Kybernetika

Pavel Kunc
Asynchronous serioparallel execution of the loop

Kybernetika, Vol. 12 (1976), No. 1, (15)--19

Persistent URL: http://dml.cz/dmlcz/124986

Terms of use:

© Institute of Information Theory and Automation AS CR, 1976

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized

documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
O digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/124986
http://project.dml.cz

KYBERNETIKA-—VOLUME 72 (1976), NUMBER 1

Asynchronous Serioparallel Execution
of the Loop

Paver KunNc

A solution of the task to execute loops in serioparallel mode is given. It is assumed that number
of iterations is (much) higher then the number of processors available. The processors are consi-
dered to be identical. Features of suitable hardware and operating system are introduced.

Introduction

Many papers devoted to parallel processing have appeared in last ten years. The
problem of parallel programming was discussed both from theoretical and practical
point of view. Very important article interested in logical parallelism, determinism
and equivalence of parallel processes is e.g. [4] More practically oriented papers
consider objective programming languages and systems demands [3] and many
of them are influenced by Dijkstra’s semaphores [2]. The present paper is not solving
problems of parallelism in general; it accepts the assumption, stated in []], that
“most parallelism in normal programs can be found in loops”. There is no doubt
that the number of parallely executable loops would remarkably increase if the
programs were written with regard to this opportunity.

The task is strictly formulated first, then a solution in the form of on illustrative
example written in Algol 60 is given and, at last, the demands on operation code and
operating system, which make the solution to be effectively used, are discussed.

1. DEFINITIONS
An important notion in parallel programming is a unit of parallelism — a part

of a program regarded as a whole by the system controlling parallel execution. In
our case it is a loop body. The indexed variable to be processed is determined by

16

a current value of a control variable. This value changes always before the loop body
starts to be executed again and it must be accessible during this execution. Obviously
the operation changing the value of the control variable and storing it in the “save”
variable must make the control variable unaccessible to all the other operations, i.e.
it is indivisible with regard to the control variable.

A processor is a facility, which performs control and arithmetic unit functions
of a typical serial computer. It can fetch an instruction and its operands from the
memory, perform the instruction and store its result.

CPU of our hypothetical computer consists of a finite number of identical proces-
sors and a common memory. We consider the only one and homogeneous memory.

A loop with a control variable is defined as a multiple execution of a consequence
of steps i, ii, iii or i, ii, iv, where:

(i) the control variable is set to next value,

(if) test of the control variable on a boundary value, (the result defines the choice
of the next step),

(iii) loop. body execution

(iv) branch to a defined address

The number of executions of the consequence i, ii, iii is called iteration number
of the loop and denoted n.

The loop is parallelly executable unless a memory location exists, the value of it
is during two executions of the loop body for two different values of the control
variable either changed in both cases or changed in one case and refered to in the
other. (This definition satisfies conditions stated in [4], the conditions for parallel
executability of Fortran-like loops are given in [1].)

2. THE TASK

Let’s have a parallelly executable loop, the iteration number of it is stored a
variable N. Let a variable K contain the current number of available processors.
Our goal is to define.a way which

— enables the processors to share the iterations,

— assures that the processors will be maximally used by executing of user’s
program.

Without loss of generality we can also assume the processors to be numbered 1, 2, ...
..., k (and we shall denote them Py, ..., P,) and the user’s program to be executed
by P, until the parallel loop occurs.

3. THE SOLUTION

Let’s assume following procedures available:

W(1,J) performs I :=1 + 1; J :=1I and is indivisible with regard to I.

FORK (P,ADR) “occupies” processor P, causes it to start its activity with the state-
ment Jabelled ADR and decreases K on 1.

CALLIL (P,ADRI,ADRZ) stands for the following demands on 0S:

— release P (this is an obvious demand on releasing the processors currently
executing the user’s program),

— store ADR2 (the address next to the loop),

— start parallel execution on all available processors at ADRI.
CALL2 (P) simulates OS call with demand on releasing P.
BRANCH(ADR) establishes waiting branch beginning with ADR.

RE LEASE (P) cancels previous occupation of P and increases K on 1.

Note 1. FORK procedure does not respect Algol rules of locality of labels.

Note2. K is maintained by OS and its value is equal to the current number of
available processors.

Note 3. “Occupation™: A processor cannot be started without previous accupation.
An occupied processor must be released before another occupation.

The following loop evidently meets parallel executability conditions:

PROG: begin
I:= 0

ZPET: I:= 1+ 1;
if I > N then goto DALE;
X[I]:= if Y[I] > 0-0 then sqrt(Y[I]) else 0-0;
go to ZPET
end;

DALE:

The execution of translated programi can be described be means of augmented
Algol 60 as follows:

PROG: begin
begin comment performed by P [1};
I:=0;
+ CALL I (P[1}, ZPET, DALE)
end;

17

18

begin integer C;
begin performed by OS;
RELEASE(P[1));
BRANCH(DALE);
C:=K,
for p := 1 step 1 until C do
FORK(P[pl, ZPET)
end;
begin integer J[1: p};
begin comment performed by all P[p):
ZPET: W, JIp));
if J[p] > N then go to A4;
X[J[p]l:= if Y[J[p]l > 0-0 then sqrt(Y[J[p]]) else 0-0;
go to ZPET;
Ad: C:= C— I
AS: If C = 0 then go to A5;
CALL2 (PIp])
end
end
end;
begin comment performed by OS for all processors;
RELEASE P([pD)
end;
begin comment performed by OS for a free Plql;
FORK(Plgql, DALE)
end
end PROG;

DALE:

4. DEMANDED HARDWARE AND OPERATING SYSTEM FEATURES

We have already expressed these demands having issued special procedures at the
beginning of chapter 3. Level of detail used in this paper does not permit, stating
a strict boundary between machine code and operating system share with respect
to the control of parallelism. Let’s define following rules.

Machine code must contain instructions for:

— operation RELEASE,

— starting parallel branch on a free processor (operation FORK),

~ performing an operation like W indivisible with regard to a given variable.

The basic operating system is assumed to satisfy following conditions:

— uses one processor for its purpose only,
— does not contain branches parallel to each other,
— works with memory locations local only to OS itself,

— can define global (e.g. C) or local (e.g. J[p]) variables so that user’s program
branches can use them without effect on program corectness,
- can realize BRANCH operation.

5. SUMMARY

Let’s summarize features of our solution.

Advantage:

a) Operating systems intervences only twice (independently of the values of N
and K).

b) K is a variable, not a constant.

c) Processors are working asynchronously and are maximally used by perform-
ing user’s program instructions.

d) The solution is invariant to the “rest of program” — the original program
can contain branches parallel to the loop or not.

e) Only one indivisible general operation is assumed.

Disadvantage:

a) Another processor released during loop exucution can’t be used for this purpose,

b) There is a limit of asynchronism — the processors must be released (logically)
at the same time.

Evidently, the practical value of the presented solution may be proved in connec-
tion with some real multiprocessing system. A great advantage is a fact that parallel
executability of a Ioop can be relatively easily found out, especially in higher pro-
gramming languages. An asynchronous serioparallel loop can be used, then, in case
of purely serial source programs.

(Received November 1, 1974.)

REFERENCES

[1]1 J. L. Baer: A Survey on Multiprocessing. Technical Report, Univ. of Washington, Seatle,
May 1972.

[2] R. M. Karp, R. E. Miller: Parallel Program Schemata. JCSS 3 (1969).

[3] E. W. Dijkstra: Cooperating Sequential Process. Progr. Languages, Academic Press, 1968,

[4] A.J. Bernstein: Analysis of Programs for Parallel Processing. IEEE Trans. on C, 15 (Oct. 1966).

Ing. Pavel Kunc: Vyzkumny ustav matematickych strojii (Research Institute for Mathematical
Machines), Luzna 2, 160 00 Praha 6. Czechoslovakia.

19

		webmaster@dml.cz
	2012-06-05T02:18:15+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

