm a4 M = DTt denotes the vector of

steepest descent and r® denotes (r,+ (& ..., 1,(a™))".

Calculate g, = g(a™, 6™* D), new values for ¢ by a” " = & 4 70", O+

and g, = g(a™*?, 6" * V). If q, < g, go to 8.

Compute
STy

v -
= )7}")1' Hmym?

which is an approximative value so that g takes its minimum in the direction of

voy™ + (1 —v)<™ with 0<v<1.
Perform the following steps.
(1) Set s = 0.
(2) Augment ¢ = ¢ + 1.
(3) Compute new values for « by
2"t = a4 wy™f5 + (1 ~ of5) ™
(4) Compute r™*? and g, = g(a™*", g™+ D),
(5) ¥ g24. < gy, 80 to 7b.
(6) If ¢« < 5 go to (2), else go to Tc.
Compute a linear back-interpolation between (¢ — 1)’/5 and ¢/5 by
w917 9o+ 1
5 g1+ — 92405 ’
Put g™ = g™ 4 y¥ay™ 4 (1 — v¥) (.
Compute residuals r'™* .
If g(a™*D, 6" *D) < g4, go to 8.
Otherwise put a®* " = a®™ + 1w0y™/5 + (1 - 45) 7™,
Compute residuals r™* " and go to 8.

v

Put v = ;2.

Compute o™+ = a™ + ou™ and residuals rtm+1)_[p g(a\m 1 glmt 1)) 29,

repeat step 7c.
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8. Stop, if
lo.(m+1) _ O.(m)l < gglmt D

and all the differences between the parameters are less than ¢ times their approxi-
mate standard deviation, i.e. if

Jogmt D — @] < ggtmt D Jd* forall k=1,..,p+q+1

where o, denotes the kth element of « and d** denotes the kth diagonal element
of [DMTpm]~1,
9. Augment m = m + 1 and go to 3.

The algorithm which is described above, can only be used with a monotone -
function. For a redescending ¥ an estimated value for the scale must be given
and the improvement of the scale (Step 3) must be omitted. An illustrative application
of this algorithm to compute M-estimates of ARMA parameters for simulated data
is given in Stockinger (1983).

11.3.3. Properties

Under general regulatity conditions it may be proved (Martin and Yohai, 1984a)

that for an M-estimator of «

(11.31) V() (@* ~ a) -4 N0, Ky, G)K(¢, 8, G))

where K(¢, 8, G) is given by (1.17) and the form of k{y, G) is the same as in (1.21),
except for ¥ being replaced by a general psi-function y. More details are given by Lee
and Martin (1982).

The ratio of the trace of ¥, (1.21) to the trace of the asymptotic covariance
matrix of a” gives [i(G) V,,{¥, G)]™* as a measure for multivariate efficiency which
is just the asymptotic efficiency expression for a location M-estimator and «” there-
fore has the same attractive asymptotic efficiency robustness properties as a location
M-estimator based on the same psi-function .

If the variance of G is large, then the variance of an M-estimator for (¢, 8")
for a good ¥, is smaller than the variance of a least squares estimator. In contrast,
it follows from (II.31), that the M-estimator for « is not asymptotically qualitatively
robust.

Additive outliers however, can cause not only inflated variability of M-estimators,
but also considerable bias, even asjmptotically.

11.4 METHODS USED IN THE ADDITIVE OUTLIERS CASE
As we have seen in Section I1.1.3 M-estimation is not satisfactory if a time series
might contain additive outliers. In this section two methods for dealing with i.i.d.

additive outliers will be outlined. (The next chapter will treat a more powerful method.)
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11.4.1. Pagano’s Method

In this section it is assumed that X, (1.9) is an outlier-free pth order autoregressive
process with location p = 0.

If the ¥;’s are independent and Gaussian with variance o, it is possible to construct
parameter estimators of ¢, ¢? and &% which are not only consistent but are also
asymptotically efficient. Pagano’s (1974) method of doing this is as follows:

Apply the X -whitening transformation to the observations y; which yields

;= y;~ P1yiog — ... — d’p)’iq; =
=(x; + 0} = $alxicy +viy) — o= Pxp, R0 ,) =
=X PiXiog — = PpXi, F U POy = P, =
=a+ v =Py — = P,

The last line reveals u; is produced by an MA(p) model. Then it follows that there
exists a white noise sequence of random variables 1; with an N(0, cr,f) distribution and

there exist constants 0, 0,, ..., 6, so that

=1~ 0y — .. — Ot -

Thus Y; is an ARMA(p, p) process with parameters ¢, ..., ¢, 0y, ..., 0,, o2

The parameters 0, ..., 6,, 07 could be determined by the covariances c{k) =
= EUU; ., k=0,1,..., p. Thus the process Y; is equivalently parameterized by
Diyens bpn C(O), e (:(p).

Although consistent and asymptotically efficient estimators of the above equivalent
parameter sets are available (Hannan, 1970, 1973; Parzen, 1971), they do not directly
provide efficient estimators of the original parameters ¢, ..., ¢,, 02, a3. Pagano
obtains efficient estimators of these parameters by a least squares regression of the
estimates ¢y, ..., §,, &(0), ..., &(p) on ¢y, ..., B,, 6%, 67, using the relations

p
C(k) = ‘7260,1( + ‘712/ Z ‘bjd’j-kk , k=0,1,...,p
j=o

where 6y, = 0for k + 0,5y, = 1and ¢; = Oforj=0orj > p.

11.4.2. A Robust Instrumental Variables Approach

We consider a special case of (1.9) in which X is a first-order autoregressive process
with location i = 0 and the V’s are i.i.d. For the linear model

(11.32) Vi=¢yi-g +u;
we have (bccausc yi=x; +v;and x; = ¢yx;_; + a,«)
U= — QVic1 =X+ 0 — §yYimy = PrXig t A+ 0~ Py =
=a; + v; — d)l(yi—l - xi—l) =a;+ v, — ¢y
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Thus the usual linear regression approach does not yield a consistent estimate of ¢,
because E(U; | ¥;_;) % 0. In fact, as mentioned in Section 1.5, the asymptotic bias
of the least squares estimator of ¢, is —¢,62/(c% + 07).

However, the least squares instrumental variable (IV) approach is appropriate
in this case (Walker, 1960, Martin, 1981b). Because E{U; | Y;_,) = 0, Y;_, serves
as an instrumental variable and

Z YVi-Vi-2
i=3

is a consistent estimator of ¢, if ¢, + 0. Notice the difference between ¢, and the
usual least squares estimator of ¢, which can be computed by

» n
(L yyi-DI(X yioy) -
i=2 i=2
The least squares instrumental variable estimator ¢, can be robustified easily.
An instrumental variable generalized M-estimate ¢y is obtained by solving

¢ (Yi-z W(Xi‘_l <}’i - y:—l‘ﬁw) —0.
igs ( by ) by v & )

The weight function W(r) should be chosen so that ¢ W(z) is bounded. 6y denotes
a robust scale estimate which might be computed directly from the data. The robust
scale estimate ¢ is computed from an auxiliary equation.

Under regularity conditions and if ¢, = 0 the estimator ¢y is consistent and
asymptotically normal, even in the presence of additive outliers.
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ITII. GENERALIZED MAXIMUM LIKELIHOOD TYPE
ESTIMATION

An appropriate generalization of the maximum likelihood type (M-) method yields
more satisfactory estimates of ARMA parameters in the case that the given time
series is contaminated by additive outliers. Definitions, computational methods and
properties of generalized maximum likelihood type estimators (GM-estimators) for
pure autoregressive models as well as for ARMA models will be dealt with. In
additive outlier situations GM-estimators have, in particular, the following properties.
GMe-estimators do not require i.i.d. outliers. GM-estimators have a positive break-
down point, a bounded influence curve, considerable robustness and much smaller
bias than M-cstimators and least squares estimators.

The properties of M-estimators and GM-estimators of AR parameters can be
used to create tests which are able to determine the type of outliers in a time series.

Robustified methods for the identification of AR models and ARIMA models
will be mentioned.

I11.I GENERALIZED MAXIMUM LIKELIHOOD TYPE ESTIMATION
OF AR MODELS

We now concentrate on estimating an autoregressive model of order p (AR(p)
model) (1.5). First we center the data robustly (compare Section 11.2.2) by using an
ordinary location maximum likelihood type (M-)estimator f, that is defined by

(1L.1) Yo (L‘_—#) = min.

=1 a,

where g(*) is a symmetric robustifying loss function and &, is an estimate of the scale
of the y;’s(Huber, 1964). Some explanations to g-functions and to their first derivatives,
denoted by , were already given in Section IL.1.1. If a robustly centered observation
is — for notational convenience — again denoted by y;, then the AR(p) model can
be written in the linear model form

(111.2) y=2Z¢ + a

where ¥y = (Vi1 V)5 &= (¢1, .., #,)", a=(apy,...,a,) and Z =
=[zpe1s o0 2]t With 2, = (yioq, oo yio )

M-estimation of AR models (compare Section IL1) is an attractive possibility to
obtain asymptotic efficiency robustness in situations where only innovation outliers
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are present. However, M-estimators have a breakdown point of value zero and large
biases in the case of additive outliers and lack qualitative robustness toward both
outlier situations. Since additive outliers occur probably much more frequently
than innovation outliers, other methods of estimation are strongly required. Two
methods for dealing with i.i.d. additive outliers were mentioned in Section I1.4.
Here we will be concerned with a more general method. As stated in Section 11.1.3
the influence curve of M-estimators is bounded in y, but unbounded in z. This is an
undesirable property if additive outliers occur. The possibility of bounding the
influence curve in y and also in z for usual regression problems has been alluded
to by Huber (1973), suggested by Mallows (1976) and advocated by Hampel (1973,
1975).

IIL11. Definition .

The basic idea of generalized M-estimators (GM-estimators) is to modify the
minimum problem (IL.7) so that the summands of the estimating equation (IL9)
are bounded and continuous functions of the data. This in turn results in an influence
curve which has the same properties. GM-cstimators ¢ and & are analogues ol
bounded-influence regression estimators and are given as an extention of Huber’s
(1973) proposal for robust regression by the general minimum problem

n T 17
(111.3) o' o)=Y uwe, (y—';gl‘fb-) ¢ + c6’ = min.

i=p+1 u;G
where the minimum in ¢’ and ¢’ has to be achieved and ,(¢), the first derivative
of 0,(t), should be monotone, e.g. ¥,(t) = Yy(t) (IL.3). & is consistent for o if the y;’s
are free of outliers with N(0, o?)-distributed innovations and 2 = u,if ¢ = (n — 2p)
Euw; Eyg,y, ¥1(A)[2 where 4 is a random variable with an N(0, 1) distribution.
The u;’s and v;’s are weights depending on the “largeness” of z;. Dutter (1983b)
uses an equation like (IIL3) to compute bounded-influence estimators for linear
regression. Differentiating h(¢’, ¢”) with respect to ¢’ and ¢’ and equating the resulting
expressions to zero yield

n N T A

(11L.4) 3w (L;zf) =

i=p+il u;6

with x,(f) = t,(f) — 0,(r) and a system of equations defining ¢* for a known &

(IIL5) T oy (vyi = ﬂ@) z=0.

i=p+1 u6

Equation (111.5) defines the least squares estimator of ¢ if v; = u; = 1 for all i and
if ¥, is the identity function. In contrast to the least squares estimator the influence
of the residuals y; — z/¢p” and therefore also the bad influence of innovation
outliers is bounded for a good choice of ¥, in (III.S). For a Mallows type GM-
estimator (Mallows, 1976) every u; is equal to 1 and v; = y,(b,)/b;, where b, denotes
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the “largeness’ of z; and ¥, is for example one of the -functions (11.3) to (ILS).
The v;’s should bound the influence of the z;’s and therefore also the influence of
additive outliers on the estimation. A Schweppe type GM-estimator (Schweppe,
1975) uses u; = v; = Y,(b;)/b; to increase the influence of an observation with a small
v; if the residual y; — z; ¢* is also small. Therefore a Schweppe type GM-estimator
should be superior to a Mallows type GM-estimator with the same psi-functions if
innovation outliers are present.

II1.1.2. Computational Methods

First we will describe possibilities to assess the “largeness™ b; of z; and then we’
will explain a method to compute GM-estimates of AR parameters.

The “largeness” b; of z; can be assessed by

(111.6) b; = (p~'z]C™'z,)!?

where €' is an estimate of the a priori unknown inverse p*p covariance matrix
of the outlier-free process X; which is the basis of ¥; (compare Section 1.4). Martin
(]980) estimates C ™! in the following way: Suppose that X, is a Gaussian process
(not necessarily a pth-order autoregression) with p*p covariance matrix C, and let
Durs s Prs k= 1,2,..., p — 1, be the coefficients of the predictors of X; based
on X;_y, ..., X, with the minimum mean square error. Denote the corresponding
prediction-error variance by (k). Then C, ' has the factorization (Akaike, 1969)

C,' =S8

where n
[,_(,/)PT“J"‘
| olp—4)"

(Shy=| 1
ap— k)
l 0 , j<k

j>k

j=k

with 1 < k, j < p and ¢(0) denoting the scale of the X ’s. o(0) could be estimated by
(11L.7) &, = med |y, — med y,;|/.6745 .
i i
Assuming that AR models of order p = 1, 2, ..., p,., are fitted in succession using
GM-estimates, set C,‘," = §,TS‘” where S‘,, is obtained from S, by replacing ¢,; by
its GM-estimate and replacing o(k) by the appropriate GM-estimate of scale.
To estimate the first-order AR parameter ¢,, the system (111.5) becomes

(111.8) iuzl/h <)L—‘!F’x(fﬁ> Yi-1=0

i=2 i
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where the “largeness” to compute v; and u; could be
(111.9) bi=67"viy
with &, defined by (I11.7).

Another possibility to estimate the inverse covariance matrix C™ ! is to express C™ "
asa function of ¢, C™! = C~!(¢), using Siddiqui’s (1958) results and thenset C™! =
= C"'(¢"), where ¢" denotes a GM-estimator. But this method creates extreme
difficulties in establishing existence and uniqueness for solutions of the estimating
equations.

A special formulation of equation (II1.5) reveals a GM-estimator ¢* as a weighted
least squares estimator whose weights depend on the residuals r; = y, — z]¢",
i=p+1,...,n(compare (I19)). It follows that an iterated weighted least squares
(IWLS) algorithm could be used to estimate ¢ and ¢ simultaneously. Before starting
the IWLS algorithm, the weights u; and v, i = p+ 1, ..., n, which are — in terms
of linear regression — weights in the factor space (and which are constant for a fixed
time series y,, ..., y,), must be determined.

The IWLS algorithms for the M-estimation (compare Section 11.1.2) and GM-
estimation of AR parameters are in general similar, but the improvement of the scale
and the calculation of the weights are different. Thus the IWLS algorithm described
in Section IL1.2 can be used here if it uses model (I11.2) instead of model (IL.1)
(B has to be replaced by ¢) and Step 3 and Step 4 must be newly formulated:

3. Compute a new value for ¢ using (111.4)

" (m)
(g 0)? = ! Y uid ( X )(‘7(‘"))2 .

¢ i=p+1 u,g™

4. Calculate weights considering that u; = | for a Mallows type estimator and
u; = v; for the Schweppe type estimator

¥
(m) / (m)
r; I T . (m)
l[v,-wl (u,-a“"*”)/ (0(".“))’ it ™M F0, u;¥0

vifu; L if K™ =0, ;%0
Wi = .
! 1 , if A =, =0,=0
1 , i M0, w,=0,=0, Y ()=t
0 , if ri_m) +0, u,=v, =0, ,isbounded

where i = p + 1,...,n. Define a diagonal matrix W™ with w; as its (i — p)th
diagonal element. .

For a non-monotone ¥,-function. the IWLS algorithm described above must be
modified in the same way as the IWLS algorithm to compute M-estimates, i.c. an
estimated value for the scale must be given and Step 3 must be omitted. The overall
computational strategy which was described in Section 11.1.2, should be used because
the estimating equations (I1L4), (I11.5) could have multiple roots for a non-mono-
tone ¥,.

42



IH.1.3. Properties

Asymptotics and robustness propertics were mainly investigated for the Mallows
type solution of (111.3) and will be described for the Mallows type estimator, if not
otherwise stated.

The GM-estimator (¢"", §) may be represented as a functional in the following
manner. Define a multivariate sample by (Y, Y,—y,..., Yi_,), i =p + 1,...,n, and
let F, denote the empirical distribution function for the sample. Let F denote the
multivariate distribution function for

(111.10) Ul = (Ypu1:Zyst) = (Ype1s Vo oo Y)

where Y; denotes a random variable representing an observation centered by the
functional 4(F), i.e. u(F) is the true location parameter and fi = u(F,) is a (robust)
location estimate used to center time series data.

The GM-estimator (¢*, ) could be defined by the functional (¢(F), o{F)) =
= T, ,(F) whose value is the root of

— 77 A
(1L.11) Ep VZps ) Zoi W (YLL ,,inLJ,‘i’,,) -0
o
and
s A
(11.12) EpV(Z,, ) {l/,; (ﬁjj,,izﬁii) - bl} -0
a /

where V(Z,, ) denotes a weight depending on Z,. ;. Note that equation (I11.12)
is the GM-estimation version of the side condition (IL.6) proposed by Huber (1973)
for the M-estimation.

The values of ¢(F,) and ¢(F,) could be obtained by solving (ITL.3).

Consistency

GM-estimators defined by (111.3) are consistent and asymptotically normal even
in innovation outlier situations without Gaussian or finite variance assumptions
under reasonable regularity conditions (Martin, 1978c; Bustos, 1982). For well
chosen ¥- and Y ,-functions GM-estimators have much smaller biases than least
squares estimators or M-estimators at additive outlier models. Evidence in support
of this statement may be found in Martin and Zeh (1978) and Zeh (1979). Some
Monte Carlo results for the AR(1) model were presented by Denby and Martin
(1979).

The Asymptotic Covariance Matrix

If innovation outliers are possible the joint asymptotic covariance matrix of ¢
and & is (Martin, 1980)

(IL.13) Vy, = [VQ,{,Q,]
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with

(11L.14) Vy = B 'ByBT" Vi, 9)
where .
(11L.15) By = E{Zy, V(Zys ) L0y},

B, = E{Znn VZ(Z[‘+1) Z:;H}

and V,({, g) is the asymptotic variance of a location M-estimator. The expression
forV, is

GZ(F) 2 N s e 2
(111.16) Vo= T BV (Zy+1) Ex{¥i[4,41[0(F)] = b1}

where d is defined as in (111.21). )

If V(Zpu) = 1 the GM-estimator reduces to an M-estimator and the resultfng
asymptotic covariance matrix for ¢” is just the lower right part of (111‘13). If, in
addition, ¥, is the identity function we get the least squares covariance matrix (I.13).

Efficiency Robustness

On the one hand, GM-estimators have good efficiency robustness relative to least
squares estimators in innovation outlier situations, on the other their efficiency
robustness can be poor relative to M-estimators. This is to be expected considering
the fact that using the weights v; in (IIL.3) results in increased variability relative to
M-estimators. The asymptotic variances of an M-estimator and a GM-estimator
of the first-order autoregressive parameter are, respectively (compare (II1.14)),

1
11117 v, = Viee W1,
( ) ®1,M EY: 1ocl W15 9)
and
, Ey3(Y,
(111.18) Vorom = B Viee(¥'15 9)

E?Y, (1))

where V), (i, g) is the asymptotic variance of an M-estimator for location at in-
novations density g. Therefore the efficiency of the Mallows type GM-estimator
relatively to the M-estimator is

, V, 2
(11L.19) EFF(GM, M) = 2420 = g2
$1,GM

where gy, v, is the correlation coefficient for ¥, and y,(Y,). The function y,
will typically be chosen so that g?h,,,l(y,) is moderately large for an outlier-free time
series — Say 0y, g,y = -95. The value gy, ,y,), however, can be rather small for
some innovation outlier model (Denby and Martin, 1979), which results in consider-
able loss of efficiency.
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Schweppe type GM-estimators offer some hope for obtaining better efficiency
robustness at innovation outlier situations.

GM-estimators provide considerable robustness toward additive outliers with
modest losses of efficiency relative to M-estimators in “gentle” innovation outlier
situations (Martin, 1980). Since innovation outlier situations probably occur
infrequently, GM-estimation is an attractive possibility. Favorable small sample
efficiency robustness of GM-estimators for the first-order autoregressive parameter
is reported in the Denby and Martin (1979) Monte Carlo study.

The Influence Curve

Let U7 = (Y,,y,Z,%,) be a dummy variable replacement for U] defined by
(111.10). The influence curve ICT,#‘O.,FKU "} of the joint GM-estimator of ¢ and ¢ can
be computed in a straightforward manner (Martin, 1980). The calculaton is simplified
by replacing /z(F ) by u, thus acting as if the location parameter were known. Define
R(F):= Y,., — Z,,, $(F) and do similarly for R'(F). Then the calculation yiclds

Di e ' V(Z;,-;-l) p+1 U'\ )‘pl (R (b))

B i N B A o(F)/.
(1120)  ICq, AU = fT a| |wz,.)ep) {‘/,{(’z:'g) - b'}
where \
(1L.21) D= EF{V(ZP*’)Z"+I7 i (le;)}

e =EF{V(Zp‘—x)Z Rf({) ( (F)}

f =2k, {V(pr) Zpﬂ'/’l( ’F)) <a\ )>}

d = 2E, {szlﬁ-l) *F)) 9”1( (p)) v (f\f)))}

assuming that the above inverse exists.

If only innovation outliers are possible then R(F) = d,, and the expectation
values e and f are equal to the zero-vector, assuming the innovations distribution G
is symmetric and ¥, is odd. In this case we have

, R(F
ICT F{U) D~ V(Lp+1) Lip 1 a(F) Wy (7%))
(iL22) ICr, p(U") = | -ommem = ,,,,4___,4_,,4,#____(_)__”_ _____
- ) R'(F
ICy, V') d"' V(Z,.1) o(F) {‘/’1 ((_F)) bl}
where ICr,,#(U") and ICy, (U") are the influence curves for the separate estimators
¢* (with o known) and & (with ¢ known).
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Although the above separation of the influence curve does not hold for the ad-
ditive outliers model, (I11.22) will hold approximately if e and f are approximately
zero. One may expect this to be the case if ¢(F) = ¢o + ¢ provided y = P(V; % 0)
(compare Section 1.4) is not too large and the bias ¢o — ¢ is small. A small bias can
be obtained if the ,-function and y,-function are well chosen.

Qualitative Robustness

Let F, be a fixed distribution of X = (X,,, ..., X;)T for an innovation outlier
model where Y; = X,. Define an additive outliers model on the innovation outlier
model where the vector Y = (Y, ,, ..., ¥;)" has distribution F. Suppose that y(-)
and y,(+) are chosen so that the influence curve (IIL20) exists for all F and is
a bounded and continuous function of U’. Then it can be shown that

(i) Ty o(F) = (¢"(F), o(F)) defines a functional which is continuous at F;

(ii) under additional regularity conditions, (¢", &) is asymptotically normal with
mean (¢"(F), o(F));

(iil) the asymptotic covariance matrix V-~ ;(F) of (¢, &) defines a functional which
is continuous along the special “directions” for which X £ F, with F, fixed
and Y £ F.

It further follows that (¢~ 7, &) is qualitatively robust at a Gaussian F,, if deviations

in the form of additive outliers are allowed.

The Breakdown Point

It may be shown that the breakdown point of GM-estimators for AR/p) models
is positive but somewhat unfortunately it is bounded by 1/(p -+ 1). The heuristic
reason for this is easy to see. A single gross outlier at a fixed time i, appears in p
consecutive prediction vectors z; = (¥;—y, ..., ¥;-,)'. When a fraction of 1/(p + 1)
gross errors are uniformly spaced, all the predictors z; ¢’ appearing in the residuals
y; — z1¢’ will be worthless. Of course the situation will be better in the case of
patchy outliers, because then the total fraction of outliers can be higher without
ruining the GM-estimates.

II1.2 GENERALIZED MAXIMUM LIKELIHOOD TYPE ESTIMATION
OR ARMA MODELS

M-estimators of ARMA parameters (compare Section II.3) have the advantage of
being efficiency robust toward innovation outliers. But the behaviour of M-estimators
in the presence of additive outliers should be better. We now will generalize M-esti-
mators ARMA parameters to diminish the variability and bias if additive outliers
are present, where the additive outliers are not necessarily i.i.d.
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IIL2.1. Definition

In contrast to M-estimators, GM-estimators of ARMA parameters can hardly
or not at all be defined by a minimum problem, because the weights to be used
depend on the parameters to be estimated (compare Martin and Yohai, 1984a).
But the following approach could be used to define GM-estimators of ARMA
parameters {Stockinger, 1985a) where the definition of least squares estimators is
generalized.

Differentiating the minimum problem (I.5) which defines a least squares estimator
of ARMA parameters « := (¢7, 87, u)*, with respect to &’ and setting the resulting
expression equal to zero yield the estimation equation for the least squares
estimator a”

"
(1TL.23) Y r{ar)df(@*) =0
i=p+1
where r{«") denotes the residual at time i (I.16) and d; («") denotes the vector of
the first derivatives of r;{«") which is specified by (11.27) to (11.30).
If a given time series y, ..., y, contains outliers, it is advisable to use

(111.24) 3 owlrfar), dfat), ¢, 0%, 8] re) df («*) =0
i=p+1

instead of (111.23) to estimate «, where w[r, d, ¢*, 6", 6] rd* is bounded and & is
an estimate of the innovations scale. w[r, d, ¢9",0, 6] denotes the above mentioned
weight which depends on the parameters ¢ and o to be estimated and which transforms
the least squares problem (I11.23) into a weighted least squares problem (I11.24).
If only innovation outliers are possible, it is sufficient to choose the weight function w,
so that w{r,d, ¢, 0", 6] r is bounded. If Y(r[6)/(r/6) is selected as weight function
where  should be a bounded y-function, e.g. ¥, (I1.3), equation (I11.24) reduces to
the estimating equation (I1.26) of an M-estimator.

The symmetric matrix C(¢, 0) which is equal to matrix C*(¢, 9) (I.18), except that
(111.25) Crpin= —Chprir i JEp, k=4 '

is the covariance matrix of d,(a)/oc (Martin and Yohai, 1984a) if « is the true para-
meter vector and o is the true scale of the innovations.
This can be proved for j £ k < p as follows (the proofs for other indices j and k

are analogous), where a residual r(a) computed for the truc parameter vector has.
to be set equal to the corresponding realization a; of an innovation.

COV(s;— @), si-(®) = COV(Eoa;—; + Eraimjoy + oo+ Eojai o + ..,
Eolioy + E1aiop—y + ) = U'ZZ fxéh—k-j-
1=0

Therefore COV(s;_ (@)fo, si—i(®)]o) = c; 1.
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The “largeness” of d,(«") can be assessed by
(111.26) ba*,6) = 67 '[dl(x") C™ (", 0") di(a")]"?,
because 82C(¢", 6") estimates the covariance matrix of di(x").

Now estimators «* which satisfy (I11.24) where w[r, d, ¢*, 0", ] rd* is bounded
can be defined. These estimators are referred to as generalized M-estimators
(GM-estimators). Note that there is no need to bound the influence of the last
component —dr;(a*)/dp (11.28) in d; («") (11.27) because this component does not
depend on the given data yy, ..., y,.

Define terms v,(«”, &) which represent the largeness in the factor space for linear
regression problems, by

o fabdan, 8))bar, 8), if bfat,8) +0
I (a” = \ N
(L27) - vfa", ) {lim walo)t, it bat.é)=0.
=0

There are various types of GM-estimators according to the selection of the weights
wlr, d, ¢, 0%, &]. By the following choice of w[r,d, ¢*, 0", 6] (11L.28) a Mallows
type GM-estimator (Mallows, 1976) is given if u = 1 and a Schweppe type GM-
estimator (Schweppe, 1975) is given if u = v, where v is an abbreviation of v(a", &)
from (II1.27).

oy, (r[ug)[(rf6) if r+0, u=*0

u/u, if r=0, u=+0
1, if r=u=0v=0
(TL28)  wlr,d,¢",0"6]=11, if r+0, u=0=0,
‘/fl(l)zt
0, if r+£0,u=v=0

Y, is bounded .
To estimate the first-order AR parameter ¢,, equation (II1.24) becomes

(HI.29) Z Ui(d;x, 5) ¥, (y‘—_.&}ijl) Vi1 =0
i=2 u(dy,8) 6

where the “largeness” to compute vi(431, 6) is given by

(111.30) by, 8) =671 — D)2y, .

Equations (111.8) and (II1.9) on the one hand and equations (I11.29) and (II1.30) on
the other give alternative possibilities to estimate ¢, using different estimators for o,.
To estimate the first-order MA parameter 6, equation (111.24) becomes

iZ'lUi(él’ 6') 2 (;‘%) ti—l(él) =0
where the “largeness” to compute v,(f,, 6) is given by
bl(gl’ 6’) = (’_1(1 - 0%)“2 ti—l(ﬁl)
(1,(6,) is defined by (11.30)).

48



A Hampel-Krasker-Welsch type GM-estimator (Krasker and Welsch, 1982) is
defined by
. . w o a1 JWirbj8)[(rbje), if r+0 and b+0
(111.31) wir,d, ¢",0 WJ]V{I, i r=0 or b=0
where b denotes the “largeness” of d which could be computed by (1IL26). The
principle of a Hampel-Krasker-Welsch type estimator is similar to that of a Schweppe
type estimator and therefore both estimators should have similar properties. If in-
novation outliers are present a Schweppe type estimator or a Hampel-Krasker-Welsch
type estimator should be superior to a Mallows type estimator because a Mallows
type estimator does not simultaneously take into account the largeness of the residuals
and the largeness of the first derivatives of the residuals.

The influence curves of Mallows type GM estimators and Hampel-Krasker-
Welsch type GM-estimators of first-order AR and MA parameters published by
Martin and Yohai (1984b) encourage the implementation and application of an
algorithm for the computation of these estimators.

111.2.2 Computational Methods

Unfortunately it might be very difficult to determine a function whose first deriva-
tive with respect to « is the left hand side of (111.24). But {111.24) can be solved without
knowing the minimum problem by applying a nonlinear iterative least squares
algorithm, where the weights are determined using the approximations for the para-
meters calculated in the preceding iteration.

Algorithms to compute the residuals r{«') (1.16) and the first derivatives of the
residuals with respect to AR and MA parameters s;{e’) (11.29) and #,/a’) (11.30) were
already given in Section 1.6 and Section I1.3.1, respectively. Next an algorithm to
compute inverse AR or MA operators {1.19) will be given.

Computation of the Coefficients of an Inverse AR Operator (Andcrson, 1971)

Let M denote the highest index of the coefficients to be computed.

() Set m=1,¢ =1and Bo;=¢;, j=1,....p.

(2) Set &y = Bu-1.1-

(3) Compute B, ; = Bu-1,j41 + Pu-1.1%5j = 1L, p— 1, and B, , =
= ﬁm~1,1¢p'

(4) Augment m = m + 1.

(5) If m > M stop, else go to (2).

GM-estimates of ARMA parameters could be computed by the algorithm for the
M-estimation of ARMA parameters given in Section I1.3.2, if it is modified as
follows:
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— A constant ¢ as defined in (IL.25) is not necessary and Step 3 must be omitted,
because there is no side condition like (II.24) to improve the scale.

— Before the weights can be calculated (Step 4) the first derivatives of the residuals
must be computed (i.e. Step 5 must be performed) and, in addition, the coef-
ficients i}"‘), 1'=0,..., L; of the inverse AR operator

o

¢(M)—1(B) — Z é<’"’B’

=0

and the coefficients {{", I = 0, ..., L, of the inverse MA operator
g(m)fl(B) - Z CJ"”B’
=0

must be computed, where L; and L, are chosen so that the inverse operators are
sufficiently well approximated. Computer programs (Stockinger, 1985b) for the
GM-estimation of ARMA models optionally allow the output of inverse AR
and MA operators in order to determine L, and L;, respectively. It is reasonable
to choose L, = 50 if the AR order p is not too large, say p < 3.

Furthermore the matrix C(¢™, 0”) must be computed according to (I.18) and
(111.25) and inverted.

— In Step 4 the weights
ng) — w[ri(tz('”)), di(a("”), 4)("')’ 0("'), o_(m)] , i=p+1,...n,

have to be computed for a Mallows type GM-estimator or a Schweppe type
GM-estimator (111.28) or a Hampel-Krasker-Welsch type GM-estimator (111.31),
and a diagonal matrix W™ = diag (w("),, ..., w{™) has to be defined.

I

Step 6 and Step 7 try to diminish the function

g(a™) = 4 Z Wi (e

i=p+1

(where the weights w{™ are regarded to be constant for a fixed step of iteration
procedure)instead of g(a™, ™*1) (11.23).The computational methods, in particular
the computation of the Gauss-Newton direction and the vector of the steepest
descent, do not change. These steps are explained in more detail by Stockinger
(1985a).
~ Before Step 8 is performed, the scale should be improved by

(111.32) g = med |r(a™ D) — med r(at™*V)|[.6745.

ptigisn p+1<jsn

111.2.3 Properties

A formal Taylor series expansion indicates that under suitable regularity conditions
an estimator of & defined by (111.24) has, for time series without additive outliers,
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the property (Martin and Yohai, 1984a)
Jn(a = @)% N0, K(9. 0, G)

where
(111.33) K(¢,0,G) = ¢’U™1sU™!
with
S = En[ A, D/, ¢, 0, o'] ﬂT[A,-, D}, ¢,0, a]

U = En,[4, D/, $,0,0] Df
where D} denotes a random vector whose possible realization is d; («) (11.27),
nla,d*, ¢,0,0] = wla,d, $,0,0] ad* 6™

and
nila,d7,,0,¢] = aq[a, d*, ¢, 0, a]/ﬁa .

For a careful proof for the estimation of autoregressive models see Bustos (1982).

For an AR(1) model without location d} (¢,) = d,(¢,) = y;, and the “largeness”
of d(¢,) is by, 6) = a7 (1 — ¢})/? y,—; (I11.30). Let @ denote afo. Note that
for an outlier-free process both the innovations divided by ¢ and the b/s have
a standard normal distribution. Asymptotic variances (I11.33) of GM-estimators
of the first-order AR parameter ¢, for outlier-free processes can be computed in the
following way:

Mallows type estimator

s = [(1 - ¢2)20] J f U2(a) V() exp (— a%/2) exp (— b22) da db

U=[(1-¢})2n]? [j J'i b y1(@) w3(b) exp (— @*/2) exp (—b%/2) da db

where (@) = dy,(a)/da

Schweppe type estimator

S =[(1 - ¢})2n]” J J i <|//Z([;)> vi(b )CXP(~¢72,"2)6Xp(—-b2/2)dﬁdb.

U= [(1~¢i) 21:]"1J‘ J b2y ( ) xp (—@2[2) exp (—b2[2) da db .
cwd—m a(b)
Hampel-Krasker-Welsch type estimator

=[(1 - ¢}) 2n]" J‘ J. ¥i(ab) exp (—a*|2) exp (—b*[2) da db
U =[(1 - ¢2) 2] [ r b2 y;(ab) exp (—a2[2) exp (—b*/2) da db .

Expression (I11.33) can also be used to compute the asymptotic variance of an
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M-estimator of ¢,. For an outlier-free process

S = [(1 - ¢2)21]"! [ ’ r’ b2 (@) exp (— 2/2) exp (— b2[2) da db

Jew o
and
po @
U= [0~ 6] | j b (@) exp (= %/2) exp (—b%/2) da db
0 J =
is obtained.

For the Monte Carlo results that will be presented in Chapter V the asymptotic
variances of estimators for the first-order AR parameter were computed by numerical
integration of the expressions stated.

Expression (I11.33) could also be used to determine the asymptiotic variance of
a least squares estimator of ¢;. This variance is known to be 1 — ¢} (Box and
Jenkins, 1976).

If MA parameters have to be estimated, GM-estimators are not robust because
an outlier at time i’ spoils all ensuing residuals r;, i = i’. One possible remedy is
to use truncated residuals similar to the idea of estimators based on truncated
autocovariances of the residuals (Bustos and Yohai, 1983).

GM-estimators cannot be expected to be unbiased in the presence of additive
outliers but the bias will be smaller than for M-estimators. The variance also can

be kept smaller than for M-estimators. This will be demonstrated for small samples
in Chapter V.

111.3 DETERMINING CUTLIER TYPE

Methods to determine whether an AR process is contaminated by innovation
outliers or additive outliers, will be described in the following.

In Section II.1.3 (fornwla (11.15)) it was shown that innovation outliers lead to an
increased precision of M-estimators of AR parameters (compare Stockinger (1985a)
for a graphical explanation). It is intuitively clear that such outliers should not be
downweighted for forecasting purposes, e.g. in a GM-estimating equation. Tn
contrast, additive outliers need to be downweighted il future values of the un-
observable X; process are predicted. '

Since the appropriate treatments, e.g. the selection of an estimator, of the two
types of outliers are different, it could be costly to mistake additive outliers for in-
novation outliers and vice versa. Thus in time series analysis there is a need to
distinguish between different types of outliers in order to effectively deal with them.



HL3.1 A Significance Test for Additive Qutliers Versus Innovation Outliers

One approach for constructing a significance test to distinguish between innovation
outliers and additive outliers is suggested by the fact that although GM-estimators
behave moderately well on an overall basis at both outlier situations, M-estimators
are clearly superior if only innovation outliers occur (Denby and Martin, 1979;
Martin and Zeh, 1978).

M-estimators have unacceptably large biases if additive outliers are present whereas
GMe-estimators have attractively small biases and variabilities. Hence a significance
test for testing the null hypothesis

(111.34) H;o: model 10 holds (where the innovations distribution
could also be Gaussian)

versus the alternative
(111.35) H ,0: model A0 holds

based on the difference qb;‘ — gy between an M-estimate and a GM-estimate,
suggests itself. It can be shown that under reasonable assumptions the asymptotic
distribution of &, = \/n (¢3; — Pgy) is multivariate normal and has under H,,
mean zero and covariance matrix

(111.36) Vsro = [BY BBy — C™ ] Vi, 4, g)

where B, and B, are defined by (II1.15) and the elements of C are given by ¢;; =
= covariance (Y,», Yj), 1 £1,j £ p, and all expectations in computing B;, B, and C
are taken under H;o (Martin, 1979).
The asymptotic distribution of
T, = 6,108,

is chi-squared with p degrees of freedom for H;,. A usable test statistic might be
obtained by replacing V; ;, by a good estimate and using xf, critical values or perhaps
critical values obtained via Monte Carlo. Further details and some encouraging
Monte Carlo results are given by Martin and Zeh (1977) and Zeh (1979).

II1.3.2 Diagnostic Scatter Plots

Distinctively different characters of the outlier configurations in scatter plots
under H,, (I11.34) and H 4, (I11.35) may be used as exploratory indicators of outlier

type.
The scatter plot approach for assessing outlier type in an exploratory manner is
based on the residuals

,
(111.37) r=yi— Py, PH1ISiZn,
k=1

from a GM-estimator fit. If ¢" is a good estimate then its value will be close to that
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of ¢ for not too small sample size and the residual r; will be almost the same as
P r

(I11.38) U=y, — Y ik =+ 0, = Py, pHISiZn
k=1 k=1

Thus for each i the bivariate distribution of (R;, R;.() should be close to that of
(Ui: Uiv 1)~

The scatter plot of the pairs (r;, 7;41) Will resemble that of (a;, a;,;) under Hpo
(T11.34), because in this case V; = 0 for all i. If the A4;’s are Gaussian the residuals r;
will produce a circular scatter plot. Outliers resulting from a heavy-tailed innovation
distribution will be mainly along the abscissa and the ordinate of a scatter plot.

If on the other hand V; 0 due to additive outliers then U; and U, will usually
be dependent. In this case the outliers generally no longer lie mainly along the
abscissa and the ordinate in the scatter plot.

II1.3.3 Robustified Fox Tests

Fox (1972) considered the problem of detecting a single outlier at an unknown
time i assuming that either model I (which is analogous to the additive outliers
model) or model II (which is analogous to the innovation outlier model) is the true
model. In particular, Fox assumes that the innovations are Gaussian with mean zero.
In model IT a; is replaced by a; + 4 with 4 unknown and model I produces only an
additive outlier at time i.

In addition to studying likelihood ratio tests, Fox considered simplified criteria
which, for unknown i, would have the form

(I11.39) max A;
where '
~ //\ ~

(111.40) A= 4,[VARY(Z)).
Under modell IT Fox defines

-~ P -~ /\\\ P
(111.41) di=yi =Y quvicr, VAR(A) =

k=1

The estimates ¢ and ¢ are approximate maximum likelihood estimates computed
under the assumptions that 4; & 0 and the null hypothesis 4; = 0 holds, respectively.
For model I

(111'42)‘ A=yt [kil Wi'iﬂ(yi»k + i)l wht,

AN P
VAR(Z;) = 6*| 3, é;
k=0
where .
Wittt = _ZA(*‘?si) (=)
A
with —¢y = 1 and @, for 1 £ j £ p computed assuming V; = 4 + 0.
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Before extending the above technique to the more realistic multiple outlier case,
Martin and Zeh (1977) perform a robustification of (IIL41) and (I11.42) by using
M-estimators and GM-estimators of ¢, respectively. The reason is, that M-esti-
mators behave well under model 11 and GM-estimators behave well under model I.
A robust scale estimator is used for o.

The statistic for testing Hy, (IIL.34) is (robustified FOX criterion)

(111.43) RFOX = log(max 2} ,fmax 1},), p+1<isn—p

where 4; ; and 4, ;; are the versions of (III.40) obtained from the robustified expres-
sions (IIL42) and (II1.41), respectively.

1I1.4 MODEL SELECTION

I11.4.1 Robust Estimation of Autoregression Order

For outlier-free time series the minimization with respect to p of either Parzen’s
(1974) CAT(p) or the Gaussian autoregression version of Akaike’s (1974) AIC(p)
function provides an estimate of the order p of an AR model.

For perfectly observed Gaussian or non-Gaussian autoregressions Akaike’s
function is

(111.44) AIC(p) = —2log f(y; ", 1,6, p) + 2(p + 2)

where ¢*, /i and ¢ denote maximum likelihood estimates, y* = (yy, y2, ..o V),
f(y; ", A1, 6, p) denotes the maximized likelihood for an AR(p) process and p + 2
is the number of parameters estimated. In the Gaussian case and if the sample size n
is reasonably large, AIC(p) is approximatively equivalent to

(111.45) AAIC(p) = log 6(p) + 2(p + 2)/n

where 6%(p) is an estimate of the variance of the innovations

1 [ s
S AT 3
n~2p—1i=§+1(y i)

(ILL.46) &(p) =

with ¢* denoting a least squares estimate.

1t is well known that, given an i.i.d. sample, the variance estimator based on the
sum-of-squared residuals it notoriously non-robust toward heavy-tailed distributions
(see, e.g. Tukey, 1960). The same is true of the estimator 6%(p) in innovation outlier
situations (even if an M-estimator ¢ is used instead of a Jeast squares estimator)
and in additive outlier situations (even if a least squares estimator ¢* is replaced
by a GM-estimator). Thus stoping rules based on such estimators would not be
very reliable for either innovation outlier or additive outlier situations, and therefore
a robust alternative to A4IC(p) is needed.
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Using robustly centered data, a Mallows type GM-estimating equation ([H.S)
could be obtained by differentiating the loss function

(II1.47) L{(y;¢~,a',p)=‘z .al( ”5)
i=p+

with respect to ¢’ and setting it equal to zero with ¥, = dg,(t)/dt. The fact that
equation (T11.4) cannot be obtained by differentiation of L(y; ¢, o’, p) with respect
to ¢', will be ignored.

If o,(1) = —2log g(t) where g is the innovations density and v; = 1, then the
following approximation is possible (compare Stockinger and Dutter, 1983).

N o1 = 2"
(111.48) —2logf(y; ", .8, p) ~ —2log ] -y (}4———4)) =
&

=_221og g(’v' G¢>

i=p+1
The right-hand side expression in (I11.48) can be transformed to the representation

(111.49) 5 log (i)f b3 log g;2<y, z¢>

i=p+1 i=p+1
=2(n — p)logé + Liy; ¢", 6, p).

If only innovation outliers are possible the above equations suggest to construct
a robust M-order-selection criterion by approximating AIC(p) (IIL.44) using g(*)
instead of ~2 log (+) (i.e. maximum likelihood estimates are replaced by M-estimates)
and by using (111.48) and (I11.49), what results into

: e 5
(IILS0)  M(p) = —— ¥ Ql[y, 49 ]+210g6+2(p+ )
o

n— pi=pt1 n-—p

where ¢* and & denote M-estimates. M-estimators, however, are not robust toward
additive outlier situations and, therefore, instead of minimizing M(p) with respect

to p in this case, p should be estimated by minimizing a function which uses GM-~
estimates ¢ " and &

n R FON
(TIL51) M) = —— v, [y—__zii’_]
n—pi=p+i &
+2logé + %(})___—}—2)
n-p
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II1.4.2 Identification of ARIMA Models

For outlier-free time series, Box and Jenkins (1976) suggested a procedure based
on the sample autocorrelation function and partial autocorrelation function to
identify an appropriate subclass of ARIMA models.

However, the use of the standard autocorrelation function estimate and partial
autocorrelation estimate can be very misleading in the case of contaminated
data, because these estimators lack robustness (compare e.g. Polasek, 1982). One
possibility of putting an end to these problems could be to adapt correlation and
covariance methods for i.i.d. multivariate samples (sce Devlin et al., 1975; Maronna,
1976; Huber, 1977; Marazzi, 1980; Rieder, 1980) to the time series setting. Polasek
and Mertl (1983) treat robust estimators of the autocorrelation function.

Martin, Samarov and Vandaele (1983) suggested an iterative procedure for the
identification of an ARIMA model. The usual Box-Jenkins approach based on the
initial unfiltered data is used to specify an initial model. Next, the initial model is
used to clean the data by robust filtering. A new model identification pass is based on
the cleaned data. If for the raw data and the cleaned data the same model is identified
and if the diagnostic checks on the estimation results (e.g. checks on over-and
underspecification, residual analysis) do not reveal a model misspecification, we have
finished. Otherwise the robust filtering has to be carried out on the cleaned data, and
the same diagnostic checks have to be applied.
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IV. ROBUST FILTERING AND ROBUST SMOOTHING

In order to deal with robust filtering and smoothing a vector state-variable represent-
ation of ARMA processes will be described. Here, a filtered value is defined to
‘depend only on previous observations, while a smoothed value is defined to depend
on all given observations.

A recursive algorithm for the computation of approximate conditional-mean
(ACM) filters which are able to remove outliers from contaminated data, will be
dealt with.

Maximizing a likelihood function which is approximated (also by an ACM filter),
leads to approximate maximum likelihood (AML) estimators. Proceeding further
by replacing the negative of the log-likelihood by a loss function which uses a robusti-
fying rho-function yields approximation maximum likelihood type (AM) estimators.
A relatively simple iterative scheme can be used to compute AM-estimators. Condi-
tional-mean M-estimators can be regarded as AM-estimators especially for AR
models.

Other methods for robust filtering and smoothing are provided, for example,
by the robustified Kalman filter, L-smoothers, moving M-estimate smoothers and
robustified splines.

IV. 1 APPROXIMATE CONDITIONAL-MEAN (ACM) FILTERING AND
SMOOTHING

1V.1.1 State-variable Representation of Time Series Models

An ARMA (p, q) process xy, ..., x, (compare Section I.3) which has mean of value
zero and which is free of additive outliers, could be represented in the vector state-
variable form
(Iv.1) X; = Ox_y + a
where the first coordinate (x;), of x; is the value of the ARMA process at timé i.
But the second coordinate (x,»)2 is not necessarily equal to x;_;! Thus an ARMA
(p, g) process contaminated by additive outliers can be represented by (IV.1) together
with the equation
(Iv.2) yi=p+ Hx; + v;
where H = (1,0, ..., 0).

We consider here only one particular state-variable representation for ARMA
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(P, g) processes. Assume p > g for the moment and let

(1v.3) (X1 = ¢u(Xi- )1 + (Ki=1)2 ~ 4
where
(Iv.4) (Xi-1)z = Pa(Xp2)t + oo+ Dp(Xip)1 = Orasy — oo — Oglliq

Then continue in this manner:

(Xx')z = ¢2(xi—1)1 + (X1~1)3 — 0a;
) = ¢3(Xim1)s + (Xi-1)s — 620,
(1v.s) Do : :
(Xi)p—l = ¢pi(Xi1)s + (xi—1)p — 0,-20;
(x), = ‘/’p(xi—1)1 — 0,4,
with the stipulation that 0; = 0 for i > g. Here the coordinates (x;);, -, (X), are
chosen so that it is possible to construct ensuing ARMA process values (X;.,);,
(Xis2)1seeee
The state transition matrix for representing ARMA models is
Té; 100...00]
¢, 010...00
¢; 001 ...00

(1v.6) P =1 S Dl
¢,-,000...10
¢,-1 000 ...01
l¢, 000...00
and a] = —a,(1,0,,0,, ..., 0,~4). Correspondingly the covariance matrix Q of the
a;’s has elements
6%0,-10,~1, if max(i,j)Sq+1
(Iv.7) Q= {0 otherwise

where 6, = 1.

In the case of ¢ = p the above procedure leads to a state equation of dimension
q + 1 and the first column of @ contains ¢y, ¢, ..., ¢,.1 Where ¢, = 0 for k > p.

Also an ARIMA (p, d, ) model with a mean of value zero can be represented
in the vector state-variable form. Instead of ¢(B) as in the ARMA (p, g) model, now
o(B) = ¢(B)(1 — B)* is operating on x;. The order of ¢(B) is p + d.

The coefficients of the polynomial ¢(B) in an ARIMA (1, 1, q) model, for example,
can be shown to be equal to
(1v.8) o1 =1+ d;

0= —;.

Therefore the state-variable representation of an ARMA model can be carried over
after replacing p by p + d, and thus, the dimension of the state transition matrix

is max (p + d, ¢ + 1). Note, however, that an autoregression with parameters
@1, @3, ... does not yield stationary observations x;.
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1V.1.2 ACM Filters

We will use the following terminology:
(1v.9) Vo= (y1, .0 0) the first i observations

flx ) ymh, i>1 “state-prediction” density
= conditional density of
(Iv.10) Fxi|¥°) =f(x), i =1 | x, given y*~!

1v.11 (yil Y, i>1 “observation-prediction”
» P
£ |¥°) = £{ys), i = 1 { density
(1v.12) x|y prediction density for the first

coordinate x; = (x;); of X;
(Iv.13) X", = E{X;| Y} conditional mean estimate of X; given Y'

(Iv.14) XM= E{X | YT conditional mean estimate
of X; given Y!™!

In the engineering literature X*; is called a “filter”” estimate; X*!~* is called the
one-step-ahead predictor.

The filter and the one-step-ahead predictors of an ARIMA process itself x; =
—(x)y are R, = E{X,|Y} = (X*), and £i-' = B{X,| Y"1} = (XA,
Under the assumption that the X s and V;’s are mutually independent time series
with {V;} an i.i.d. sequences, we have

Y =E{Y, | Y = EB{X,| Y} = X7

Thus the one-step-ahead predictors of x; and y; are identical, and we shall use
?i and ®!~! interchangeably.

Computation of the exact conditional-mean X, is difficult for non-Gaussian
distributions Fy of the ¥;’s. Masreliez (1975), however, made the simplifying assump-
tion that the state-prediction density (IV.10) may be well approximated by a Gaussian
density
(Iv.is) Fx: |y & N(x X074 M)

to establish a recursive computational algorithm for approximate conditional-mean
(ACM) filters. The covariance matrix M, in (IV. 15) is the conditional error covari-
ance matrix for the prediction of X;, i.e.

(Iv.16) M, = E{(X; — X~ (X, — XA YT Y

For the definition of the ACM filter also th.e conditional filtering error covariance
v.17) P, = E{(X; - X" )(X; - X")"| Y}

is needed.
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In the pure Gaussian situation X", M; and P;, 1 < i < n, are obtained by the
Kalman filter recursion (see, for example, Jazwinski, 1970) and M, and P; do not
depend upon the given data y;, ..., y,, what is a rather special feature of the Gaussian
case.

For the following ACM filter theorem it is assumed that the observations y; are
generated by (IV.1) and (IV.2) with location parameter yu = 0 and with @, Fy and
the covariance matrix Q known.

Theorem (Masrelicz). If (IV. 15) holds for i = 1, then X*,;

= i

is generated by the

recursions

(1v.18) XY =X mg(n)

(Iv.19) My, = OPOT + Q

(1v.20) Py = M;— yi(y) mm]

and

(1v.21) .

where m; is the first column of M,

(Iv.22) Wiy = —(9/oy;) log fi(y: | ¥'™Y)

is the scalar-valued score function for the observation-prediction density and
(Iv.23) Yy = (8foy) ¥i(y) .

Martin (1981b) specifies initial conditions for the above recursions. The approximate
X", and M, are X"y = E{X,} = 0and M, = E{X,X|} = C,, i.e. the unconditional
mean and covariance of X;. In the case of stationarity, the latter satisfies the equation
C, = #C, 07 + Q.

From (IV.15) it follows that in particular
(1v.24) Flxi | ¥ & N(x; X7, my))
where Xi™" = (X*{™!), and m,; is the 1-1 element of M.

The observation-prediction density f,(y; | y'~*) could be obtained by convoluting
the prediction density fi{x; | y'~*) with the noise distribution F) (Martin, 1981b).
Unfortunately, in non-Gaussian situations it generally is difficult to proceed further,
because the form of f(x; | y'~ ') is typically quite intractable. The simplifying assump-
tion (IV.24), however, helps.

Because 17! = £i7! we have
(Iv.25) Ly = [N(FT L my)s Fyl () = gdi(yi — 2071
where the density gd; is obtained by convolution
(1v.26) gd; = N(0, m;) # Fy .

‘We could go one step further and represent gd; in the form

(1v.27) gdr) = sl gd (;—>
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where
gd = N(0,c,) % Fy,

with

(1v.29) Fy,ei(r) = Fy(r|c,)

and s;, ¢;, ¢, are approximately specified. This is not possible in general, if Fy is
non-Gaussian. However, if the V;’s are distributed according to a contaminated

normal distribution

(1v.30) CN(v, 61, 63) = (1 — v) N(0, 1) + vN(0, 03},

it is reasonable to set

(1v.31) ) si=(my; + 07)'72,

(IV.32) ¢y = mn/Siz s €= '71/51' .

and to use (IV.27) as an approximation. The approximations (IV.27), (IV.28), (IV.29),
(Iv.31), (Iv.32) should behave reasonably well for any heavy tailed distribution Fy
which is nearly Gaussian in the middle. Applying these approximations in Masreliez’s

theorem gives

1 - ¥t
(1v.33) Piy) ~ = [Z%-—J

S; Si
and ’

i—1

(1v.34) wip) ~ Sy [.Y__?__]

S Si
where .
(Iv.35) ¥(r) = —(8/or) log gd(r) .

Usage of (IV.33) to (IV.35) transforms Masreliez’s filter into the following filter:

(1v.36) Xt = OX" g (myfs) s g(rifs,;)
with prediction residuals
(1v.37) re=yi= P =y~ (8K ),
and the prediction residual scale s; given by (IV.31). The recursion for P, is
(1v.38) Py = M; — (ma][s}) ¥/(rs;) .

A filter which is given by (IV.36) to (IV.38), (IV.31) and (IV.19) is referred to as
an approximative conditional-mean (ACM) filter.
IV.1.3 ACM Smoothers

The conditional-mean X*; = E{X, | Y*} might well be replaced by the conditional-
mean X"} = E{Xi ] Y"}, 1 i< n Fori=nwehaveX*? = X", which is a filtered
value. X~} depends upon all observed data and is called a smoother.
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It turns out to be rather easy to construct ACM smoothers using the ACM filter
described in the previous section.

Theorem (sce, e. g., Martin, 1979¢). Suppose that f(x; | y'~*) = N(x;; X*i™%, M)
where X*I™! = #X*,_; and X*, = E{X,;| Y}, 1 £ i £ n, is the ACM filter of the
previous section with the approximate initial conditions. Then assuming that M},
exists, X*7 satisfies the backward recursion

(1v.39) XM= XA+ POTM (XM - XMy, 1Sisn— 1,
with the initial condition X*, = X*,. The smoothing-error covariance matrix
(1v.40) P} = E{(X*, - X" (X7 = XM v

satisfies the backward recursion

(Iv.41) P! =P, + A(Pjyy — M;y) 4]

with the initial conditions P; = P, and

(1v.42) A; = PO™™) .

IvV.2 APPROXIMATE MAXIMUM LIKELIHOOD TYPE (AM)
ESTIMATES

IV.2.1 Approximate Maximum Likelihood (AML) Estimates

In this section the terminology (IV.9) to (IV.14) of Section IV.1.2 will be used.
Since it is assumed that the observations y; can be represented by the equations
(IV.2) and (IV.1), the conditional densities and expectations (IV.10) to (IV.14) depend
on the ARMA parameters a" = (¢, 07, 0) and on the distribution F) of the ¥}’s.
The notation will sometimes (but not always) make explicit the dependence on a.

The exact log-likelihood may be expressed in the form

(Iv.43) log f(y; @) = log f,{y,; &) + _gzlogfy(yi ¥ )

wherey = (yy, ..., y,)".

As mentioned in Section IV.1.2 it is not easy to evaluate f,(y; | y' ™!, @) exactly.
However, using the approximations (IV.27) to (IV.29), (IV.31) and (IV.32), which
arc based on Masreliez’s simplifying assumptions (IV. 15), to evaluate expression
(IV.25), and noting that s, and ™' depend on «, gives the following approximation
for the log-likelihood:

n n it
(Iv.449) logf(y|a) » — ¥ logs{a) + ) loggd I:—X‘—(’)—(“l] .
i=1 i=1 sia
It is easy to check that X*}™' = #X*,_, and thus the values ¥{ ™' = 1~ '=(X!""),
could be obtained from the conditional-mean values X*;,, 1 < i < n. The X*;
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values can be obtained by the methods described in Section IV.1.2. Application
of an ACM filter in (IV.44) results in our final form of approximate log-likelihood.
Maximizing this approximate log-likelihood with respect to « yields an approximate
maximum likelihood (AML) estimate.

1V.2.2 Definition of AM-estimates

Since the distribution Fy of the V; will rarely be known in practice, ACM filtering
(Section 1V.1.2) and AML estimation (Section IV.2.1) cannot be performed. Thus
Martin (1981b) follows the usual M-estimation route by replacing the score function
¥ (IV.21) by a good robustifying psi-function  (compare (IL3)—(IL5)) and by
replacing the negative of the log-likelihood (IV. 44) by a loss function which uses a
robustifying rho-function ¢ whose derivative is V.

We shall call the filter by (IV.19), (IV.31), (IV.36) to (IV.38) an ACM-flter
even if ¥ is replaced by some good psi-function  and the ACM-filter could be named
“robust filter”. The negative of the log-likelihood (IV.44) is replaced by the loss
function

" n vi—1
(1v.45) L{w) = Y log si{a) + Y o [uﬁ]
i=1 i=1 s ,-(u)

where ¥i7! and s,(«) are obtained from the ACM filter recursions. If o{r) =
= —log gd(r) and Y(r) = ¥(r) = (9/0r) log gd(r) then the minimization of L({a)
is equivalent to the maximization of the approximate likelihood given by the right-
hand side of (IV.44). If, in addition, gd = N(0, 1) the above approximation (IV.44)
becomes exact, yielding the Gaussian likelihood and ¥{~' = (#X",_,), where X*,_,
are Kalman filter estimates (compare Kailath, 1968).

An approximate maximum likelihood type (AM) estimate of « is defined by any
@ which minimizes the loss function L(a). For additive outliers models AM-estimates
appear to be the most reasonable analogues of Huber’s (1964, 1973) M-estimates
for location and ordinary regression (Martin, 1981b). With ample smoothness condi-
tions an AM-estimate is a solution of

(1V.46) (30w Lia) = 3, OI0D 51§ yi= T .p[!;
i=1 5 i=1 s;

Sy

(@los) 3, [y; - ?g] .

Oi~1
Y

] (3]m) 5, —

"
=1 s s

1V.2.3 Computation of AM-estimates
An optimization algorithm for minimization of L(«) is not yet implemented.
The reason is that things are more complicated than in the case of the Kalman

filter and Gaussian likelihood. Instead, a relatively simple iterative scheme can be
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used. The details of this scheme will be given after the following comments, which
indicate that the simple iterative scheme will yield parameter estimates which bear
reasonable resemblance to AM-estimates while are obtained by direct minimization
of L{w).

One-sided Outlier-interpolator Mode

If we believe that the assumptions of an additive outliers model (compare Section
1.4) are reasonable, what appears to be in many situations, then we set o =0
in the contaminated normal distribution (IV.30), in the ACM filter recursions and
in the AM-estimation equations. This results into

(1v.47) 5; = mi?

instead of (IV.31). The difficulty of the estimation problem is reduced by this assump-
tion, because it eliminates the need to estimate o";' .

On the other hand there are problems in which the nominal distribution for the
additive noise ¥} is a non-degenerate Gaussian distribution with variance a7 which
is positive and unknown. In such cases we will be forced to estimate o7 as well as
¢, 0 and 62, The optimization problem of minimizing L{«) (IV.45) appears then to be
more difficult than if we set o7 = 0.

If o2 is chosen to be zero, if the parameter « is known and if ¥ = ¥, (Il.S),
Martin (1981b) prefers to call the ACM filter a one-sided outlier-interpolator. The
reason is that most of the data will be unaltered (i.e. X; = Y;), while large outliers
will be replaced by one-sided predictions (i.e. £; = Yi™") (compare Martin (1979c)
for a more detailed description). This behavior should be unaltered if a is replaced
by a good estimate x like the AM-estimate obtained by solving (IV.46).

The Simplified Algorithm

Under the following moderate assumptions it is possible to rationalize a simple

alternative to direct minimization of the AM loss function L{a):

A 1) At a solution point & 0f(IV.46) the ACM filter uses & in place of the true value a,
the filter is operating in the one-sided outlier-interpolator mode with X; = ¥;
most of the time.

A2)(0/od)s; = 0, (8)06) s, ~ D.

A3)(8)és) Y7 = 0.

Usage of A2 and A3 results in the following significant simplification of the

AMe-estimation equation (IV.46) '

(1v.49) 1 i <;}L';Z1l:

ni=1 S;
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and

(1V.50) z (@9, %) L [yi —?] o

Si i
These equations have the same form as the maximum likelihood estimating equations
for nonlinear regression with error density g and time-varying scale parameter
s;=(my)"* ~ 6.

Using (IV.47) in the first row of (IV.36), noting that ¥{"" = £¢{~' and using
the simplifying assumption that s; & &, allows us to write the estimating equation

(Iv.50) as
(v.s1) S (2/0(9, 0) RH(R, — R = 0.
i=1

But if X; = Y; most of the time, this equation provides an approximate solution
to the least squares problem

(IV.52) o6, 0) =3 (8, — K74, 0)) = min
i1

because Y; is independent of ¢ and #. This is essentially the usual least squares
formulation of ARMA model fitting, except that the y;’s are occasionally replaced
by one-sided interpolates and the usual approximations to the residuals when MA
terms are present are replaced by approximations based on occasionally altered y;’s.

The foregoing explanations suggest the following iterative technique. Start with
initial crude but robust estimates of ¢, 0, ¢ and use the estimates to process the data
yii=1,...,n by an ACM filter. Use the resulting X s in a nonlinear least squares
ARMA estimation program (use e.g. the algorithm described in Section I1.3.2
with y(f) = ) to solve (IV.52) with the £ s fixed. Tterate this procedure with care
until there is little change in the estimates. Here is a more detailed description:

Preliminary Estimates:

P 0. Center the data with an ordinary location M-estimator.
P 1. Fit robustly a longish autoregression using the GM-estimation method (Section
IIL1) to compute ¢~ = (¢7, ..., ¢, ) and &.
P2. Use ¢~ to compute preliminary ARMA parameter estimates
4,(0) = (¢(10), e ¢;’0))T , 00 = (9(10)’ o 9‘(10))'r, (0

using Durbin’s (1959) idea; an alternative reference for Durbin’s technique is
Fuller (1976), pp. 281—283. These estimates in turn supply preliminary esti-
mates &, QO of the state transition matrix and innovations covariance
matrix, respectively.

P 3. Use the initial estimates ¢, 6, ¢ to compute an initial estimate C
of the covariance matrix for the state vector X,; this is done by solving C{” =
= 6COPT + §.
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Basic Iteration:

Setj = Oand ¢ = 0, so thats; = m}/>.

Run a good ARMA ACM outlier interpolator based on ¢, ¢ o0 W
backward in time using initial conditions for Masreliez’s theorem (Section IV.1.2).

Thus we first compute

XR), = (mdy/SE) (.S
where m’, is the first column of CY” and S¢), is the 1-1 element of CY). The
X1 -0 X¥ s .-, XE) are computed by running the recursions (IV.36) to
(Iv.38), (Iv.31) and (IV.19) backward in time.

2. Now run the ACM filter in the forward direction using
X0 = Xg,, w =m0 = s,

as initial conditions. The “outlier-interpolated” or filtered series at iteration
JisXP = (X¥), 1 <i<n

3. Use X{,...,X{ as input to an ARMA model fitting routine and

compute
) ; ™

PUTY gu D gUt )
4. Compute CY*" from ¢V, gu+ 1 g+ 1),

Let 4U+D = (U DT — ¢W)T, gU+OT _ gy,

If 40+ D] < e£G* D where ¢ is a tolerance value and £J*", 1 S k £ p + g,

is the estimated standard error for the coefficient estimates, then go to 7, else
go to 6.

Augment j = j + 1 and goto Step 1.

Stop.

1V.2.4 Conditional-mean M-estimates

Martin (1979) defines conditional-mean M-estimates for autoregressive parameters.
These estimates can be regarded as AM-estimates for AR models. Since things
behave more clearly than in the case of ARMA models and since the idea is slightly
different, this method of estimating AR parameters will be presented.

Let an AR process with a location of value zero be given, where the process is
possibly contaminated by additive outliers. Let y' = (y,,...,»;) and X", =
= E{X;| ¥} be defined as in (IV.9) and (IV.13), respectively. Let X, denote
(Ximpy oo X )T

A conditional-mean M-estimate (CMM-estimate) is a solution of the minimiza-
tion problem

(1v.53) L{$) = 5 g[f iz XA}?} = min.

~
i=p+1 g

where ¢ is a symmetric robustifying loss function and the scale estimate & is yet
to be specified.
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It can be checked that
(1v.s4) P = B[ YT = B(X, | Y = R = (XD = XM

In Section IV.1.2 £,(y; | y'~!) is approximated by gd{y: — Pi1) (Iv.25) and the
latter expression further by (1/s,) gd((y; — ¥17%)/s;) (IV.27). In order to obtain
L&) (1V.45) —log gd(r) was replaced by o(r). If in (IV.43) f,(y; | y'~*) is approximated
by gd{(y; — ¥i1)js;) and if —log gd(r) is set equal to ¢(r) and s; = &, then it can
be seen that minimizing L{¢) is equivalent to maximizing the autoregressive version
of the log-likelihood (IV.43) approximately and minimizing L{¢) corresponds to the
minimization of L{«) defined in (IV.45).

Since the solution of the minimum problem (IV.53) is a stationary point we have

(1v.55) SOIXA,+ Diwww[z;&?ﬂ] —0
i=p+l &
where
0X;_
(1v.56) [D{d*) s = —'—,—j , kj=1,..,p.
i lgr=p

The estimating equation (IV.55) is rather hard to solve due to the presence of
D{¢"). There is some evidence in the form of both heuristic arguments and Monte
Carlo (Martin, 1979), that the term D{(¢") ¢* may be dropped without seriously
degrading the estimate. Thus we turn to the simpler approximate version

" _ AT g
(IV.57) T X5 [Lﬁ ,l,ﬂ?‘] —o.

2
i=p+1

One method for obtaining the estimate & could be to use the side condition
n AT ga
(IV.58) EELI J [ﬁiiﬁf] - b
n— 2pi=p+1 &
corresponding to Huber’s (1973) proposal for estimating regression coefficients
and scale simultaneously (compare (I1.6)).

Another method to obtain & is provided by the filter algorithms discussed in Section
IV.1. In order to solve (IV.57) we need to express X*; as a function of ¢ and y*
for the pth order autoregressive additive outliers model. Good approximate versions
of the estimates X", could be computed by Masreliez’s filter theorem (Section IV.1.2).
Note that an AR (p) process can be written in the state-variable form (IV.1) and
(IV.2) by setting

b by o B,
_ 1o ... o0

(1v.59) : o=[0 1 o},
00 .10

(1V.60) @ = (@=15 0, ..., O)F

and x; defined as in this Section, i.e. (X)), = X;=y, ..., (X;), = Xi—p-
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Because we will not know the distribution F, of the ¥;’s and therefore the distribu-
tion (¥;| Y'™') is also unknown, we have to replace the score function ¥; (1V.21)
for the observation-prediction density with a bounded and continuous function.
We can use (IV.33) to approximate ¥; and we can further replace y(r) = —(afér).
. log gd(r) by (d/dr) g(r) = W(r), where ¥ is a usual psi-function. If ¥; has the con-
taminated normal distribution (IV.30) with ¢} = 0, then we can sct §7 = m;; (see
also (IV.47)) where my, is the 1-1 element of M, (IV.16). Further details including
some Monte Carlo results for various ¥ shapes are given by Martin and De Bow
(1976).

With the above approximations

i i ie
(1v.61) Vi)~ el = T8
and

(1v.62) my; % 5

in mind, an attractive simplification of Masreliez’s filter (IV.18) is

T
(1v.63) £, = X"T¢ + 5 [L—_X_ﬂzl
with §; obtained from the data-dependent auxiliary recursion (IV.19) for M. It turns
out that (IV.63) is a special case of (IV.36).

Thomson (1977) and Kleiner, Martin and Thomson (1979) (compare also Huber,
1982) used — in connection with spectral density estimation — a robust AR filter
which is a further simplification of (IV.63)

T,
(1V.64) 2. =X"T¢+ 8y [-‘;ﬁ]
5

where § is a data-dependent but time-invariant estimate of the scale for the prediction
residuals y, — X[¢. For example, ¢ might be determined by (IV.57) and (1V.58).
The above filter is referred to as a fixed-scale filter. See also Masreliez and Martin
(1977) for some theory about such filters when ¢ and are known. Martin (1979)
prefers (IV.63) instead of (IV.64) because the scale factor §; depends on the local
character of the data and if ¥ is redescending then the version (I1V.64) is unsafe,
because it can then loose track of the data never to regain it.

Notice that if y and ¢ are chosen to be the same in (IV.57) and (IV.64), what is
hardly unreasonable, then it is not nccessary to solve equation (IV.57) directly.
For multiplying both sides of (IV.64) by X", = X" (¢) and summing over i shows
that (IV.57) is equivalent to the Yule-Walker type normal equations (compare Box
and Jenkins, 1976)

(1v.65) T X6 [£067) - XT6) 6] = 0.
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The above equation invites the iterative solution

(1v.66) T X" (¢ [R4¢) - XU 1] =0, =12,
i=p+1
where X" (¢/) is obtained from (IV.64) with ¢ = ¢’ and ¢’ is the least squares
estimate.

When the observed series y,, ..., y, contains a relatively small fraction of outliers,
the properly calibrated robust scale estimate ¢ computed from (IV.58) should differ
relatively little from the square root of the usual ¢ computed from the residuals
of the final iteration of (TV.66). Thus the latter simpler method which is applied
in conventional least squares procedures, might be adequate.

Some exploratory Monte Carlo results yielded smaller biases for CMM-estimates
than for GM-estimates at non-Gaussian additive outlier situations. The corresponding
variances were also typically smaller. Efficiences at the Gaussian situation were
reasonably high. The Monte Carlo investigations also showed (not unexpectedly)
that the performance of CMM-estimates is quite poor at heavy-tailed innovation
outlier situations.

IV.3 ROBUST FILTERING AND ROBUST SMOOTHING

A remarkable method to estimate parameters of time series models is to perform
a robust filtering algorithm or robust smoothing algorithm on the time series ob-
servations which could be contaminated by outliers, so that the outliers are replaced
by reasonable values and then to estimate parameters by usual least squares.

A fact to be considered in this context is that most filtering and smoothing algo-
rithms do not fully exploit the information in the data, e.g. they may neglect the
correlations between neighboring points. Also the literature in general reveals no
attempts to design robust smoothers and filters which are optimal for particular
non-Gaussian model specifications. Nevertheless, methods which do not fully exploit
the information in the data will be mentioned shortly below. An exception are
the ACM filters and ACM smoothers described in Section IV.1, because the filiering
and smoothing algorithms assume that the series of interest satisfies an ARMA (p, q)
model with additive outliers. Another exception is the robustified Kalman filter
introduced by Masreliez and Martin (1977). The essence of this filter will be described
in the next Section. .

IV.3.1 The Robustified Kalman Filter

In order to construct a robustified Kalman filter, Masreliez and Martin (1977)
begin to obtain robust Bayesian estimates X" of a vector x in the linear model

(1v.67) y=Hx+v
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for the following two distinct situations:

(i) the state X is Gaussian and the observation error V is (heavy-tailed) non-
Gaussian (this situation is similar to a time series with additive outliers)

(ii) the state X is heavy-tailed non-Gaussian and the observation error is Gaussian
(this situation can be compared with a time series contaminated by innovation
outliers).

In order to apply the estimation procedure it is necessary to transform the linear
model (IV.67), so that two certain distributional properties are fulfilled. A lemma
insures the existence of an approximate transformation whenever V has a con-
taminated normal or elliptical distribution.

Estimating x requires the knowledge of the covariance matrix of X, what is natural
in the Bayesian context, but appears to be a strong restriction for practical computa-
tions.

With the results for the linear model (IV.67) in hand it is possible to construct
a dynamic filter type estimator through step by step implementation of single step
robust Bayesian estimators. The model used now is

(Iv.68) X; = Px;-1 + 3
(1v.69) Yi=Hx; + v
which is closely related to the state-variable representation (IV.1), (IV.2) of an ARMA

model. Clearly, the simplifications @, = &, H;, = H, Y, = Y, and V; = V; would
lead to the construction of a filtered ARMA process,

1V.3.2 L-Smoothers

Perhaps the currently best-known type of robust smoothers are those based on
moving order statistics as introduced by Tukey (1977). The most simple example
of such a smoother would be a moving median of prescribed span. Often odd-span
running medians are used. In contrast, Velleman (1975) proposed even-span ruaning
medians to reduce difficulties found in odd-span medians. Running medians are
often combined with each other and with simple linear filters to improve their per-
formance. Velleman’s (1980) article lists a collection of non-linear smoothers based
upon running medians and presents methods for describing and comparing their
performance, what is not quite easy in face of the non-linearity. A device which is
often effective is called “twicing”. To understand this device we denote the smoothed
value of y; by Sm(y,), and remark that a data smoother separates the sequence
{y;} into the smooth {z;} = Sm{y;} and the rough {r;} = {y; — z;}. The iterative
improvement {z;} = Sm{y;} + Sm{r;} is used to recover patterns from the residuals
r; and is called “twicing”.

By analogy to the use of the term “L-estimator” to describe any of a broad class
of location parameter estimators based on order statistics we shall refer to smoothers
based on moving order statistics as L-smoothers.
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Papers on L-smoothers appeared in the engineering literature (Rabiner, Sambur
and Schmidt, 1975; Justusson, 1977; Huang, Yang and Tang, 1979) and in econo-
metrics (Polasek, 1982b). This is no doubt due to the real need for some kind of robust
smoothing to deal with outliers in time and space series, along with the fact that
L-smoothers have rather obvious and intuitively appealing resistance properties.

IV.3.3 Moving M-estimate Smoothers

If L-smoothers are good robust smoothers, then it would come without surprise
to find that moving maximum likelihood type estimates of location (Huber, 1964)
provide useful robust smoothers. On can find pertinent discussions in the papers
of Cleveland (1979, 1982) and Stuetzle (1979).

IV.3.4 Robustified Splines

Let {y,-}, 1 £ i £ n, be the series to be smoothed, let Sm be a smoothing operator
and let {z,} = Sm{y;} be the smoothed series.

The theoretically cleanest approach to linear smoothing is through splines(Reinisch,
1967): minimize the mean square of the second {or of a higher order) derivative of z

(1v.70) ave{(z})*} - min

i)
subject to a side condition of the form
(v.7) . ave{{y;, — z,)*} < const.

The means are taken over a suitable range of i-values.

This approach can be robustified very easily (Huber’s (1979) paper is a basic
reference to this approach): we simply replace the square in (IV. 70) by a less rapidly
increasing function g. Past experience with location and regression estimates suggests
that ¢ should be chosen convex with a bounded derivative y = ¢, for example

c

142
(IV.?Z) o) = {7\ . for !x ‘

3 | =
clx| = 4e* for [x| >

where the constant ¢ regulates the degree of robustness. As Huber (1979) mentions,

robustifying splines have been considered often but little has appeared in the literature
(see however Lenth, 1977).

IV.3.5 Problems with Robust Filters and Smoothers
It should be noted that, in general, literature does not distinguish between filters
and smoothers in the sense of Section IV.1.2 and IV.1.3, respectively. The terms

“filter” and “smoother” are used interchangeably.
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Although robust linear filters exist, robust smoothers are inherently nonlinear
(see Kassam and Poor, 1985). Nonlinearity causes more problems. Nonlinear
smoothers fall outside the classical framework of linear filter theory and are difficult
to analyze mathematically. One difficulty is that it is not possible to characterize
a nonlinear filter by its transfer function, which is a well known advantage of linear
filters. Nonlinearity can also cause transfer of power from one frequency to another.

However, nonlinear data smoothers provide a practical method of finding general
smooth patterns for sequenced data confounded with heavy-tailed noise.

The various approaches to robust filtering and smoothing described in this chapter
all share the common property of being resistant toward outliers. A detailed under-
standing of their features in probabilistic terms, however, has been lacking for a long
period, because there has been a scarcity of tools which are necessary for the careful
statistical analysis of the behavior of nonlinear smoothers. Thus it has been difficult
for potential users to determine which of several approaches, and which particular
smoother within a given class, will be a good one for his problems.

Mallows (1980a, 1980b) contributes significantly to the theory of nonlinear
smoothers what should greatly enhance our ability to analyze proposed robust
smoothers of many varieties. A very important aspect of his work is a theorem
which characterizes the “linear part” of a nonlinear smoother, and provides an
additive orthogonal decomposition of the smoothers into the linear part and a resi-
dual process. Presumably a good robust smoother would have a linear part which
is “close” to the linear smoother which the user would prescribe for an outlier-free
process, and a residual process which is relatively “small”. It should be noted that
Mallow’s decomposition theorem is primarily of use for the analysis but not for
the design of robust smoothers.

73



V. SOME RESULTS CONCERNING APPLICATION AND
FURTHER RESEARCH

A Monte Carlo investigation of methods for the least squares estimation, M-estima-
tion and GM-estimation of ARMA models will be presented. Monte Carlo generally
reveals properties which are expected from theory. For outlier-free data the means
of the estimated parameters differ scarcely, and the mean square errors of M-esti-
mators and GM-estimators are larger than those for least squares estimators. For
the processes chosen here, with innovation outliers, the means of the estimated
parameters also differ only slightly, but the sample relative efficiencies of M-esti-
mators are larger than the sample relative efficiencies of GM-estimators and of least
squares estimators. In the presence of additive outliers the GM-estimation essentially
yields better parameters and substantially smaller mean square errors than the least
squares estimation and than the M-estimation.

Several topics for further research concerning identification and estimation of
various models, outlier detection, filters and spectral density estimation will be
mentioned.

V.1 SOME MONTE CARLO RESULTS FOR GM-ESTIMATORS
OF AR MODELS

In order to study the behavior of various estimators of AR models, which were
discussed in Section IL.1 and Section IIL1, AR(1) processes with location p = 0
were simulated. The number of observations for each process is 100. The number
of replications for each process is 50. The Vs that cause additive outliers have
a Gaussian mixture distribution CND(x, 03) = (1 — ) 8, + xN(0, 03) with o3 =
= 9 VAR X, (compare Section 1.4). (For an AR(1) model, VAR X, = ?/(1 — ¢%),

Table V.1, Simulated AR(1) processes.

Abbreviation ¢ v K
ARGP 5 50 0
ARGP 8 R 0
ARIOCNP 5 °5 10
ARIOCNP 8§ -8 ‘10
ARAOP 5 50 1
ARAOP 8 3 0 1
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where ¢ denotes the scale of the innovations.) Abbreviations and values for ¢y, v
and « for processes with CN(v, 1, 11) = (1 — v) N(0, 1) + vN(0, 121) — distributed
innovations are given in Table V.1.

Furthermore, processes with t,-distributed innovations without additive outliers
were simulated for ¢, = -5 (ARIOTP 5) and ¢, = -8 (ARIOTP 8). Note that the
CN(‘1, 1, 11) distribution and the #,-distribution have both variance 2.

Pseudo random numbers from the normal distribution with mean 0 and variance 1
are generated by a comparison method implemented in the algorithm FL (Forsythe,
Ahrens-Dieter) given by Ahrens and Dieter (1974). The algorithm FL uses a multi-
plicative congruental generator with factor a = 5 308 871 541 and module m = 23°
to generate pseudo random numbers U,, i = 1, 2, ..., uniformly distributed between
Oand 1.

Pseudo random numbers 4;, i = 1,2,..., with a CN(v, oy, 0) distribution are
generated in the following way.

(1) Seti=1.

(2) Generate a pseudo random number U; from a uniform distribution between
0and 1.

(3) Set A; equal to a pseudo random number from a N(0, o) distribution, if U, > v.

(4) Set A, equal to a pseudo random number from a N(0, ¢3) distribution, if U; < v.

(5) Stop, if enough A;’s are generated.

(6) Augment i =i + 1 and go to (2).

Pseudo random numbers V;, i = 1,2,...,from a CND(x, 05) distribution are
generated by the following algorithm.
(1) Seti=1.
(2) Generate a pseudo random number U, from a uniform distribution between
0andl.
(3) Set ¥, =0,if U, > .
(4) Set V; equal to a pseudo random number from a N(0, ¢2) distribution, if U, < .
(5) Stop, if enough A;’s are generated.
(6) Augment i =i + 1and go to (2).

Pseudo random variables with a t-distribution are generated by a modified re-
jection method given by Stadlober and Dieter (1985).

For the estimation of AR models for the simulated processes it was assumed that
the order of the model to be fitted were known, but no information about the para-
meters to be estimated would be given. Therefore starting values ¢ were determined
by the Yule-Walker equations (Box and Jenkins, 1976) and the starting value &°
was §o — @19y — «v. — 431,?,, where 9, denotes an estimate of the autocovariance
of the lag k for the given time series. These starting values were used to compute
least squares estimates by the IWLS algorithm (COmpare Section I1.1.2) in the Monte
Carlo study.

Table V.2 lists the methods that were used to fit AR(1) models to the simulated
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AR(1) processes. In the abbreviations the letters H, HA and B stand for Huber’s psi,
Hampel’s psi and Tukey’s bisquare psi, respectively (compare Section IL.L.1).
The letters M, MA and S stand for M-estimators, Mallows type GM-estima-
tors and Schweppe type GM-estimators, respectively (compare Section IIL1.1.).
Clearly, LS stands for Jeast squares. The starting values for one estimation in general
are the results of the preceding estimation except for SH, where the starting values
are the results of MB. The tolerance value for the estimations is & = -001. The
locations u of the given time series is assumed to be zero. The estimating equation
is (I11.8), where the “largeness” of y;_, is determined by (II1.9).

Table V.2. Types of estimations.

Abbreviation Wy . W, .
LS Identity Identity
MH wg c== 1345 Identity
MHA Vpga a= 14, b= 28,d= 475 Identity
MB yp ¢ = 4685 Identity
MAH vy ¢ = 165 equal to ¥
MAHA = yuoa=17b=34,d=50 equal to vy
MAB wg c¢= 558 equal to v,
SH v ¢=16 equal to vy
SHA Ve a=17b=34,d= 55 equal to ¥y
SB vg ¢ =60 equal to yy

For each estimator, except for the least squares estimator, the constants of the
Y-functions were chosen so that the asymptotic efficiency of the estimator relative
to the least squares estimator is ‘95 for outlier-free data, where this efficiency is the
ratio of the asymptotic variance of the least squares estimator and the estimator
in question. With this setting of the constants of the psi-functions comparisons
of the estimators make sense. The computation of the asymptotic variances is explai-
ned in Section IIL.2.3.

In the case of ¥; = Yz, the IWLS algorithm is first run with y, = Y, where ¢
is equal to the constant a of /g, to obtain an estimate for ¢. If {; = Y the IWLS
algorithm is first run with y; = Yy, where the constant is equal to the constant ¢
of Yy divided by /5, because this Y4(f) with —c/\/(5) < t < ¢/\/(5) is similar to the
increasing part of Y(t). '

For each type of simulated processes the mean (MEAN), the mean square error
(MSE) of the estimates of ¢, and the mean of the averages of the final weights w{™
in the IWLS algorithm (MAVW) were computed. The MSE is a measure for the
variability of the method of estimation and is defined by

REP
MSE = REP™13: (41, — 1
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where REP denotes the number of replications for one type of simulated processes
and ‘51.1: is the estimate of the true parameter value ¢, for the kth simulated process.
The MAVW tells about the portion for the kth simulated process. The MAVW
for others than the least squares estimator can be expected to be smaller in the
presence of additive outliers than in the presence of innovation outliers.

The Table V.3 to V.6 summarize the results of the estimations for the simulated
processes. EFF denotes the sample relative efficiency of the estimate with respect
to the least squares estimate, i.e. the ratio between the MSE of the least squares

Table V.3. Results of estimations (described in Section IL1 and Section IIL1) of ¢, for outlier-
free processes.

ESTIMATOR

LS

MH
MHA
MB
MAH
MAHA
MAB
SH
SHA
SB

Simulated processes

ARGP 5 ARGP 8
MEAN MSE EFF MAVW| MEAN MSE EFF MAVW

462 123 1-00 1-00 <772 -572 1-00 100

-459 1-35 911 -961 <770 666 -858 960
*460 1-34 919 965 770 659 867 *965
459 1-33 921 917 770 <661 -865 917
+460 1-35 909 -962 769 *679 842 960
-461 1-33 921 966 769 +672 850 964
460 1-37 -895 -879 -769 <690 -829 -875
-460 1-36 901 971 -770 691 -827 977
-461 132 934 983 770 674 -848 -982
+461 1-31 940 769 665 -859 945

945

Table V.4. Results of estimations (described in Section IL.1 and Section 1II.1) of ¢, for processes
with CN-distributed innovations.

ESTIMATOR

Simulated processes

ARIOCNP 5 ARIOCNP 8
MEAN MSE EFF MAVW| MEAN MSE EFF MAVW
[
LS 470 111 100 100 -176 750 100 1-00
MH -478 -600 1-85 -935 -780 -388 194 +935
MHA -482 -532 2:08 -932 782 330 227 932
MB -482 -527 2:10 -896 -783 323 2:33 -897
MAH -472 -935 118 -917 771 -487 154 -923
MAHA -474 923 120 -914 778 485 1:55 922
MAB 470 102 1-09 -845 777 498 151 -851
SH -472 -798 139 -951 +780 -414 1-81 *950
SHA -468 -925 1-20 -944 -781 410 183 -949
SB -468 -880 126 -927 -780 -393 191 ‘931
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Table V.5. Results of estimations (described in Section II.1 and Section IIL 1) of ¢, for processes
with ¢-distributed innovations.

Simulated processes

ESTIMATOR ARIOTP § ARIOTP 8
MEAN MSE EFF MAVW| MEAN MSE EFF MAVW

LS -493 -859 100 100 777 -500 100 " 100

MH -495 731 118 -940 -779 420 1419 -940
MHA -496 746 115 -941 <780 -415 120 -942
MB -496 -729 118 -906 -781 411 122 -906
MAH -496 -179 1-10 -934 -780 -459 1-09 <933
MAHA ‘ -497 -827 104 935 779 475 105 -935
MAB | -499 -820 1:05 -861 779 490 102 -859
SH | 495 794 108 957 780 468 109 -956
SHA } -499 -846 102 -958 7719 501 998 958
SB i -499 821 1-05 <934 =779 498 1-00 +935

Table V.6. Results of estimations (described in Section I1.1 and Section IIL1) of ¢, for processes
with additive outliers.

Simulated processes
ESTIMATOR ARAOP 5 ‘ ARAOP 8

MEAN MSE EFF MAVW| MEAN MSE EFF MAVW
LS 211 947 100 100 348 217 100 100
MH 212 923 103 935 405 175 124 922
MHA -208 940 101 932 427 167 130 915
MB -207 945 100 897 403 180 121 -889
MAH 297 51 172 -918 -545 806 270  -900
MAHA <329 4-50 211 912 -602 522 4-16 +890
MAB 333 442 214 844 -597 538 404 832
SH 282 633 150 941 -553 773 281 -910
SHA 334 467 203 930 -657 336 647 895
SB <321 5-19 1-83 <915 613 5-04 4-31 -898

estimate and the MSE of the estimate in question. The columns denoted by MSE
contain 100 times the mean square error. )

The following comments are referring to the results shown in Tables V.3 to V.6:
The means of the estimated parameters differ only slightly for the outlier-free
processes and the processes with innovation ouiliers (Tables V.3 to V.5), but
substantially for processes with additive outliers. This results from the fact that the
contamination by innovation outliers is rather mild. The sample relative efficiency
of all estimators, except of the least squares estimator, for the outlier-free data
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is a little bit less than the desired asymptotic relative efficiency of -95. Taking the
sample relative efficiency as a measure for the performance of an estimator, the
M-estimators outperform the GM-estimators, if the data contain innovation outliers.
The Schweppe type estimators are superior to the Mallows type estimators with the
same psi-functions for data with CN-distributed innovations. Data with t-distributed
innovations — in contrast to the theoretical expectation — are slightly better esti-
mated by Mallows type estimators than by Schweppe type estimators and the mean
square error for the Schweppe type estimator with Hampel’s psi ARIOTP 8 is even
larger than the mean square error of the least squares estimator. If additive outliers
are present, GM-estimators give better results, or more precisely speaking, estimated
parameters closer to the true parameters and smaller mean square errors. In particular,
it is demonstrated that GM-estimators using redescending psi-functions have high
efficiencies. For ¢, = -5 the Mallows type estimators are superior to Schweppe type
estimators with the same psi-functions, as expected from the theory. In the case
of ¢, = -8, however, the Schweppe type estimators are superior to the corresponding
Mallows type estimators.

Some interesting sample relative efficiencies and means of estimates condensed
in Tables V.3 to V.6 are graphically presented by Stockinger (19853) in his Figures
2.1 to 2.5 which offer a clear optical survey.

V.2 SOME MONTE CARLO RESULTS FOR GM-ESTIMATORS
OF ARMA MODELS

The GM-estimators presented in Section I1.2 and Section ITI.2 were applied to
estimate the first-order AR parameter ¢, ant the first-order MA parameter 6,.
¢, was estimated for the 8 types of simulated AR(1) processes which were described
in Section V.1. 6, was estimated for 10 types of MA(1) processes with location
i = 0. The numbers of observations and replications are the same as for the AR(1)
processes, namely 100 and 50, respectively. The V;’s that cause additive outliers have
a Gaussian mixture distribution CND(x, 05) = (1 — x) 8o + xN(0, 03) (compare
Section I.4), where o, is a multiple of the variance of the outlier-free process. (For
an MA(1) model VAR X, = o*(1 + 07).) Abbreviations and values for 8y, v, x
and o for processes with CN(v, 1, 11) = (1 — v) N(0, 1) + vN(0, 121) — distributed
innovations are given in Table V.7.

Not only AR(1) processes with #,-distributed innovations without additive out-
liers were simulated, but also MA(1) processes which have the abbreviations
MAIOTM 5 for 6, = —-5 and MAIOTM 8 for §, = —-8.

Starting values for AR parameters were computed by the Yule-Walker equations
as it was also described in Section V.I. Starting values for MA parameters were
computed by a Newton-Raphson algorithm which was given by Wilson (1969) and
which was also described by Box and Jenkins (1976). For this Newton-Raphson

79



Table V.7. Simulated MA(1) processes.

Abbreviation 0, v K o}
MAGM 5 —5 o 0 -
MAGM 8 —8 0 0 -
MAIOCNM 5 -5 ‘1 o -
MAIOCNM 8 —8 -1 0 —
MAAO 1M —*5 o -05 9 VAR X;
MAAOIM3S —8 0 -05 9 VAR X;
MAAO2M 5 -5 0 - 05 100 VAR X;
MAAO2M 8 —8 [ -05 100 VAR X;

algorithm the order of the model to be estimated must be chosen, but nothing needs
to be known about the parameters to be estimated. The algorithm of Wilson also
gives a starting value for the innovations scale. For some time series the algorithm
of Wilson does not give MA parameters which define an invertible MA process.
In these cases the starting values for MA parameters were set equal to the true
parameters.

In addition to the estimators described in Table V.2 Hampel-Krasker-Welsch
type GM-estimators (Section II1.2.1.) given in Table V.8 were used to estimate
AR(1) and MA(1) models. Again the constants of the y-functions were chosen so
that the asymptotic relative efficiency of all estimators, except the least squares
estimator, of the first-order AR parameter is -95. If ¥, is redescending, the algorithm
for the GM-estimation of ARMA models (Section I11.2.2) was not run first with
a monotone ,, like the IWLS algorithm (Section IL.1.2), because the scale now is
improved by the medmed estimator (I11.32) but not by using an equation like (IIL4)
for pure AR models. The starting values for a certain type of estimation in general
are the results of the preceding estimation except that an estimation with a redescend-
ing -function which is based on the estimation of the same type with Huber’s
Y, and the estimations MAH, SH and HKWH are based on MB to make the GM-
estimators comparable.

Table V.8. Types of estimations.

Abbreviation "
HKWH vy =275
HKWHA Vpaa=27b=54,d= 10
HKWB wg c=95

Similar to Section V.1, the mean (MEAN) 100 times the mean square error (MSE),
the sample relative efficiency (EFF) and the mean of the averages of the final weights
w™, i=p+1,..,n (MAVW) for various estimates ¢, or 0, for various types
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of time series are given in Tables V.9 to V.17. When the algorithm to compute
GM-estimates of ARMA parameters given in Section II1.2.2. did not reach the re-
quired precision after 30 iterations, the computed estimate was excluded from
further analysis. The algorithm failed in fairly few cases, namely a GM-estimator
did not reach the required precision for about 1 percent of its applications. The reasons
for the failure could be that the algorithm solves equations instead of a minimum
problem and that the equations are nonlinear. Unfortunately it seems to be impossible
to formulate a minimum problem.

Table V.9. Results of estimations (described in Section I1.2 and Section IIL2) of ¢, for outlier-
free processes.

Simulated processes
ESTIMATOR ARGP 5 ARGP 8
MEAN MSE EFF MAVW| MEAN MSE EFF MAVW

LS 461 1:23 100 1-00 172 *575 100 1-00

MH 459 1-35 916 <958 770 +655 -878 958
MHA 459 135 ‘914 963 770 658 -875 1962
MB 459 135 911 914 <770 660 872 913
MAH 460 1:36 905 962 771 657 -876 965
MAHA i 460 1:36 -906 966 1M 656 878 969
MAB 459 140 883 -879 R 672 *856 -881
SH 459 1-39 +890 -974 769 676 -851 974
SHA 459 1-38 896 979 769 -690 834 980
SB 459 1-38 894 938 769 696 827 938
HKWH 463 132 937 ‘991 770 657 876 991
HKWHA 459 1-42 866 +993 770 657 -876 993
HKWB +458 1-44 857 978 770 653 -881 979

The estimates for the first-order AR parameter behave similarly to those listed
in Section V.1., giving evidence that the algorithm to compute GM-estimates of
ARMA parameters introduced in Section IIL.2.2 js useful in the AR(1) case. Of
course, in this section a Hampel-Krasker-Welsch type estimator is included in addition
to the estimators already treated in Section V.1. For CN-distributed innovations
the Hampel-Krasker-Welsch type estimator tends to be better than the Mallows
type estimator but worse than the Schweppe type estimator. For t-distributed innova-
tions the Mallows and Schweppe estimators seem to be superior to the Hampel-
Krasker-Welsch type estimator. The first-order AR parameter is best estimated by
the Mallows type estimator for ARAOP 5 processes. In contrast, the Hampel-
Krasker-Welsch type estimator gives on the average better parameter values than
a Mallows type estimator for ARAOP 8 processes. The efficiency of Hampel-Krasker-
Welsch type estimators is somewhere in the middle of the efficiencies of the two other
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Table V.10. Results of estimations (described in Section IL2 and Section ITL.2) of ¢; for processes
with CN-distributed innovations.

Simulated processes

ESTIMATOR ARIOCNP 5 ARIOCNP 8
MEAN MSE EFF MAVW| MEAN MSE EFF MAVW

Ls -470 111 1-00 1-00 <776 754 1-00 100

MH 478 -609 1-82 929 -780 400 1-88 929
MHA -481 *543 2:04 ‘924 -782 *334 2:25 ‘924
MB *481 535 2:07 -877 782 +326 2:31 878
MAH 471 934 1-19 904 718 +493 153 902
MAHA 471~ -985 113 -896 718 =511 1-48 +898
MAB 469 1-02 1-09 -815 776 512 147 -813
SH 47 818 1-36 ‘936 780 -425 177 936
SHA -469 959 116 928 718 -495 1-52 931
SB -467 955 116 888 777 479 1.57 +892
HKWH -468 926 1:20 967 <779 +450 1-67 964
HKWHA -467 974 114 969 780 466 1-62 965
HKWB -468 994 1-12 +952 <779 +482 1-56 947

Table V.11. Results of estimations (described in Section IL.2 and Section I11.2) of ¢, for processes
with ¢-distributed innovations.

Simulated processes

ESTIMATOR ARIOPTP 5 ARIOTP 8

| MEAN MSE EFF MAVW| MEAN MSE EFF MAVW

1
LS | 493 .82 100 100 776 499 100 100
MH | 495 73 121 932 | 779 421 119 931
MHA | 494 737 117 932 | 780 415 120  -931
MB 495 121 119 885 | -780  -403 124 884
MAH 496 805 107 917 | 780  -452 110 -914
MAHA 499 -831 104 917 | 781 459 109 914
MAB 500 818 105 -831 81 459 109 -827
SH 495 780 111 -943 | 779 461 108 042
SHA 499 790 109 042 | 778 531 940 94l
SB 498 786 1110 902 | 781  -453 110 -901
HKWH 495 821 105 o7l 779 502 993 -960.
HKWHA | -498  -859 100 <973 | 779  -520  -943  -o72
HKWB 498 847 102 956 | 779 525 951 953

types of GM-estimators, and the Schweppe type estimator has the highest sample
relative efficiency for the processes with additive outliers.

Analogous to Section V.1 some interesting results of the estimations are graphically
presented in Figures 3.1 to 3.5 in Stockinger (1985a).
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Table V.12. Results of estimations (described in Section I1.2 and Section IIL2) of ¢; for processes
with additive outliers.

Simulated processes

ESTIMATOR ARAOQP 5 ARAOP 8
; MEAN  MSE EFF MAVW| MEAN MSE EFF MAVW

LS *209 9-55 1-00 100 -347 21-8 1-00 1-00

MH 212 923 104 927 413 17-0 1-28 909
MHA +208 9-39 102 924 427 14-5 1-51 895
MB 208 9-39 1-02 877 +484 13-8 1:58 -850
MAH 295 557 17 912 +560 7-38 2:96 -887
MAHA +332 433 2:21 *904 624 4-55 4-80 878
MAB 0331 4-38 2:18 -827 -627 4:36 501 +802
SH | 282 633 1-51 ‘932 565 7-26 301 900
SHA =332 4-66 2:05 922 661 3-36 650 -885
SB 330 471 2:03 885 -660 336 6:50 -851
HKWH 287 636 1-50 963 -572 7-16 3-05 931
HKWHA -315 5-80 1-65 964 649 4-31 5:06 930
HKWB 318 573 1-67 -948 569 4-00 546 917

Table V.13. Results of estimations (described in Section I1.2 and Section IIL2) of 8, for outlier-
free processes.

Simulated processes

ESTIMATOR MAGM § MAGM 8
MEAN  MSE EFF MAVW| MEAN MSE EFF MAVW

LS —-484 1-18 1-00 100 —799 +522 1-00 1-00

MH —+482 1-31 901 958 —-797 607 860 ‘958
MHA —-483 1-32 -899 963 —+797 -609 -858 -963
MB —+483 1-32 -897 914 —+798 612 -853 913
MAH —-486 1-29 919 963 —-798 581 899 963
MAHA —-487 1-29 916 967 —799 580 +901 967
MAB — 486 1-34 -887 -882 —-798 -605 -864 882
SH —483 1-31 902 974 —-798 593 -881 974
SHA — 485 1-33 892 980 —-798 585 893 980
SB 485 1-35 -878 *938 —-798 595 -879 ‘938
HKWH —+484 1-34 882 +991 —-798 583 896 991
HKWHA —-484 1-34 883 993 —+799 568 919 -993
HKWB —-484 1-35 879 ‘978 —-798 -573 911 ‘978

The estimated first-order MA parameters differ only very slightly for outlier-free
processes and processes with innovation outliers. For processes with innovation
outliers the least squares estimator in some cases has, which shows up as an unex-
pected phenomenon, a smaller mean square error than GM-estimators; the M-
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Table V.14. Results of estimations (described in Section I1.2 and Section I11.2) of 8, for processes
with CN-distributed innovations.

Simulated processes
ESTIMATOR MAIOCNM 5 MAIOCNM 8
MEAN MSE EFF MAVW| MEAN MSE EFF MAVW

LS — 494 804 1-00 1-00 —+800 455 100 1-00

MH —+489 -606 133 931 —+796 *340 1-34 *930
MHA —+490 -643 1-25 +927 —-795 +365 1-25 <926
MB —+490 626 1-28 -880 —795 362 126 -879
MAH —+489 921 -872 -908 —-792 --391 116 -907
MAHA —-487 120 671 -901 —785 -540 844 -904
MAB —-487 125 <641 -822 —+784 -531 857 819
SH —-486 -853 <942 938 —<792 +386 118 940
SHA —-475 102 790 -930 —-187 -487 935 -934
SB —-479  1-08 746 892 —-787 -493 923 -893
HKWH —-477 <947 -848 968 —-790 372 122 968
HKWHA —-482 117 686 969 —789 $393 1116 969
HKWB —+481  1-22 660 +952 —788 2397 115 951

Table V.15. Results of estimations (described in Section IL2 and Section IIL2) of §; for processes
with f-distributed innovations.

Simulated processes
ESTIMATOR MAIOTM 5 MAIOTM 8
MEAN MSE EFF MAVW| MEAN MSE EFF MAVW

LS —+509 -887 1-00 1-00 —-811 350 1-00 1-00

MH —510 766 116 930 —+809 309 113 930
MHA ~+508 858 1-03 930 —+807 353 990 930
MB —+508 +823 1-08 883 —+807 -354 988 -883
MAH —+509 740 120 914 — 807 -320 109 ‘914
MAHA —-512 -815 1-09 913 —-808 *375 1932 915
MAB —-512 792 112 828 —+809 +363 -965 824
SH —+508 1693 128 942 ~+809 304 115 943
SHA —+513 723 1-23 940 —-809 -393 +890 942
SB —513 732 1-21 900 —-809 +388 902 901
HKWH ~—+508 688 129 971 ---810 *303 115 970
HKWHA —-507 <727 1-22 973 —-808 -375 *933 973
HKWB —+508 752 1-18 -955 —-807 -390 898 +954

estimators have higher sample relative efficiencies than the least squares estimators
except for MAIOTM 8 processes. The quality of GM-estimators expressed in well
estimated parameters and high efficiencies, is revealed for processes with additive
outliers, especially for MAAO 2 processes.
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Table V.16. Results of estimations (described in Section IL.2 and Section II1.2) of 8, for processes
with additive outliers.

Simulated processes

ESTIMATOR MAAO1MS5 MAAO1M3B
MEAN  MSE EFF MAVW| MEAN MSE EFF MAVW

LS —+312 4-43 1-00 1-00 —-431 142 1-00 1-00

MH —+322 397 111 949 —-458 12:2 1-16 947
MHA —+324 392 113 +951 —+462 11-9 119 948
MB —+326 385 115 902 —+465 11-8 1-20 *900
MAH —-367 2:66 1-67 942 —-538 729 195 931
MAHA —-383 2:31 1.92 940 —-578 548  2:59 920
MAB —-388 227 195 -857 —+582 529  2:68 -840
SH —-361 2:85 1-55 958 —-531 773 183 *950
SHA —+394 2:32 191 956 —+587 517 274 940
SB —-386 2:34 1-89 917 —-585 530 267 902
HKWH —365 2-83 1-57 978 —+540 731 1:94 +968
HKWHA —-381 2-54 1-74 978 —+580 561  2:53 965
HKWB —-387 2:45 1-81 963 —-581 553 2:56 949

Table V.17. Results of estimations (described in Section IL.2 and Section IIL2) of 8, for processes
with additive outliers.

Simulated processes

ESTIMATOR MAAO2MS5 MAAQO2MS
] MEAN MSE EFF MAWV| MEAN MSE EFF  MAVW

LS —-073 186 1-00 1-00 —+097 49-8 1-00 1-00

MH —-085 175 1-06 938 —-121  46'4 107 *936
MHA ~—09% 169 1-10 936 —144 439 1-14 935
MB —096 169 1-10 889 —-147  43-6 1-14 -887
MAH —+256 6-54 2-85 -905 —-361 157 2:53 892
MAHA —+386 2-19 853 -868 —+569 5-88 848 +805
MAB —-389 217 860 <796 —+568 594 840 -740
SH —-245 7-10 2:63 927 —352 205 2:43 914
SHA —+397 2:26 825 887 —+567 598 833 =833
SB —+397 2-31 808 -852 —+565 613 813 -802
HKWH —~252 684 2:73 ‘948 —:364 197 2:54 -932
HKWHA —+346 373 500 932 —+527 816 611 892
HKWB —+356 334 558 916 —524 836 596 879

Some interesting results listed in the Tables V.13 to V.17 are graphically presented

in the Figures 3-6 to 3-13 in Stockinger (1985a).
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Comparison of the Results in Section V.1 and Section V.2

The means of the first-order AR parameter estimated by the method of Martin
(1980), which was described in Section III.1, are in general very similar to those
estimated by the method presented in Section IIL.2. But the means for the estimated
parameters for ARAOP 8 processes lie closer to the true parameter in Section V.2
than in Section V.1. The sample relative efficiencies for parameters estimated from
processes with f-distributed innovations or from processes with additive outliers
tend to be larger for the method of Section IIL.2 than for the method of Section IIL.1.
The sample relative efficiencies for parameters estimated from processes with CN-
distributed innovations, in contrast, tend to be less for the method of Section II1.2
than for the method of Section IIT.1.

V.3 TOPICS FOR FURTHER RESEARCH

The algorithms for a GM-estimation of ARMA parameters presented in Chapter IIT
were successfully applied in a Monte Carlo study (compare Section V.1 and Section
V.2). The estimation of the first-order AR parameter and the first-order MA para-
meter was investigated by Monte Carlo because it is difficult to compare higher
order models. Nevertheless it would be interesting to compare estimated higher
order models. Computer programs (Stockinger, 1985b) already allow the GM-
estimation of ARMA (p, q) models with locations and with arbitrary orders p and g.
These computer programs offer good hope for interesting research also for data
from practical problems. In fact, GM-estimation of AR models was applied for the
detection of outliers in arrhythmic pressure pulses (Stockinger, 1984; Stockinger,
Pfeiffer and Dutter, 1984).

The methods for the GM-estimation of ARMA models presented in Chapter II
and Chapter ITI could be improved by incorporating backforecasting routines (Box
and Jenkins, 1976).

ARIMA model parameter estimates may be obtained similar as ARMA model
parameter estimates. One computational method is to express the nonstationary,
generalized autoregressive operator ®(B) = ¢(B) (1 — B)® in closed form as auto-
regressive operator of order (p + d). However, it is not entirely clear to us in which
way instationarity affects parameter estimates. Another conventional method for
dealing with ARIMA models is to take appropriate differences to get an ARMA
model. If the time series contains outliers. however, this procedure becomes less
attractive. The reason is that differencing increases the number of outliers. For
example, first differences produce two outliers for every isolated outlier in the original
series. If the fraction of outliers is very small, we may well get away with taking
differences and then applying a robust fitting procedure. Such an approach, however,
becomes unattractive as the fraction of outliers increases and alternative robust
methods are then needed for dealing with ARIMA models.
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A proof of the robustness of autoregressive-errors M-estimates (Section I1.2.1)
for the location of ARMA (p, ) models is outstanding.

The exact computation of the asymptotic Cramer-Rao lower bound of prewhiten-
ing-based location M-estimates (Section I1.2.3) at additive outlier models did not
yet succeed, but it is hoped that these estimates provide high absolute efficiencies.

The key to Masreliez’s filter theorem in Section IV.1.2 is the assumption that the
state-prediction density is a Gaussian density with appropriate mean and covariance.
This assumption will rarely, if ever, be satisfied exactly. Martin (1979c), however,
presents a continuity theorem which lends support to the intuitive notion that the
conditional density in question will nearly be Gaussian in a strong sense when
the additive noise is nearly Gaussian in a comparatively weak sense. Note however,
that here a difficult problem area is presented in which clean theoretical results seem
to be unlikely. It is not yet entirely clear whether or not the simplifications (IV.63)
and (IV.64) of Masreliez’s filter are good ideas.

Other methods for minimization of the loss function L{«) (IV.45) could be esta-
blished, e.g. direct minimization of L{x) could be tried. Another possibility is to
extend the approximate M-estimates from one-sided filter based estimates to two-
sided filter (““smoother”) based estimates.

Since time series analysis based on a wrong model is worthless, it is very important
to identify the correct model. Thus further investigation of robust model selection
which often uses the autocorrelation function and the partial autocorrelation function,
seems to be valuable. Careful study of order-selection rules, e.g., of those described in
Section IIL.4.1, is clearly needed (compare Shibata, 1976). It is not yet known how
many iterations of the identification procedure described in Section II1.4.2 are
sufficient in general.

1t is not entirely clear how the robustified Fox test (Section I11.3.3) could be applied
in practice. Methods of determining the outlier type if more general models than AR
models are used, are urgently called for.

Robust estimates of parameters for time series models could help to detect certain
failures of time series models. One possible model failure would declare a “‘normal”
observation to be atypical. Thus we are faced with a model failure if it is known
that a certain observation is not an outlier, but in the sense of the fitted time series
model it is an outlier. Methods to diagnose the possible inadequacy of the model
contemplated would be very important.

Some good methods to detect outliers in time series (e.g. by residual analysis) by
robust parameter estimates should be found out. A possibility to detect outliers
would be to compare real data with simulated data in an appropriate manner.

Since missing data which are a frequently emerging problem in time series, can be
regarded as a special version of outliers, outlier-handling techniques could be modified
to behave very well on missing data situations.

Once an appropriate, robustly estimated time series model is found, it should be
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relatively easy to forecast future values andfor to replace outliers by reasonable
values. Additionally, backforecasting routines would become more reliable.

Box and Tiao (1975) introduced an “intervention-analysis” technique for time

series model fitting and analysis if the starting time of a potential change in model
structure is known. In situations where intervention analysis is an appropriate tool,
robust mode] fitting procedures may play a useful role which remains to be investigat-
ed. The residuals from a robust filter or smoother, for example, may provide guidance
for selecting the form of the potential change.
' With robust time series model parameter estimates available it is possible to estimate
spectral densities robustly. Large progress in this direction has already been obtained
(Kleiner, Martin and Thomson, 1979; Martin and Thomson, 1982; Martin, 1983;
Martin, 1984), but detailed investigations could still be attempted.

In this chapter and in the foregoing chapters the GM-estimation and techniques
of robust filtering and smoothing were treated in order to bound the influence of
outliers. Of course, other possibilities of estimation exist. Estimation based on the
autocovariance of the residuals was investigated by Bustos and Yohai (1983),and the
asymptotic normality and consistency of these estimators are proved in Bustos,
Frajman and Yohai (1984). One-step maximum likelihood type estimators were
investigated by Lee (1981), Lee and Martin (1982) and Lee and Martin (1982b).

Much more theoretical robustness properties, thorough studies and comparisons
of various methods of robust estimation are required before firm conclusions may
by drawn, although some Monte Carlo studies have been in the expected direction.

Obviously more complex outlier-generating models than those given in Section
I.4 will be more appropriate for many time series occurring in practice. Things are
complicated enough, however, with just the innovations outlier model and additive
effects outlier model.

Other time series models than ARIMA models are possible and perhaps some-
times more adequate. Some examples of other models may be found in Hampel et al.
(1982). Most work in literature, however, concentrates on ARIMA models.
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