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KYBERNETIKA CISLO 6, ROCNIK 3/1967

Sequential Machines with Several Input
and Output Tapes

KareL Curik I1

In the present paper the concept of Moore’s sequential machine (with one input and one output
tape) has been generalized to obtain the concept of a multitape sequential machine operating
with m input and » output tapes. Results concerning the corresponding (m, n)-mapping are derived,
the most essential of which concern the conditions that are to be satisfied by a given (m, n)-map-
ping so that there may be a multitape sequential machine of a certain type inducing or realizing
them. Further, the problem of synthesis and minimization is being solved.

1. INTRODUCTION

The paper is an extension of Section 3 of the author’s CSc-thesis [3]. Moore’s
sequential machines are generalized for m and n input and output tapes respectively.
In this case, however, not the commonly used procedure is concerned in which
several input (output) tapes are also considered, but they are being read and written
upon simultaneously and therefore the abstract input symbols are coded by an
m-tuple (n-tuple) of symbols of the so called structural alphabet.

In the paper sequential machines that read the input symbol from one input tape
(determined by the internal state of the machine) and those writing the output symbol
in each step of their operation on one output tape as well (determined by the internal
state of the machine) will be considered. At first sequential machines that read one
input symbol in each step and write one output symbol will be examined. Further
examination will then concern sequential machines that can but not necessarily
need read from tape or yield any output.

An actual example of the sequential machines described is a digital computer
having several input and output channels.

‘We shall now introduce, several less common terms and denotations or specify
the meaning they will be assigned in this paper. Let X be a finite alphabet (a set of



symbols). The set of all words over the alphabet will be denoted 2*, the n-ary relation
over X is the set of n-tuples over the alphabet Z. The set of all n-tuples over X will be
denoted (Z)".

If pgeZ* p=ayay ..., q=by, by ...b, (a;€2,i=1,2,...5 beZ,
i =1,2,..., 1), then by concatenation of the words p and g the word a,a, ... a,b,b,...
... b, is meant being denoted p . s or only juxtaposed ps.

Let ue(Z)", u = (ug, us, ..., u,), ve(Z)", v = (v, vs, ..., 1), then by concatena-

tion of the n-tuples u and v the n-tuple uv = (u,0,, u,0,, ..., u,v,) is meant.

Further an auxiliary operation @ will be introduced generates from the m-tuple
of words ue(Z)", u = (uy,uy,...,u,) and the n-tuples of words ve(Zy, v =
= (04, 02, ..., 0,) an (m + n)-tuple u @ v = (uy, Uy, ..., Uy, Uy, U2, ..., U,). If in one
and the same expression both the operation @ and that of concatenation will be used,
the operation @ is assumed to be of higher priority. An empty word is denoted e, so
is denoted the so called “empty” symbol (e ¢ X). The k-tuple formed by k empty
words or k empty symbols is denoted €*. Thus,

F=e@ed...De.

[ ——

k-times

If pg = r, p, g€ X* then p is said to be the initial section of the word r and we
write p =< r; if in addition g = e, then p is said to be the proper initial section of the
word r and we write p < r.

The k-tuple of words u = (uy, s, ..., u,) is said to be the initial section of the
k-tuple of words v = (v, vy, ..., v,) and written u < v if the word u; is the initial
section of the word »; for i = 1,2, ..., k. In the addition u #+ v, then u is said to be
the proper initial section and we write u < v.

The length of an empty word is zero, the length of a non-empty word p = a,a, ...
...a.(a;€Z,i=1,2,..,5s)iss. A(p) denotes the length of p. The length of a k-tuple
U= (uy, g, .o i) is Au) = Auy) + Aus) + ..o+ Muy).

Moore’s sequential machine with the input alphabet X, and the output alphabet ¥,
is a system (S, o, ¥, 55), where S is a finite set of states, ¢ is a transition function
(generally parlial) from § x Xy to S, ¥ is the output function from S to X, s, the
initial state (s, € S). If the input as well as the output alphabet is Z the sequential
machine is said to be over the alphabet Z. Since we admit the existence of sequential
machines with partially defined transition function the sequential machine having
the input alphabet X, and the output alphabet X, respectively can be considered
a sequential machine over the alphabet ¥; U X, or over any extension of it. Further
on, unless explicitly stated otherwise, all sequential machines will be considered to be
over some definitely chosen alphabet 2.
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2. THE CLASS ¥,,, OF MULTITAPE SEQUENTIAL MACHINES

Definition 1. A multitape sequential machine .# of the class 2, will be the term
for a system (S, @, ¥, sy, Vi, -, Vi Wy, ..., W,,), whete (S, @, ¥, 55) is a common
Moore’s sequential machine, S being a final set of states, ¢ a single-valued (gencral
partial) transition function from S x X to S, ¥ a single-valued output function from S
to X and Vy, ..., V,, Wi, ..., W, two decompositions of the set S of states, therefore

VinVy=0fori+j;i,j=1,2..,m UV,=S;WiaW,=0fori+j,ij=
m i=1

=1,2,...,m; U W, = S. The above decompositions mean the following: If s, € V,,

s, € W;, then the sequential machine being in the state s, yields an output symbol on
the i-th output tape and accepts the next output symbol from the j-th output tape.

Definition 2. By the mapping from the set of m-tuples of words into the set of
n-tuples of words over an alphabet ¥ briefly (m, n}-mapping induced by a sequential
machine M eW,,, 4 =(S, ¢, ¥, s0. Vi, ..o, Vi Wy, ..., W,) we mean a single-
valued (m, n)-mapping f with the domain P defined in the following way:

(i) " eP, fle") = ¢

(ii) if we(Z*)", u + €”, ve(Z¥)", then we P and f(u) = v if and only if there
exists a sequence U, Uy, ..., U, (u; € (Z*)") and a sequence s,, 55, ..., 5, (5; € S) such
that up=e™ vo=¢", uy=u; v, =V, u,=u,_ . "1 @a @t v, =
=V, . @b, @D, s;eW, si€V,, o(siip,a) =s, W(s)=b; for
i=1,2, ..t

Note 1. When comparing the sequential machines of class 2L, with the automata
of class G, of [4] we can see that if the output function of the machine # e,
is neglected and all its states are held for terminal ones, we obtain an automaton
of class G, which defines a relation formed by the very sum of all m-tuples falling

within the domain P of the mapping induced by the machine ./#.

Definition 3. The m-tuples of P will be formed admissible input m-tuples of the
sequential machine .

The term sequential mapping introduced for (1,1)-mapping in [5] will now be
generalized for the (m, n)-mapping.

Definition 4. By the sequential (m, n)-mapping the (m, n)-mapping satisfying the
following conditions is considered.

1. The sequential (m, n)-mapping is a single-valued (generally partial) mapping
from the set of m-tuples over the alphabet 2 into a set of n-tuples over the alphabet X.

2. The domain of the (m, n)-mapping has to satisfy the following conditions:

(i) €" € P (e being an m-tuple of empty words)

(i) f ue P, u=(uy, us,...,u,) and A(u) = d, then there exists k, | <k < m




such that for all m-tuples v = (vy, vy, ..., v,,), v € P, for which u < v, A(v) = d + 1
it is valid that u; = v; for all i #+ k. (All the m-tuples are formed by the extension
of the same word.)

(iii) If we P and Mu) = d, d > 0, then there exists only one m-tuple v for which
veP, v<u Av)=d -1

3. Let we P, then A(f(u)) = A(u). (The (m, n)-mapping keeps the length of the
F-tuples.)
4. I uy, uy € P and uy < uy, then f(u,) < f(u,).

Theorem 1. The (m, n)-mapping induced by an arbitrary multitape sequential
machine of class W, is sequential (it satisfies the conditions 1—4).

Proof. Consider an (m, n)-mapping f induced by sequential machine # € .

The first condition is satisfied as only deterministic sequential machines are con-
sidered.

The fulfilment of the condition 2 (i) results from the definition itself concerning the
(m, n)-mapping induced by the sequential machine .# € 2,,. The sequential machine
4 is deterministic, the state s; to which the sequential machine is transferred by the
m-tuple of words is, therefore, uniquely determined. The state s; falls into a single
class W, that states from which tape the next input symbol is to be read. Any m-tuple
in P having the initial section u and the length of which is by one unit longer than
u must have the form v = u. "' @ a @ ", where a € X. Thus, the condition
2 (ii) is satisfied.

The condition 2 (iif) follows from the deterministic character of the sequential
machine .#. The fulfilment of the conditions 3 and 4 is obvious.

Definition 5. (m, n)-mapping f is said to be realized by the sequential machine
M €U, if it is sequential and is a partial mapping of the (m, n)-mapping induced
by the sequential machine .#.

Theorem 1 states the necessary conditions the (m, n)—mapping has to meet to be
induced by a sequential machine of class ,,,. Now we shall try to find a condition
satisfactory for the fact that the (m, n)-mapping could be realized or induced by
a sequential machine of class U,,,,.

Let an arbitrary sequential (m, n)-mapping f with the domain P be assigned
a directed labelled graph G (edges and vertices being labelled as well) in the follow-
ing way: Let each m-tuple ue P be assigned one vertex (including the m-tuple "),
the vertices be identified with them. The vertices of the graph G, will be labelled by
triples from ¥ x P, x P, and edges by symbols taken from X where P, is a set of
natural numbers being less or equal to k. If u,veP, a,beZ, v=u.1®a®
@ e" % and f(v) = f(u).e" ' ® b @ "%, then in the graph G, there is an edge
connecting the vertex u with vertex v, this edge being labelled with the symbol a;
the element at the end of the triple labelling the vertex u is the number k, the element
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at the beginning of the triple labelling the vertex v is the symbol b, the middle element
in the triple being the number p. It should be mentioned that graph G, is a tree.

From the conditions 1—4 of the sequential mapping it follows that in this way
each sequential (m, n)-mapping is uniquely assigned a directed labelled graph; the
labelling, however, of all vertices within this graph is not complete. The vertex e™
(the root of the tree) has been labelled only with the element at the end of the triple;
vertices from which no edge goes out (corresponding to the m-tuples from P no
extension of which falls into P any longer) have only two elements of their Jabel that
are defined.

The labels of two vertices will be termed compatible if the respective elements
of the labels are either equal or at least one of them is not defined.

The graph G, will be assigned an undirected graph G; in the following way: The
graph Gy will have the same vertices as the graph G . Vertices v and w in the graph G;
will not be connected by an edge if and only if the following conditions is fulfilled:

(i) Vertices v and w have compatible labels;

(ii) If from the vertices v and w (within the'graph Gy) the paths d = hy, hy, ..., by
and d' = hi, b}, .... h; come out respectively the labels of the edge k; and h} being
equal for i = 1,2, ..., s, then if the path d passes successively through the vertices
Vi, Va, ..., Vg as well as the path d’ does through the vertices wy, w, ..., w, respect-
ively, the vertices v; and w; have compatible labels for i = 1,2, ..., s.

Definition 6. Let the undirected graph G; have the finite chromatic number r (see
[1]), then the sequential (m, n)-mapping f is said to have the finite weight r, otherwise
it is said to have an infinite weight.

The above definition is a generalization of the operator weight of the (1,1)-mapping
introduced by B. A. Trachtenbrot [8].

Theorem 2. The sequential (m, n)-mapping can be realized by the sequential
machine M € W, with ¥ number of states if and only if it has finite weight which
is less or equal to r. ’

Proof. 1. Let the sequential (m, n)-mapping f have the finitc weight r. Then there

exists a chromatic decomposition of the graph G; with r classes Ry, ..., R,. Let a se-
quential machine A" € U,,,, & = ({Ry, ... R}, ¢, ¥, R, Vi, ..., V,, Wy, ... W,), be
constructed where R, i = 1, ..., r are the classes of the chromatic decomposition

of the graph Gy, the initial state of the sequential machine 24" being the class R of the
decomposition R;, which includes the vertex e” of the graph Gj. The transition func-
tion ¢, the output function ¥ and decompositions V,, ..., ¥, and W, ..., W, have
been chosen in the following way: If in the graph Gy there is an edge from the vertex
v € R; to the vertex v’ € R}, the edge being labelled with the symbol a, then ¢(R,, a) =
= R;. If the vertex v € R, is labelled with (b, p, k), then Y(R;) = b, R,e V,, R; € W,.
The choice of the graph G; and the properties of the chromatic decomposition
guarantee that the transition function ¢ chosen as well as the output function ¢



are single-valued and the definitions of the decompositions Vi, ..., V, and W,, ..., W,,
are meaningful.

Let us prove that the sequential machine " realizes the (m, n)-mapping f. Let the
m-tuple v of length 7 fall within domain of the mapping f and f(u) = v. According
to the condition 2 (iii) for the sequential mapping, there exists one and only one
initial section of the m-tuple of length d for d = 0, 1,...,t — 1, falling within the
domain f. The sequence of these initial sections (vertices of graph G;) be denoted
by Ug, Uy, ..., 4,y Let U, = w. Let a;, b; (a, b, 2, i = 1,2, ..., 1) denote symbols
and k;, p; integers for which the following conditions hold

U =u;. Y @a,, @R for i=0,1,..,t—1;
Vieg =¥ . ePT @by @ TP for i =0,1,..,t—1.
Then let us denote by Ry, Ry, ..., R, the sequence of classes of the chromatic de-

composition of graph G (the states of the sequential machine ") for which u; € R;.
According to the definition of the sequential machine %" R; e V;, and R; e W, are
valid for i =0,1,...,1—1 and i=1,2,...,¢ respectively; ¢(R;_y,a;) = R;;
Y(R) = b;fori=1,2,...,t.1f g denotes the (m, n)-mapping induced by the sequen-
tial machine ', the conditions (i) and (ii) are satisfied so that the n-tuple v may falt
within the domain of the (m, n)-mapping g and g(u) = v be valid. The (m, n)-map-
ping f is, therefore, a partial mapping of the (m, n)-mapping g and is realized by the
sequential machine .

2. Let there be a sequential machine & = ({s;, ..., S}, @, ¥, 51, Viu ooy Voo Wy, o
..s W,), that realizes the (m, n)-mapping f.

Let an arbitrary vertex in graph G, be assigned that state of the sequential machine
£ to which it is transferred from the initial state by an n-tuple of words over the
alphabet corresponding to the vertex v. Since the sequential machine is a determin-
istic one, each vertex of graph G is assigned one and only one state of the sequential
machine % and thus the decomposition M, ..., M, of vertices of the graph G, as
well as those of the graph G; can be chosen in such a way that the arbitrary class M;
of decompositions will be generated by all the vertices that are assigned the state
s; of the sequential machine .. For each two vertices of G; that belong to the same
class of such a decomposition chosen conditions (i) and (i) are clearly satisfied. The
vertices, therefore, are not connected with an edge. Therefore, the decomposition
M, ..., M, is a chromatic decomposition of graph G;. Thus the (m, n)-mapping f
has the finite weight less or equal to ¢. From this it follows that the (m, n)-mapping
having the finite weight r cannot be realized by a sequential machine & € ,,,, with
the number of states less than r and an (m, n)-mapping having an infinite weight
cannot be realized by any sequential machine of class U,

Corollary 1. All the (m, n)—mappings realized by the sequential machines from
class W, are sequential (m, n)-mappings having finite weights.
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Now, let us try to find a satisfactory condition for the possibility of inducing an
(m, n)-mapping by a sequential machine of class 2, having r states.

Let us assume an arbitrary sequential mapping f. Then let us construct, by the
above procedure a directed labelled graph G, and in turn an undirected graph Gy
to it in the following way:

The graph G; has the same vertices as has the graph G,. The vertices v and w
within Gy will not be connected by an edge if and only if the following conditions
are satisfied:

(i/) the vertices v and w have compatible labels;

(ii") for cach path (within G,) leading from the vertex v or w there cxists a path
leading from the vertices w or v respectively whose edges have the same label (even
as to the order) and whose vertices have compatible labels.

Definition 7. If the graph Gy constructed in the above manner has the finite
chromatic number r (see [1]), the sequential (m, n)-mapping f is said to have the
finite strong weight r, otherwise it is said to have an infinite strong weight.

Theorem 3. If the sequential (m, n)-mapping f has the finite strong weight r,
it also has the finite weight p and p < r is valid.

Proof. It follows from the uniqueness of tlie (m, n)-mapping f (the deterministic
character of the sequential machine) that the condition (ii’) is stronger than the
condition (ii) thus G} being a subgraph (see [1]) of the graph Gj. Therefore the chrom-
atic number of G; is less or equal to the chromatic number of the graph GJ.

Example 1. Let us assume an (m, n)-mapping having a finite weight (r = 1)
but an infinite strong weight.

Let us choose the alphabet X = {a, b} and the (1,1)-mapping (further only “map-
ping”) f with the domain P generated by all words over the alphabet X such that in
each initial section of theirs more symbols a than symbols b occur. The mapping f
map each word ¢ € P onto a word of the same length generated only by symbols a.

The mapping f is apparently of the weight 1 and is realized by a common Moore’s
sequential machine . (4 € Wyy), M = ({so}, @, ¥, 50), Where ¢(sq, @) = @50, b) =
= 50, ¥(s0) = a.

At the same time the mapping f is of infinite strong weight since e.g. all the vertices
in the graph G; which are corresponding to words generated solely by a arc connect-
ed by edges.

By this example we can see that the notion of strong weight is nontrivial even for
common sequential mappings (operators).

Theorem 4. A sequential (m, n)-mapping f can be induced by a sequential machine
M eW,, withrstatesif and only if it has finite strong weight which is less or equal tor.

The proof is quite analogous to that of Theorem 2.

From Theorems 1 and 4 it immediately follows:



Corollary 2. The (m, n)-mappings induced by sequential machines of class
are exactly all the sequential (m, n)-mappings that have finite strong weights.

mn

3. MINIMIZATION OF STATES OF MULTITAPE SEQUENTIAL
MACHINES

The results known for common sequential machines (see [6]) will now be general-
ized for the sequential machines of class .

A system of sets K;, K, ..., K, of states of a given sequential machine 2,
M= (S, @, Y, 50, Vis ooy Vio Wi, ..y W,,) will be termed a system of invariant
classes of states of the sequential machine .# if they satisfy the following conditions:

(i) Each state of the sequential machine .# falls in one of the classes K, K, ...
..., K, at least;

(i) If two states, s; and s;, fall in one and the same class K, then they fall in the
same class V; and the same class W, as well and y(s;) = ¥(s;);

(iii) If s, s; fall in the same class K, and for any a (s, a) and ¢(s;, a) are defined,
then ¢(s;, a) and @(s;, a) fall in the same class K, (depending on the choice of class
K, and the input signal a).

Theorem 5. To each system K, K, ..., K, of invariant classes of states of the
sequential machine M a sequential machine A can be constructed which realizes
a mapping induced by the sequential machine 4 and has p states.

Proof. Let us chdose # = ({Ky, ... K}, 0", 0" K, Vi, v, Wi, o, W)
where K, is one of those classes to which the state s, belongs. The transition function
@* is chosen in the following way: For an arbitrary class K; and an arbitrary a € X
the value ¢”(K;, a) is not defined if the values ¢(s;, a) for all states s; falling in K;
are not defined. If for any state s; € K; the value ¢(s;, a) is defined, so is defined the
value ¢*(K, a). For this value any of the classes K, including all the states ¢(s;, a)
for s; € K can be chosen.

The transition function ¢ is chosen in the following way: If 5; € K, ¥(s;) = b,
then y*(K;) = b.

The decompositions V1, ..., ¥, and W, ..., W, can be chosen as follows: If 5; € K;,
s;€V,, s;€ W, then K, e V¥, K, e W;". From the above conditions (i)—(iii) that are
fulfilled by a system of invariant classes it follows that ¢, y*, {V;:i = 1,2, ..., n},
{W;1i=1,2,..., m} are uniquely defined.

Analogous as in the case of a common sequential machine (see [6]) the sequential
machine A" can be proved to realize a mapping induced by the sequential machine ..

4. ASSOCIATED SEQUENTIAL MACHINES AND MAPPINGS

In this section we shall be restricted, for technical reasons, to the sequential machi-
nes . € A, for which s, € W, i.e. such that read the first input symbol from the

mn

first input tape. In onc actual case it does not mean any limitation of generality as
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the input tapes of the sequential machine can be, in any case, adequately renumbered.
The class of sequential machines satisfying this condition will be denoted by A\,
(Ann = A,,). As for as sequential (m, n)-mappings are considered we assume them
to satisfy an analogous condition, i.e. each m-tuple of length 1 falling within the
definition field of the sequential (m, n)-mapping has one single nonempty symbol
in the place of the first word (having the form (a, e, ¢, ..., ¢)).

In the graph G assigned to the (m, n}-mapping f (see section 2) the vertex e™ will
be no longer labelled (by the section 2 in the given case, it would be always labelled
with a the triple (0, 0, 1).

Definition 8. Let .# € A, 4 = (S, o v s, Vi, ..., Viy Wi, .., W,)) over
the alphabet Z. The sequential machine .# and a common Moore’s sequential machine
N AN €Wy, gy = ALy) o= (87, ¢, ¥*, s7) with the input alphabet X and
the output alphabet ¥ x P, x P, (P,, being a set of natural numbers less or equal
to k) are said to be mutually associated if the following is valid:

(l) S“ﬂ - S.r;
(i) o ="
(iid) s =58
(iv) s;€V, s;€ W, y¥(s;)) = b ifandonlyif y*(s) =(b,Jj, k).

Note 2. 1t is obvious that to a given sequential machine 4 € A, one can easily
find a uniquely defined associated Moore’s sequential machine and vice versa.

Definition 9. The sequential (m, n)-mapping f over the alphabet X (¥ being both
input and output alphabet) and the sequential mapping (1,1)-mapping g having the
input alphabet X, and the output alphabet £ x P, x P, are said to be mutually
associated if the directed graphs G, and G, assigned to then respectively are isomorfic
the corresponding vertices being compatibly labelled and the corresponding edges
being equally labelled.

Note 3. To a given (m, n)-mapping f an associated mapping g can be found and
vice versa. The word a,, ..., a, falls within the domain of mapping g and

gay, ..., a)) = (by, py, k) (b2, P2y k) .. (byy, Pemvs ko) (bis Pos -)
if and only if the m-tuple u, (i = 1,2, ..., f), where
U=, u=u_, . t'@a; @ for i=1,2,..,1t
falls within the definition field of the mapping f and the following is valid:

Fu) =flu). P @b, @ for i=1,2,...,t.



Theorem 6. Let # € N, & €A, be mutually associated sequential machines.
Then the (m, n)-muppingf induced by the sequential M and the mapping g induced
by the sequential machine A" are mutually associated.

Proof. Let an m-tuple u fall within the definition field of the (m, n)-mapping f,
f(u) = v being valid. Let us use denotations from Definition 9 and Note 3. By Defini-
tion 8 §% = S*, if therefore the sequence of states sy, ..., s, from Definition 9 is
considered as a scquence of states of the sequential machine 47 then it follows from
Definitions 8 and 9 that the word a,a, ... ¢, falls within the domain of mapping ¢
and g(aja;...a,) = byby ... b,

Let us now assign the vertices of graphs G, and G, in such a way that to the vertex
u of G the vertex a4, ... a, of G, corresponds (using the denotation of Definition 9).

There is an edge from the vertex u to the vertex v in G, if and only if v =
=u. P @a,, ®e"** and it is labelled with a,, . In that particular case,
however, the edge leads in G, from the vertex a,qa, ... a, to the vertex a,a, ... a,;, and
is also Jabelled with a,, ;. From the condition (iv) of Definition 8 it follows that the
labels of mutually corresponding vertices are compatible.

There is a good reason why we have introduced the notion of associated sequential
machines and mappings: they make it possible to transfer the solution of problems
concerning the analysis, synthesis and minimization of multitape sequential machines
to the solution of analogous problems for the common Moore’s sequential machines.
Thus e.g. a sequential (m, n)-mapping f given and we search for the sequential machine
€ W, by which it is induced or realized, we can proceed in the following way:
1. We construct the mapping g associated to the (m, n)-mapping f. 2. We find the
Moore’s sequential machine .4 inducing or realizing the mapping g (the problem
of ordinary synthesis). We construct the sequential machine .# € ,,, the associated
sequential machine to which is the sequential machine A"

Example 2. Let us now present an example of synthesis of a sequential machine
realizing a sequential (2,2)—mapping f over the alphabet a, b defined by the Table 1.
The associated mapping g is defined by the Table 2.

Table 1.
u Sfw) u S(u)

(b, e) (e, b) {ab, a) (bba, )

| (b, a) (e, ba) (aa, €) (ba, )

| (ba, a) (b, ba) ©®, b (a, b)
(baa, a) (ba, ba) (bb, a) (e, bab)
(a, e (b, e) (bb, ab) (a, bab)
(ab , e) (bb, e) (bb, aa) (e, baba)
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550 Table 2.

» &(p)
b b,2,.)
ba 4.2.2)(@2, )
baa b,2,2(a,2, )b, 1)
baaa | 0,2,2)(a,2, 1) (b, 1, D (a, 1, .)
a b1, )
ab 1L, 1051, )
aba G LD b, 1,2) (1, )
aa b, 1,1)(a, 1, )
bb 2,2 (@1, .)
bab 6,2,2)(a,2,1)(b, 2, .)
babb 4,2, (@2, 15, 2.2) (@1, .)
baba (6,2,2)(a,2,1)(b,2,2)(a, 2, .)

Applying the already known methods we can construct a Moore’s sequential
machine # realizing the mapping g.

B = ({Sm S15 825 S35 54}5 [V 50) B

where ¢ and i are defined by Tables 3 and 4 respectively.

Table 3.
s ols, @) oG, b) |
i
So | S1 S2
51 | 54 53 |
S2 | So 54 |
3 I S4 -
S | - -
! |
Table 4.
|
s w(s)
|
So (@2, 1)
S b, 1,1)
5 *.2.2
53 b, 1,2)
S4 (a, 1, 1)




Now we can easily find the (m, n)-sequential machine to which the sequential
machine & is associated. It is sequential machine & = ({so, S1s S25 S35 54}, 0, ¥, so
{515 535 Sa}s {S0» 52}> {50+ 51, Sa}s> {52, 55}), where the transition function is the same
as that with the sequential machine 4 and the output function ¢ is defined by the
Table 5.

Table 5.

5. MULTITAPE SEQUENTIAL MACHINES OF CLASS 8,

Definition 10. The multitape sequential machine of class B, will be the term
for a system (S, @, ¥, So. Vo, Vi, «vvy Vi Wo, Wy, ..., W), where S is a finite set
of states, ¢ a single-valued (general partial) transition function, ¥ a single-valued
output function (from S — V, to %), Vo, V4, ..., Vs Wy, Wy, ..., W, being two de-
compositions of the set of states S, namely V; n ¥V, =0 fori+j,i,j=0,1,...,n;
UVi=SiW,a W, =0fori*j,i,j=12,...,m; UW; =S. The decomposition
i=1 i=1
have the following meaning: If s, € V; and i = 0, then the sequential machine being
in the state s, yields the output symbol ¥(s,) on the i-th output tape; if s, €V, then
the sequential machine being in the state s, does not yield any output symbol. If
sy € W; and i # 0, then the sequential machine being in the state s, reads the next
input symbol from the i-th input tape; if s, € W, then the sequential machine being
in the state s, does not read any input symbol (the transition function is, for the states
of W,, defined independently of the input).

Note 4. The sequential machines of class 8B,,, can be interpreted by assuming that
there exist a ficticious input as well as a ficticious output tapes. If s, € W, the sequen-
tial machine is said to read an empty symbol from a fictitious input tape; if s, € V,
the sequential machine is said to write a empty output symbol on a fictitious output
tape. With this kind of interpretation the transition function ¢ is mapping from
S x (£ U {e}) to S, the output function y is mapping of the set S to Z U {e}.

Note 4 can be made use of in defining the (1, n)-mapping (generally multivalued)
induced by the sequential machine 4 € B,,,.
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In general case multivalued mapping f will be described by the relation F. We write
(u, v) € F, if v is one of the n-tuples assigned to the m-tuple u.

The sequential machine . € B,,, will be considered a sequential machine with
m + 1 input and n + 1 output tapes of class 2, in the sense of Note 4; the (m + 1,
n + 1)-mapping (over the alphabet X U {e}) induced by it will be denoted by g.

Definition 11. The (m, n)-mapping induced by the sequential machine .# € B,,, is
generally multivalued (m, n)-mapping f given by the relation F in the following way: '

Let u = (uj,uy..,1,), v=(01,02..,0,), u;e2* v,el* then (uv)eF
if and only if there exist u, v € {e}* such that g{(uo, uy. ..., 1)) = (Vo) U1, «.0s 1)

Example 3. There will be an example of a (2,1)-mapping f over the alphabet X =
={a, b, c, ..., z, ®, »} with the domain P. For the pair of words (p, q) is (p, g} € P
if and only if the number of occurrences of the symbol @ in the word p is twice as
large as that in the word ¢ and .

(i) peL,, where the language L; = L(G), G being a grammar (sec [5]) G =
=({a,b,...z2,®,},{S,4,0,R, T}, {S—> SR, S - SQ,85 - ST, T> A, T T4,
0-@®TP.Q-» @@ R—*T+,Roxx, A>a,A—>b,.., 4z}, S);

(i)g=9,® g e(Z—{*})*org=e.

Thus, the words g = e can be written as follows: ¢ = ¢, ® ¢, ® ... D q, D,
where ;€ (2 — {®, »})*.

The sections R (see grammar G) and Q will be termed comments and corrections
respectively. Let the (2,1)-mapping f assign to the pair (p, g)a word re (2 — {*, ®@})
which is formed by omitting all comments in the word p and replacing the individual
corrections in their turn by the sections gy, g, ..., ¢, of the word ¢ (t being the
number of corrections). A sequential machine .# €B,, will be constructed that
induces the (2,1)-mapping f. Let us use the denotations: @ = X — {@®, =} .

M= ({50’ si, 52,83, 8%, 851 E € Q}, @, ¥, So, {Soa S35 $35 55},
{Si’ Si’;: le Q}’ 9, {305 S‘i; 5y, 850 L€ Q}a {33: Si: te Q}) s

where ¢, i are defined in the following way:

@(s0, &) =i for e
(S0, %) =823

o(s0, ®) = 53

o(s5,n) =s7 for &neq;
o(s5, %) =s, for (eQ;
o(s3, @) =s; for & €Q;
P52, &) =5, for £eQ;
o(s2, %) =505

0(s5, &) =s; for {eQ;
o(s3, @) = 55




o(si,n) =sh for &neQ; 553
(P(Si, @) =s5 for ceQ;
o(ss, &) =55 for éeQ;

o(ss, @) =S
v(sd) =¢ for ¢(eQ;
U(s3) =¢ for feQ.

A diagram of the sequential machine .# for a simplified case @ = {a, b} is present-
ed in Fig. 1. The diagram of a sequential machine of class 8,,, is drawn in a similar
way as that for Moore’s sequential machines, each circlet representing a state s; con-
tains below the denotation of the state of the triple including an indication of the

value output function ¥(s;) (if ldeﬁned) and indices of the decomposition classes
of pkifs;eV,, s;e W

Fig. 1.

Definition 12. The weak sequential (m, n)-mapping will be the term for generally
multivalued (m, n)-mapping satisfying the following conditions.

1. Let an (m, n)-mapping be defined by the relation F and have the domain P,
(Pe(z%)", P = dom F); then

(i) emeP;

(i) If we P, u = (uy,uy,...,u,) and A(u) = d, then there exists k, LS k< m
such that for all m-tuples v = (v, vy, ..., v,), for whichu < v, (v) = d + 1L, u;, = v,
for all i + k. (AH m-tuples v are generated by extensions of the same word.)

(iif) If we P and A(u) = d, d > 0, then for each integer £, 0 < ¢ < d — 1 there is
exactly one m-tuple ve P, v < u, A(v) = t.

2. Let be (uy, vi) € F, (U, vo) € F, (uy, v,) + (uy, v).
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(1) If uy < uy, then v, X vy;
(i) If u, = uy, then v, < v, or v, < v, and for each n-tuple v, for which either
vi <V <v,orv, <v<v, holds, also (u;, v)eF is valid.

Theorem 7. Each sequential (m, n)-mapping is a weak sequential one at the
same time.

Proof. The first condition for the weak sequential (m, n)-mapping is in accord
to the second condition for the sequential (m, n)-mapping. The part (i) of the second
condition of the weak sequential (m, n)-mapping is weaker than the fourth condition
of the sequential (m, n)-mapping; it is not possible for the case (ii) to occur with the
sequential (m, n)»mapping since according to the first condition must be single-
valued.

Theorem 8. Any (m, n}-mapping induced by an arbitrary sequential machine
of class B, is a weak sequential one. ;

Proof. Let us consider a {m, n)-mapping f defined by the relation F(P = dom F)
and induced by a sequential machine .# € B,,,.

Now, the first condition will be dealt with. The fulfilment of (i) directly follows
from the definition of the mapping induced by the sequential machine .#.

The sequential machine .4 is deterministic therefore the state s;, to which the
machine ./ is brought by the m-tuple u is uniquely defined. Let W, (k < 0) be the
class of state decomposition, within which either the state s; or the state (DP(Si) falls
if s;e Wy and @/(s)e W, for j = 1,2,...,p — 1 (¢'(s;) denotes p(¢(... o(s;) ...)-

——
J-times

Thus, the sequential machine reads the following symbol from the k-th input tape,
each m-tuple in P having the initial section u and being of the length by one longer
than u must be v=u.e*"' @ a ® ™™ where ae 2. So the part (ii) is satisfied.

The fulfilment of (iii) follows from the deterministic character of the sequential
machine . The fulfilment of the second condition follows from the deterministic
character of the sequential machine .# and from the definition of mapping induced
by it.

Definition 13. The (m, n)-mapping f is said to be realized by the sequential machine
M €B,, if it is weak sequential and is a partial mapping of the (m, n)-mapping
induced by the sequential machine 4.

Theorem 8 state the necessary conditions which must be satisfied for the weak
sequential (m, n)-mapping to be induced by a sequential machine of class B,,,. Now,
we shall find a condition satisfactory for the case (m, n)-mapping is to be realised
or induced by a sequential machine of class B,,,. )

Let an arbitrary weak sequential (m, n)-mapping f defined by the relation F be
assigned a labelled graph G, (a tree) with the set of vertices F; edges and vertices



being labelled. as well. From the vertex (ul, Vl) there leads an edge to the vertex
(3, v2) if one of the conditions below is satisfied.

(i) u; = u; and there exist p € P, and b € X such that
v, =v,.ef T Db@ P
(ii) v, = v, and there exist k € P,, and a € X such that
u=u . Qademt
(iiii) there exist k € P,,, pe P,, a € X such that
w=u . l@a®t, v=v, . @b @® .

The edges of the graph are labelled with symbols from ¥ U {e}, the vertices of the
graph are labelled with triples (b, p, k) where be X U {e}, pe P,, k € P,,. In the case
of (i) the edge is labelled with an “empty” symbol e, the last element in the labe] of the
vertex (u, v) being 0 a the first two elements in the label of the vertex (uz, vz) being
b, p.

In the case of (ii) the edge is labelled with the symbol a, the last element in the
label of the vertex (u,, v,) being k and the first two elements in the label of the vertex
(uz, v,) being e, 0.

In the case of (jii) the edge is labelled with the symbol a, the last element in the
label of the vertex (uy, v;) being k and the first two elements in the label of the vertex
(u3, v,) being b, p.

By the conditions 1, 2 each weak sequential (m, n)-mapping is uniquely assigned
a directed labelled graph whose labels, however, are not completed (analogous as
in section 2).

Let the graph G be assigned undirected graphs G; and G} in the same way as it
was done in section 2 and let the validity of the definitions of weight and strong
weight of the (m, n)»mapping be extended even to the weak sequential mappings.

Theorem 9. The weak sequential (m, n)-mapping can be realized by the sequen-
tial machine M € B, with r states if and only if it has finite weight which is less
or equal to r.

Proof. 1. Let a weak sequential mapping f defined by the relation F have the
finite weight 7. Then there exists a chromatic decomposition of the graph G baving r
classes Ry, Ry, ..., R,. Let us construct a sequential machine & € B,,, interpreted in
the sense of Note 4, o = ({Ry, Ry, .., R}, @, ¥, Ry, Vo, Vi, o0 Vyy Wo, Wy, ooy W)
where R;, i = 1,2, ..., r are classes of the chromatic decomposition, the initial state
of the sequential machine being the class R, of the decomposition Ry, ..., R, into
which the vertex €™ of the graph G falls. The transition function ¢, the output func-
tion ¥ and the decompositions Vi, ..., ¥, and Wy, ..., W,, are chosen in the following
manner. If in the graph G there is an edge from the vertex (u;, vy) € R, to the vertex

555




556

(45, v2) € R; and this edge is labelled with the symbol a, then for a # e is @(R;, a) =
= R;hold or else Y(R,) = R. If the vertex (uy, v,) is labelled with the triple (b, p, k),
thenRe V,, R;e Wyand if b + e, then y(R;) = b.If b = a, then Y(R,) is not defined.

The choice of the graph G; and the properties of the chromatic decomposition
guarantee that the transition function ¢ chosen as well as the output function y are
single-valued and that the definition of the decomposition Vi, ..., ¥, and Wy, ..., W,
is meaningful. Analogically as in the proof of Theorem 2 we can show that the
sequential machine 2" does realize the (m, n)-mapping f.

2. Let there be a sequential machine & = (S, @y Y, 81y Voo Vis v Vs Wo, Wi, o
e W,,,) having g states which realizes the weak sequential (m, n)-mappingf defined
by the relation F. First, let & be modified to become the sequential machine %' =
= (S, ¢ W, s, V5, Vi, ... Vi, Wg, Wy, ..., Wy) having ¢’ states (¢" < q) such that
from the set of its states the states falling within V, n W, are skipped.

The initial state s9, the transition function ¢’ and the output function " will be
defined in the following manner: If s, ¢ V, 0 W, then 57 = s, or else 57 = ¢*(5,)
where k is the smallest natural number for which ¢(s;) ¢ Vo N W,

If s, s;¢ Vo 0 Woand o(s;, a) = s; or os;) = s;, then ¢'(s;, a) = s; 01 ¢'(s) = 5;.

I s5, 5, ¢ Vo 0 Wou Siyr Stys -0 Sk, € Vo O W, sy, @) = sy, or 9(s)) = su5 o(si,) =
= S, for t=1,2,...,p~ L and ¢(s,) =s;, then ¢'(s;; a) = s; or ¢'(s;)) = 5;.

Let an arbitrary vertex (u, v) of the graph. G be assigned that state of the sequential
machine %’ in which .#’ is being found after having added the m-tuple u from the
input tapes and written the n-tuple on the output tapes respectively. From the
deterministic character of the sequential machine %’ and from the fact it lacks states
falling within ¥, n W, it follows that each vertex of the graph G, is assigned one-
only one state of the sequential machine L and therefore, the decomposition My, ..,
..., M, of the vertices of the graph G and so of the graph Gy can be chosen in the
following manner: The class M, is composed of exactly all the vertices which are
assigned the state s; of the sequential machine #’. For each pair of vertices which
fall within the same class of the decomposition M; the conditions (i) and (i) are
obviously satisfied so that they be not connected with an edge in the graph Gj.
Thus, the decomposition M, ..., M, is a chromatic decomposition of the graph G;.
The (m, n)-mapping f has, therefore, the finite weight r < ¢' < ¢. The weak sequen-
tial (m, n)—mapping having the finite weight r cannot be so realized by the sequential
machine % € B,,, with. the number of states less than r and the weak sequential
(m, n)-mapping having the infinite weight cannot be realized by any sequential machi-
ne of class B,

Corollary 3. The (m, n)-mappings realized by the sequential machines of class
B,,, are exactly all the weak sequential (m, n)-mappings having infinite weights.

Theorem 10. The weak sequential (m, n)-mapping f can be induced by the sequen-
tial machine M €B,,, with r states if and only if it has finite strong weight which
is less or equal to r.



The proof is analogous to that of Theorem 9.
From Theorems 8 and 10 it follows:

Corollary 4. The (m, n)-mappings induced by the sequential machines of class
B, are exactly all the weak sequential (m, n)-mappings having finite strong
weights.

Analogically as in the case of the sequential machines of class %, even for the
sequential machines of class B, associated Moore’s sequential machines can be
introduced and analogous results can be proved for them.

6. CLOSURE OF THE (1,1)-FUNCTIONAL TRANSDUCTIONS UNDER
INTERSECTION

Let us present one theoretical application of the results derived. Tn [5] the closure
of some classes of binary relations under Boolean and other operations has been
examined. From the classes and operations considered only the closure of the so
called (1,1)-functional transductions under intersection has not been solved. (The
corresponding place in the survey table has been filled by a question mark.)

The relation R is said to be a functional transduction if there is a sequential machine
s € A,y (Moore’s sequential machine) such that R = (u, v): f(u) = v, where f is
the mapping induced by the sequential machine .oZ. If the mapping f is, in addition,
one-to-one mapping, the relation R is said to be a (1,1)-functional transduction.

Theorem 11. The class of functional transduction as well as the class of (1,1)-
Sfunctional transductions are closed under intersection.

Proof. Let R;, R, be functional transductions. Then there exists sequential machi-
nes o/, € Wy,, o, € Ay, inducing the mappings fy, f, with domains P,, P, such that
R, = {(u,v): ue Py, f(u) = v}, R, = {(u, v): u € Py, f(u) = v}.

Let us choose a mapping f5 with the domain P5 where

Py ={uiueP, n Py, fi(u) = fr(u)} ;
f3(u) = fi(u) = folu) for ueP,.

Let us denote by Gf = (X, U,), G} = (X;, Us), G§ = (X3, Us) the undirected

graphs assigned according to section 2 to the mappings fy, f2, f5 respectively. Ob-
viously X; < X;, X; < X, is valid. Furthermore, from the conditions for the con-
struction of the graphs Gj, G3, G} it follows for x € X,, y € X5: If (x, y) ¢ U, and
(x, y) ¢ U, then (x, y) ¢ Us. By negation of the preceding proposition we obtain:
If (x, y) € Us, then (x, y) e U, or (x, y) € U,.

The graph Gs = (X,, U,) is, therefore, a partial subgraph of the graph G, =
= (X; U X,, Uy U Uy). If the chromatic mumbers of the graphs G;, G, are denoted
by ry, r, respectively, then the chromatic number of the graph G, and that of its
partial subgraph G, as well is less or equal to r; + 7.
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From the definition of the mapping f5 it follows that it is a sequential mapping
and from the preceding expression it is clear that it has a finite proper weight. By
Theorem 4 there exists a sequential machine o that induces the mapping f.

The relation Ry = Ry n R, = {(u, v): u € P5, f(u) = v} is, therefore, a functional
one and if, moreover, the relation R; and R, have been (1,1)—functiona1 relations,
even this feature has been satisfied.

(Received March 3rd, 1967.)
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VYTAH

Koneéné automaty s ne€kolika vstupnimi a vystupnimi paskami

KareL Curix 11

V prdci se zobeciiuji Mooreho automaty. UvaZuji se automaty s m vstupnimi
a n vystupnimi pdskami, které v kaZdém taktu své préce Stou vstupni symbol vidy
z jedné vstupni pdsky uréené vnitfnim stavem automatu a zapisuji vystupni symbol
na jedou z vystupnich pdsek rovnéZ uréenou vniténim stavem automatu. UvaZuje
se i obecn&j8i pfipad, kdy automat v n&kterych taktech nemusi &ist vstupni symbol
nebo vyddvat vystup.

Zavédi se pojem (m, n)-zobrazeni (zobrazeni m-tic slov na n-tice slov) indukova-
ného resp. realizovaného uvaZovanymi typy automatfi a zkoumaji se nutné a posta-



&ujici podminky, které musi spliiovat takové (m, n)-zobrazeni. Tyto podminky jsou 559
formulovdny pomoci pojmu vdhy resp. silné vdhy (m, n)-zobrazeni, kterd jsou zobec-
nénim Trachtenbrotovy vdhy operdtoru.
Ukazuje se, jak lze pievést Glohy syntézy a minimalizace vicepdskovych automatii
na obdobné ulohy pro obygejné Mooreho automaty. Kromé toho se ukazuje i zpisob
pfimé minimalizace stavi vicepdskového automatu.
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