Kybernetika

Jifi Kepka
Several comments on pattern recognition system based on the use of attributed
grammars

Kybernetika, Vol. 28 (1992), No. 1, 69--76

Persistent URL: http://dml.cz/dmlcz/124966

Terms of use:

© Institute of Information Theory and Automation AS CR, 1992

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
O digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124966
http://project.dml.cz

KYBERNETIKA — VOLUME 28(1992), NUMBER 1, PAGES 69-76

SEVERAL COMMENTS ON PATTERN
RECOGNITION SYSTEM BASED ON
THE USE OF ATTRIBUTED GRAMMARS

JIRf KEPKA

In the paper attributed grammars as a tool for combining syntactic and statistical approaches to
pattern recognition is discussed. The points where the algorithm for pattern classification based on the
use of attributed grammars can be efficiently implemented in parallel are outlined. Some advantages
of the use of declarative programming languages like Prolog for the realization of pattern recognition
system based on attributed grammars are shown.

1. INTRODUCTION

It is known that the syntactic approach to pattern recognition provides a capability for
describing the details of internal structure of a pattern: But the sensibility to noise
which usually causes the structural change in a pattern makes this approach alone in-
adequate for some practical applications. On the other hand it is also known that the
statistical approach to pattern recognition is unable to describe pattern structures and
subpattern relations. The fact that the advantage of one approach is at the same time
the disadvantage of the other makes the idea of a hybrid model which would incorpo-
rate the advantages of both very attractive. There have been proposed some techniques
how to combine both approaches, e. g. applications of stochastic and/or transform gram-
mars, stochastic error-correcting syntax analysis [2], attributed grammars {1]. Especially,
attributed grammars are successfully used as the model for pattern grammar because
of their descriptive power, which is due to their ability to handle syntactic as well as
semantic information, see e.g. [3], [4].

In this paper the use of stochastic attributed grammars as a tool for combining syn-
tactic and statistical approaches to pattern recognition is discussed. Several possibilities
of parallel implementation of the system based on attributed grammars are shown.

At first, basic notations and definitions of stochastic attributed grammars are briefly
reviewed.

70 o . J. KEPKA

2. BASIC NOTATIONS AND DEFINITIONS

Definition. A stochastic attributed context-free grammar is given by a 4-tuple G =
(Vn, Vr, P, S) where Vy is the set of nonterminals, Vr is the set of terminals, § € Vy is
the starting symbol, for each X € (Vy U Vr), there exists a finite set of attributes A(X),
each attribute o of A(X) having a set, either finite or infinite, of possible values D,; and
P is a set of productions each of which is divided into two parts: a syntactic rule and a
semantic rule. The syntactic rule is of the following form

Xo 2 X1 X5.. X

where Xy € Vi and each X; € Vy U Vr for | <7 < m, p is the probability associated
with this syntactic rule, 0 < p < 1. The summation of all the probabilities associated
the syntactic rules with X, at the left-hand side must be equal to one. The semantic
rule is a set of expressions of the following form

a = filan, 0, 010y)

@y = folaz, 0,0 Q2ny)

& = falan, @ng,y oy Qny)

where {c1, ..., a0} = A(Xo) U A(X;) U ... U A(X,n), each oy (1 i< n, 1< 7 < my)
is an attribute of some X for 0 < k < m, and each f; (1 <7 < n) is an operator which
may be in one of the following three forms:

1. a mapping fit Dy, X Day X ..o X Da,, =+ Dy,
2. a closed form function

3. an algorithm which takes o1, iy, ..., ain; and any other available information or
data as input and o; as output [1].

A(X) is partioned into two disjoint sets, the synthesized attribute set Ag(X) and the
inherited attribute set A;(X); o € A(X) has a set of possible values D,, from which one
value will be selected for each appearance of X in a derivation tree.

An input pattern is first preprocessed and all necessary primitives and their attributes
are extracted. Then a structural representation is formed by assigning symbols.to prim-
itives, selecting e. g. concatenating directions, and any other prespecified relations. The
string, i.e. the resulting representation; is then parsed by using the syntactic rules of
the attributed grammar, while the semantics computations are performed at the same
time. It should be mentioned here that to obtain all required nonterminal (subpattern)
attributes (according to the semantic rules) it is sometimes necessary to go back to the
input pattern because some subpattern attributes can not be obtained by a computa-
tion from lower level terminal attributes and thus the subpattern corresponding to the

Several Comments on Pattern Recognition System 71

nonterminal must be found out and the corresponding subpattern attributes must be
extracted, see Figure 1.

Input
patterns
Subpattern
Preprocessil attribute Rejected
P e extraction patterns

Primitive &

¢ Stractural Syntax anal. &
attribute R) F— semantics —+| Classification
i P tati

Classification &
descriptions

Recognition

Learning
Sample Attributed

— grammar

patterns inference

Figure 1: Pattern analysis system using attributed grammars.

As the authors in [1] point out the subpattern attributes cannot be extracted before
syntax analysis and semantics computations because without the guidance of syntax
analysis, the system would not know which terminals (primitives) should be grouped
into a subpattern (nonterminal). This is an advantage of using attribute grammars be-
cause subpattern attribute extraction now becomes more effective with the guidance of
syntax analysis. Such an advantage is not obtainable by using the statistical approach
alone. The results of syntax analysis are both a parse of the analyzed pattern and its
total attribute vector if the analyzed pattern is syntactically correct. Then the pattern
is classified in accordance with its total attribute vectors.

Remark. The introduction of attributes into a grammar usually makes the reduction of
grammatical complexity possible, i.e. an attributed grammar can describe the structure
of patterns of several classes because the classification is performed on the total attribute
vector (for details sée {1]). In the case that more (than one) attributed grammars are nec-
essary to describe all kinds of patterns syntax analysis can be performed simultaneously
according to all grammars because it lends itself readily to parallel implementation.

72 J. KEPKA

3. THE USE OF ATTRIBUTED GRAMMARS FOR STATISTICAL CLASSIFI-
CATION

As it is well known from the literature (cf. e.g. [1]), at least three kinds of statistical
information should be used for classification.

1. The occurrence probability of every pattern class.
2. The occurrence probability distribution of the total attribute vector of each pattern.

3. The occurrence probability of a specific pattern structure within its pattern class.

While the occurrence probability of every pattern class usually is determined intuitive-
ly or through longer observations of pattern occurrences, the occurrence probability of a
specific pattern structure within its pattern class is computed as the product of all the
probabilities associated with the grammatical rules used in parsing the string (the pattern
representation). It should be reminded here that attributed grammar can usually de-
scribe several pattern classes as it was noted in the above remark and hence the probabil-
ities associated with the syntactic rules are generally not equal for different classes. If the
parallel computation can be performed, these probabilities P(z|C1), P(z|C3), ..., P(z|Cn)
where N is the total number of classes and z is the string representation of the given
input pattern can be computed simultaneously.

After an input pattern w is successfully parsed a total attribute vector X is also ob-
tained as the result of simultaneous semantic computation. In [1] it is noted that if a
top-down parsing is adopted to analyze pattern structures, the inherited attributes are
more convenient for use because they can be computed in a top-down fashion, starting
from the start symbol S of the grammar. On the contrary, if a bottom-up parsing is
preferred, the synthesized attributes should be used, which are computed in a bottom-up
fashion. The trouble with the computation when both the synthesized and the inherited
attributes are necessary can be sometimes efficiently solved if a declarative programming
language like Prolog is used. Many predicates (not all!) can be used to perform sev-
eral functions depending on how the predicate is called. In one situation, a particular
parameter may have a known value; in a different situation some other parameter may
be known; and for certain purposes all of the parameters may be known at the time of
the call. When a Prolog clause is able to handle multiple flow patterns (i.e. statuses of
the arguments to a given predicate), it is known as an invertible clause; e. g. the append
predicate; for more details see [5].

3.1. An optimum decision rule for pattern classification using attributed
grammars

First given an unambiguous attributed grammar G, i. e. each string generated by G hag
only one derivation, let N be the total number of pattern classes covered by G, and
n be the total number of distinct strings (corresponding to pattern structures) which
can be generated by (. It is considered that each pattern class Ci, 1 = 1,2,..., N,

Several Comments on Pattern Recognition System 73

syntactically contains all the n strings 21, 2y, ..., z, generated by G. Let us consider the
2-tuple w;; = (z;, Xi;) as the description of a noise-free pattern in class C;, each class
C; consists of exactly n noise-free patterns C; = {wi, Wiz, ...,win} where subscripts i, j
in X;; specify that this Xj; is computed for z; of class C;. Each w;; semantically can be
deformed into a finite or infinite set of noisy versions because of noise and distortion.
All these versions have an identical symbolic string representation z; but attributes of
input patterns are subject to numerical variations due to noise and distortion. Thus for
wi; = (z;,Xi;) in C; let the set of its noisy versions be denoted D(w;;) = {wijk |wije =
(zj, Xije), k = 1,2,...,m;;} where m,; may be finite or infinite, then C; can be regarded
as C; = D(wir) U D(wia)} U ... U D(win). Since each wijy € D(w;;) may occur with a
different probability, we can introduce a conditional probability distribution on D(w;;)
for class C; such that
plwijklwij, Ci) = p(Xijelz;, Ci)

is the occurrence probability for wijr = (z;, Xijx) € D(wi;), which will be called the at-
tribute occurrence probability of wijk from w,;, in contrast with the structural occurrence
probability of z; within class Cy, P(z;|C;) [1).

If the string representation of an unknown pattern w is accepted by the grammar as z;,
and if the computed total attribute vector (TAV) for w is X, the tuple w = (zj, X) can
be regarded as a noisy version of wi;, included in D(w;;). Then the attribute occurrence
probability of w from w;; with respect to class C; is

P(“lem Ci) = p(Xlz;, C:)
and hence the composite occurrence probability that w € C; is

pwlCi) = plwlws;, C) P(wi;|C:)
= p(X]z5, Ci)P(2]C5).

With respect to the assumption that the attributed grammar is unambiguous, it is
possible to compute the a posteriori probability p(Cijw) that w can be recognized as a

deformed pattern from the pattern class C; = Ui, D(wi;)

p(Cilw) = pw]C)P(C:)/p(w)
= plwlwi, Ci) Plwis|Ci) P(Ci)/p(w)
= p(X|z;, C)P(2]Ci) P(C:)/p(w)

where wi; = (z;,Xy;), P(Ci) is the a priori probability of class C;, and p(w) can be
calculated as p(w) = S, p(w]Ci) P(Cy).

When the attributed grammar is ambiguous, the above discussion is no longer valid
as the authors in[1] point out and it should be modified. For the system to be im-
plementable, G is assumed not to be infinitely ambiguous that means there is a finite
number of distinct derivations for each string accepted by G. This assumption is general

4 J. KEPKA

enough for most applications. In this case the following equations hold [1]:

2]

3 Ikt €) PAIC)]

Ic__

Z (X"}, C:) P(1C3)) 1)

1

p(w|Ci)

1t

After applying Bayes Theorem on (1):

!

assign wto Cr if Y [p(X*]25,Car) P(2F|CuM]P(Ch)

k=1
I
= ‘.zg{gfw_f,v; P(X¥25, C) P(fIC)IP(Ci)
f=1

where p(w) common to both sides, has been dropped, I; is the total number of distinct
derivations. They can also be adjusted for parallel computation without serious difficul-
ties. It should be mentioned here that because of the different combinations of syntactic
rules used in the derivations, each different derivation z}“ of z = z; will also result in
a different structural occurrence probability value, which is denoted as P(2¥|C;). The
above Bayes classification rule is for one grammar only. In the case of several grammar
the extension is: assign w to Cpr if
P(Cumlw) = max_max, P(Cilw),

where Ng; is the total number of pattern classes covered by grammar G;. For more
details in this subsection see [1]. It is evident that the last expression also lends itself
readily to parallel implementation.

3.2. The difficulties with the computation of the attribute probability
P(X*12E,C)

The distribution p(X"|z;‘f, C;) depends on the syntactic structure of the recognized string
representation z;. Given two input patterns from class C;, assume that they have the
same total attribute vector X* computed. If they are accepted syntactically to have
different string structures zj, and zj,, the probabilities or densities used for them should
be p(X"Izj1 ,Ci) and p(Xk|z;-‘2, C;), respectively, they may be different; but since in general
the string structure (z;, or zj,) can be determined only after parsing, attribute occurrence
probabilities can not be computed during the parsing procedure. Computation of such
values must be delayed until parsing is completed and the structure of the input string
representation is identified as the authors in [1] mention.

This problem exists whenever probability distributions or density functions for prim-
itives (terminals) or subpatterns (nonterminals) are used for pattern classification. So

Several Comments on Pattern Recognition System 75

far, it has always been assummed that the occurrence probability of a certain prim-
itive (terminal) is invariant with respect to different patterns. Such an assumption
p(X*¥|2X , Ci) = p(X*|2%, Ci) = p(X*|C.) though simplifying statistical discussion, theo-
retically is not general enough for applications using attributed grammars [1].

In the cited paper the authors added “identification rules” to identify the string struc-
ture. With the help of these identification rules correct probability density functions can
be chosen after parsing is completed and then the attribute occurrence probability or
density can be computed.

Another way how to solve this problem is the division of an attributed grammar into
several ones so that each grammar will generate a set of strings 21, 23, ..., 2, which satisfy
the following conditions

P(X*2, C) = p(X* 25, Ci) = ... = p(X*|23, C) @

But as the authors in [1] point out this solution is impractical because it destroys the
essence of grammar usage — with one grammar efficiently covering as many structuraly
similar patterns as possible.

Another way how to solve this problem can be suggested when parallel implementa-
tion is available. If the set of strings {2;, i = 1,...,n} is finite and n is a small num-
ber the input string (pattern) z can usually be directly compared with possible strings
zi, ¢ = 1,...,n, and when the match arises the corresponding conditional probability or
density functions are found. In the more complex cases (the number of generated strings
by the grammar is large or infinite) it should be pointed out that there must exist only
a finite number probability distributions or density functions for each terminal (primi-
tive) for the problem to be relevant. In other words it must be possible to find a finite
number of types of string structures within which (2) holds (n may be infinite because
each type of string structure can have infinite different realizations). Then the amount
of all possible results of computing p(X"lzJ", C;) before the string structure identification
at the end of parsing is also finite and in practice all possible results can usually be
computed simultaneously during parsing in the case of parallel implementation because
the introductiof of attributes into a grammar reduces grammatical complexity and sim-
plifies parsing. After parsing the string structure identification is performed (e.g. with
the help of identifications rules) and corresponding result is chosen according to it. In
this way the computation of attribute occurrence probabilities need not be delayed until
parsing is completed and the pattern classification can be speeded up.

4. CONCLUSIONS

The attributed grammars are shown as an interesting tool for combining syntactic and
statistical approaches to pattern recognition. Their advantages are most outstanding
in the cases when pattern classes can be divided into groups, each group consisting of
several pattern classes which are similar in structure but different in attributes.

76 J. KEPKA

When the declarative method instead of customary procedural one is used both in-
herited and synthesized attributes can often be used.

Several possibilities how to speed up pattern classification by parallel implementation
are outlined.

(Received October 17, 1989.)

REFERENCES

[1] W.H. Tsai and K.S. Fu: Attributed grammar — a tool for combining syntactic and statistical
approaches to pattern. IEEE Trans. Systems Man Cybernet. 10 (1980), 12, 873 — 885.

[2] S. Lu and K.S. Fu: Stochastic error-correcting syntax analysis for recognition of noisy patterns.
IEEE Trans. Comput. 26 (1977), 12, 1268 - 1276.

[3] P. Trahanias and E. Skordalakis: Syntactic pattern recognition of the ECG. [EEE Trans. Patt. Anal.
Mach. Intell. 12 (1990), 7, 648 ~ 657

[4] E. Pietka: Feature extraction in computerized approach to the ECG analysis. Pattern Recognition
24 (1991), 2, 139 ~ 146.

[5] Turbo Prolog - the natural language of artificial intelligence. Owner’s Handbook. Borland Interna-
tional 1986.

Ing. Jif{ Kepka, Ustav teorie informace a automatizace CSAV (Institute of Information Theory
and Automation - Czechoslovak Academy of Sciences), Pod voddrenskou vez 4, 182 08 Praha 8.
Czechoslovakia.

		webmaster@dml.cz
	2012-06-05T23:43:48+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

