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KYBERNETIKA-VOLUME 22 (1986), NUMBER 2 

LONG MEMORY TIME SERIES MODELS 

JIŘÍ ANDĚL 

The paper deals with the fractionally differenced white noise and with other long memory 
processes of this type. It is a review of methods published recently, complemented with many 
new proofs. Some new procedures for estimating parameters are proposed and the seasonal 
persistent process is analyzed in detail. 

1. INTRODUCTION 

For a long time the most frequently used models in time series analysis were the 
AR, MA and ARMA processes. Their spectral densities are continuous and therefore 
bounded functions on [ — n, it]. If the periodogram of real data reached significantly 
high values, it was considered as an indication of the trend or of a periodic component. 
The bias arising after trend removal in the spectral density estimators was corrected 
using special factors (see [7] and [19]). However, the statistical analysis of many 
hydrological time series has led in the last time to the conclusion that the peak of the 
periodogram near to the origin should be rather explained by a model with a spectral 
density, which is not bounded in the neighbourhood of the zero frequency. From 
this reason models with long memory have been investigated, because they appear 
to be suitable for applications of such kind. Their definition reads as follows. Let 
{X,} be a stationary (discrete) process with a covariance function Rk. Then {Xt} 
is called a process with long memory, if Y\Rk\ = °°- In the c a s e t n a t Xli^l < °° 
we say that the process {X,} has short memory. From practical point of view we 
restrict ourselves to the processes with R0 4= 0. Then the above definitions can be 
formulated in the same way using the correlation function. The definition itself 
was proposed in [15]. 
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2. FRACTIONALLY DIFFERENCED WHITE NOISE 

2 .1 . Fundamental properties 

Let {ej be a white noise with Ee,t = 0, var et = a2 > 0. Let B be the back-shift 
operator; i.e., BXt = Xt_1, Bst = et_t etc. If {X,} is a linear process satisfying 

(2.1) (l-&yxt = et, 5 s (-hi), 

then {Xt} is called (simple) fractionally differenced white noise (FDWN). Instead 
of (2.1) we can use equivalently 

(2.2) X, = (1 - B)~sst. 

The process {Xt} possesses the spectral density 

(2.3) 
/ W - ^ 

2п 
4 s i n -

(see Figs. 1 and 2). A detailed derivation of (2.3) can be done using the methods 
explained in [1], Chap. 9.1. Obviously, f(X) -* oo for X -> 0 iff <5 > 0. Because we 
are interested especially in models of this kind, we shall assume everywhere in this 
paper that 5 e (0, £). 

1.5H 1.511 

Fig. 1. Spectral density of FDWN for 
<r2= 1 and<5= 0-1. 

Fig. 2. Spectral density of FDWN for 
<x2 = 1 and <5 = 0-4. 

Theorem 2.1. The covariance function Rk and the correlation function Qk of the 
process {Xt} with the spectral density (2.3) are 

( - l )*<7 2 r ( l -2<5) 
(2.4) 

and 

(2.5) 

R, = 
Г(fc + 1 -<Ş)Г(-fc + 1 -5) 

(fc = 0, ± 1 , . . . ) , 

5(l + 5)...(k-l + öl ( f c ш l ł 2 > ^ ) t 

(l-5)(2-5)...(к-5) 

respectively, where T is the gamma function. 
P r o o f (see [8]). We start with 

Rk= \ eikkf(X) áX = 2 f* cos kXf(X) dX = 4 | cos 2kxf(2x) á> 
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It can be checked that q(x) = cos 2kxf(2x) is such that q(x) = q(n - x), x e (0, n/2). 
Thus 

Rk = 2 j cos 2kxf(2x) Ax . 

• 

We insert fo r / from (2.3). Using (6.2) and the well known formulas 

cos kn = (-lf, B(_, b) = r(_) r(b)/r(a + b), 

T(a) = (a - 1) _X_ - 1), 

we obtain (2.4). Formula (2.5) follows from gk = RkJR0 . 

Our results can be also written in the form 

(2.6) R0 = a2 T(l - 2<5)/r2(i - 5 ) , 

Rk+1=(k+l-8)-l(k + S)Rk (fc^O), 

(2.7) Qo = 1 , Ql= 5/(1 - 5) , ft+1 =(k+ 1 - 5)"1 (fc + 5) Qk (k ^ 0) . 

These formulas will be used for estimating 5 and for simulations. 

Fig. 3. Correlation function of FDWN for Fig. 4. Correlation function of FDWN for 
(5=0-1 . (5=0-4. 

Two examples of Qk are given in Figs. 3 and 4. 
Formula (2.5) is equivalent to 

Qk = [ r ( i - 5)/r(5)] \T(k + S)JT(k + 1-8)]. 

Expanding F(k + 8) and F(k + 1 — 5) by the Stirling formula, we get after some 
computations 

(2.8) _ „ ~ [ r ( l - - T O ) ] * " - 1 ( f c - o o ) . 

From here it is clear that Xk*l = °°- ^ m e a n s that FDWN belongs to the set of 
models with long memory. 

Theorem 2.2. The AR(oo) and the MA(oo) representations of FDWN are 

(2.9) 
j=0 
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and 

(2.10) Xt = fbjst_J, 
j = o 

respectively, where the coefficients a,- and bj are given in (6.6) and (6.7). 
Proof (see [8]). The assertions follow from (2.1), (2.2) and (6.5), since 

£ | a ; | < o o and f \bj\2 < oo for 5 e (0, i). • 
j=0 / = 0 

From the historical point of view, Mandelbrot and van Ness in [13] introduced 
originally so called "fractional Gaussian noise" (FGN) in the following way. Let 
B(s) be a process of Brownian motion. Define 

j ' (t-sYdB(s). 

Then Xt = r}t — rj,~1 has been called FGN. In this connection the symbol H = 
= S + $ is used. The relation between FGN and FDWN is discussed in [5], [8] and 
[11]. A generalization is described in [2]. 

2.2. Methods for simulations 

The processes FGN and FDWN are tightly connected. Therefore, we introduce 
also the methods, which were proposed originally for FGN [see (a), (b), (c)]. 

(a) A method based on inverting the correlation matrix (McLeod and Hipel 
[15]) is numerically cumbersome and not suitable for sample size greater than 100. 

(b) An approximation by ARMA (1, 1) process (O'Connel [16] and [17]). 
(c) An approximation based on a sum of independent AR(1) processes ("fast 

fractional Gaussian noise" — see [12]). 
(d) An approximation based on an MA process of high order. Instead of (2.9) 

a similar but finite series is considered (Mandelbrot and Wallis [14]). Since the 
convergence b} -» 0 is very slow [see (6.8)], this method needs an extraordinary high 
order of the considered MA model. 

(e) An approximation based on an AR process of high order. The infinite series 
(2.8) is substituted by a finite sum. Since the convergence cij -> 0 is faster, Hosking 
[9] prefers this method to (d). 

(f) A method based on partial correlation coefficients. The procedure is proposed 
by Hosking in [9] and its steps use some results from [8]. Since it is considered as 
an effective method, we introduce here some details. The procedure is used for 
simulating FDWN with normal distribution. We describe the case with az = 1. 

(i) Generate a random variable X0 ~ N(0, v0), where v0 = R0 = T(l — 25): 
: r 2 ( i - S). 

(ii) Calculate <Pjt (j = 1, 2 , . . . , /) recurrently from 

<PU = 3l(t - 5) , _>y = # . _ W - ' #„# ,_ . . . , - . , (j=l,...,t-l). 
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(iii) Calculate , 

mt = Z0tJX,-j, v, = (1 -0 ;>.-.• 
J = I 

(iv) Generate Xt ~ N(mt, vt). 
(v) Repeat (ii) — (iv) for t = 1,2, ...,N. 
If it is necessary to simulate several realizations with the same 3, it is recommended 

to store the coefficients <PtJ. 
The main idea of this procedure is that 

(2.11) $kk = 3\(k-3) ( f c = l , 2 , . . . ) 

is the partial correlation function of the process [Xt] (see [8]). 

2.3. Estimation of parameters 

The model (2.1) has two parameters, 8 and a2. The main problem is to estimate 3, 
because then an estimator for a2 can be based on (2.6). 

The simplest procedure is the moment method. Let Rk and ak be estimators 
for Rk and gk, respectively. Using (2.7) one can see that 3 = g t /( l + <?,). Thus an 
estimator for 3 is 

(2.12) o = £A(1 + $.) 

and an estimator for a2 is 

(2.13) ff2 = R0 F
2(l - <5)/r(l - 23). 

HRk and Qk are consistent estimators, the same is true for 5 and a2. 
Another possibility is to use an estimator $kk of the partial correlation function 

(fc = 1, 2, ..., M < N). From (2,11) we have estimators 

8k = fc<iy(l + $kk) 

which can serve for a final estimator 

3*=(§1 + ... + oM)lM. 

This procedure is able to check the adequacy of the model. However, further 
theoretical investigations in this direction are needed. 

Geweke and Porter-Hudak [2] proposed the following method. From (2.3) we get 

(2.14) lnf(X) = In — - <5 In U sin2 -\ . 

Let a realization Xu ...,XN be given. Consider the values of its periodogram I(X) 
in the points X = XJt where 

Xj = 2uj\N (j = 0, 1.....N - 1). 

With respect to (2.14) we have 

*j\ , ._IU/> 
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The variables In \j(kj)\ f(kj)~\ a r e asymptotically independent identically distributed 
with the asymptotic expectation - C and with the asymptotic variance rc2/6, where 
C = 0-57721 ... is the Euler constant. Thus (2.15) can be considered as a regression 
model 

Yj = a + dxj + ej (j = 0, 1, ..., N - l) , 

where Yj = Inl(kj) and Xj = — In (4 sin2 (kjj2)). If a and o are the mean squares 
estimates of the regression parameters, then $ can serve as an estimator of our 
original parameter <5. Since a is an estimator of In (<r2/(2rc)) + C, an estimator for cr2 is 

<72 = 2 r c e 3 - c . 

If the couples (Yj, Xj) do not correspond to the linear dependence, we can doubt 
if FDWN is a correct model for our data. 

Still another procedure can be based on the following idea. If we approximate 
in (2.3) sin x = x for small x, then 

/ W = ( 2 T C ) - 1 C T 2 A - ^ . 

Denote F(X) the spectral distribution function corresponding to the density f(X). 
Then 

F(x) - F(0) = f j W <U = (2TC)"1 <r2(l - 2.5)"1 x1 

But F(x) - F(0) can be estimated by J*g 7(A) dA. Since 
N-l 

I(X) = (2TC)-1 (Co + 2 ^ Ck cos kk), 

-26 

where 

we have 

Because 

С t = І V - 1 £ В Д + , i for /c = 0, 1, ...,N- 1, 

I(Å) dk = (2TI)-1 (xC0 + 2 X k~lCk sin kx) . 
N-l 

fc = l 

In [F(x) - F(0)] = In {<T2/[2TC(1 - 2r3)]} + (1 - 2<5) In x , 

we can use again estimators for parameters of the linear regression. 

2.4. Estimation of the mean value 

If a process {Xt} has the spectral density (2.3) and a constant mean value n == 
= EX„ we can estimate \i by Xn = (Xx + ... + X„)jn. Clearly EX„ = p. Because 
var X„ does not depend on p, we shall assume in the next considerations that /. = 0. 
We also keep the assumption <5 e (0, £). 
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Theorem 2.3. Let R0 = var Xt. Then 

var Xn = „-2R0 - J - [l + - (-+*)(- + -Q-("+JL__| . 
1 + 2^L 5(1 -5) (2- . ) . . . (« - 1 -5) J 

P r o o f . Let Z(-) be the random measure corresponding to the process {JT,}. Then 

X„ = n " 1 £ JIT. = n " 1 f f" eirA dZ(X) = f f n " 1 eirA dZ(A) . 
« = i '=iJ-« J--* = i 

Using Theorem 3A4c) in [1] we get 

EZ„2=r |B--£-«'*|-/(A)tU. 

After some computations we obtain 

EX2 = n-22-2 57r-1(72 f s i n - 2 - 2 a x s i n 2 n x d x . 

The result follows by using (6.10) and (2.6). • 

Theorem 2.4. If n -* oo, then 

var Xn ~ R0(l + 2<5Y1r(l - 5 )T- 1 ( I + 5) n2*"1 . 

Proof. The assertion follows from Theorem 2.3 by help of the Stirling formula. • 

Theorems 2.3 and 2.4 are introduced without proof in [9]. 

3. GENERAL FRACTIONALLY DIFFERENCED WHITE NOISE 

Let/(/t) be the spectral density given in (2.3) and letj„(A) be a positive continuous 
even function on [—„,„] . Then any process having the spectral density 

(3A) g(X)=f(X)fu(X) 

js called the general fractionally differenced white noise (GFDWN). As a rule, 
i„(A) is the spectral density of a suitable ARMA process. Without any loss of generality 

Fig. 5. Spectral density/„(„) of the AR(2) model X, + 1-2X,_t + 0-5A",_2 = s,. 

111 



we can assume CT2 = 1, because any multiplicative factor can be included into f,(X). 
Fig. 5 shows the spectral density fu(X) = (27c)-1 |l + 1-2 e ~ u + 0-5 e - 2 U | " 2 , 

which corresponds to the AR(2) model Xt + \-2X,_x + 0-5_fr_2 = s,. The spectral 
density g(X) corresponding to f(X) with <5 = 0-45 is plotted in Fig. 6. 

0 T t / 2 « 

Fig. 6. Spectral density g(X) = f(X)fu(l) of GFDWN for S = 0-45. 

The parameters of (3.1) are estimated in two steps. First, an estimator for 8 is 
constructed. Thus we have in our disposal an estimator f(X) for f(X). Then we use 
an estimator g(X) for g(X) and calculate fu(X) = g(X)\f(X) as an estimator for fu(X). 

Gewerke and Porter-Hudak [2] propose the following method for estimating 8. 
Let I(X) be the periodogram calculated from a realization Xu ...,XN of GFDWN. 
From the formula 

In g(X) = In [(2K)~ > f,(0)] - 8 In (4 sin2 (X/2)) + In [La)//.(0)] 

one gets 

In I(X) = In [(27t)-1/„(0)] - 8 In (4 sin2 (Xj2)) + In [f,(X)!fu(0)] + 

+ In [ / ( % ( ! ) ] . 

If we consider only some frequencies X = lj near to 0, the value of In [/,(^j)/L(0)] 
is negligible. An estimator for 8 we get again from the linear regression with dependent 
variables Yj = InI(Xj) and with independent variables Xj = —ln(4sin2(Xjj2)). 

Another procedure follows from the approximations sin X = X and fu(X) = /„(0) 
near to 0. Then g(X) = (2n)-x X~2d fu(0) and 

G(x) - G(0) = f*g(X) dX _= (27r)-
1/„(0) (1 - M ) " ' x 1 " 2 ^ . 

Further we can proceed in the same way as in the Section 2.3. 
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4. SEASONAL FRACTIONALLY DIFFERENCED WHITE NOISE 

If it is known in advance that a model should be constructed for a seasonal time 
series with the seasons of the length s, we can use the linear process {X,} defined by 

( 1 - B 0 5 X ( = £ ( . 

Such a process {X,} is called the "seasonal fractionally differenced white noise" — 
SFDWN. Again, let d e(0, £). SFDWN has the spectral density 

fs(X) = (2n)-1a2\\ -c~isl (27t)-1(T2(4sin2(sA/2))-

Obviously, fs(X) -> oo for X -* 2knjs (k = 0, ± 1,..., ±[s/2]), where [ ] denotes 
the integer part. In Fig. 7 we can see/s(A) for d = 0-3, s = 5 and a2 = 1. 

Fig. 7. Spectral density/S(A) of SFDWN for <5 = 0-3, s = 5 and a2 = 1. 

SFDWN has the AR(co) and MA(oo) representations 

£ ajXt_sj = B, and X, = £ &/._.; , 
7 = 0 J = 0 

respectively, where a,- and fcj- are the same coefficients as in Theorem 2.2. It follows 
from the MA(oo) representation that the covariance function R(

t
s) of the SFDWN 

is given by 

Ms) J !C if t = sm f ° r a n integer m , 
' (0 otherwise, 

where Rm is the covariance function of FDWN introduced in Theorem 2.L Because 

R\s) = 2 f cos tXflX) dX = n-i2~2da2 f cos tX (sin2 (sA/2))-^ dA = 

= 21~2SK~1a2 T cos 2řx (sin2 sx) ô åx , 
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we have proved an interesting formula 

cos 2tx (sin2 sx)~s dx = <J T(m + 1 - 8) T(-m + 1 - 8) 

. 0 otherwise, 

for í = ms. 

where m, s are integers and <5 e (0, ̂ ). 
Quite analogously it can be defined the general seasonal fractionally differenced 

white noise as the process with a spectral density of the type gs(X) = fs(X) /„(!). 

5. SEASONAL PERSISTENT PROCESS 

Let <5 e (0, $) and a> G ( 0 , n). A seasonal persistent process (SPP) is such a linear 
process {X,} which satisfies the relation 

[ ( l _ e ^ B ) ( l - e - ' r a B ) ] ^ , = £ , . 

This can be written in a more convenient form 

(1 - 2 cos a>. B + B2)* Xt = e ( . 

The spectral density of the SPP is 

f(X) = ( 2 K ) - 1 CT2|(1 - e " - " ) ( l - e - t o - » ) | - " = 

(5-1) 

We can also write 

/ . 2 ш — Я . 2 ш + Я 
= (2тt) x 2 ад <тz sm*1 sin 

f(X) = (2TI)- 1 2~2á (г2|cos Я - cos ш| 

but (5.1) is more suitable for further investigations. Sometimes the authors use the 
notation <5 = cos co. Some typical shapes of f(X) for a2 = 1 are given in Fig. 8 

Ҡ / 2 

Fig. 8. Spectral density of SPP (er2 = 1, <5 = 0-4, m = it/6, 0 = 0-866). 
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(ô = 0-4, oз = я/6, Ф = 0-866), Fig. 9 (.5 = 0-2, co = я/б, Ф = 0-866), Fig. 10 (<5 
= 0-3, Ф = -0-6, eo = 2-214) and Fig. 11 (5 = 0-3, Ф = 0-995, co = 0-1). 

Fig. 10. Spectral density of SPP (<r2 = 1, <5 = 0-3, to = 2-214, <2> = —0-6). 

0 Tt/2 It 

Fig. 11. Spectral density of SPP (<r2 = 1, S = 0-3, co = 0-1, * = 0-955). 

The covariance function R(k) of the SPP can be expressed by the formula 

(5.2) R(k) = T T 1 2 " 2 V P cos H|cos X - cos co\-2d dX . 

An explicit solution is known only in special cases. Let co = %\2. From the relation 
cos k(x — 7t) = (— 1)* cos kx we get 

R(2k + Í) = Q (k = 0,í,...) 
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and 
rxl? 

R(2k) = n~121~2ia2 \ cos" 2 a x cos 2fcx dx (fc = 0, 1,...). 

Using (6.4) we come to 

R(2/c) = ( - l ) * ( l - 2.5)-1 <T2/B(1 - 8 + fc, 1 - 8 - fc) = 

= ( - l ) t <7 2 F( l - 2<5)/[F(l -<5 + fc)T(l -<5 - fc)] (fc = 0 , 1 , 2 , . . . ) . 

The asymptotic behaviour of the R(fc) in the general case is described in the follow­
ing theorem. 

Theorem 5.1. If fc -> oo, then 

(5.3) R(k) ~ a2 21~2S sin~2d co - ^ - ^ fc25"1 cos fcco . 
K ' w - T(l - ,5) r(<5) 

Proof. We start with 

R(k) = 2 f cos Uf(X) d l , 

»)/2 
fù>/2 

J2 = j cos 2fcx(sin2 x)~s (sin2ð co - [sin2 (co - x)Y] [sin2 (co - x)~\~ð dx , 
»)/2 

ЛШ/2 

where f(X) is given in (5.1). Make substitution (co — A)j2 = x. After elementary 
computations we obtain 

R(k) = K~1 2 1 - 4 V s in" 2 5 co . ( j . cos fcco + J 2 cos fcco + 

+ J 3 sin fcco + J 4 sin fcco) , 
where 

J j = cos 2/cx(sin2 x ) - ^ dx , 
J - ( T I - C 

J-„-
/><o/2 

J 3 = sin 2fcx(sin2 x ) _ , 5 d x , 
J -0r-<o)/2 

fo>/2 

J 4 = sin 2fcx(sin2 x)"15 {sin2,5 co - [sin2 (co - xj\s) [sin2 (co - x)]~3 dx . 
J -(n-ffl)/2 

First, consider Jt. From the periodicity we can see that the integral over 
[ — (n - co)/2, 0] is the same as the integral over [(n + co)/2, it]. Thus 

j — T* _ r** 

where 
/•it /•(!t + CO)/2 

J* = cos2fcxs in- 2 5 xdx, J** = cos2fcx s i n - 2 5 x d x . 
J o J to/2 

The value of J* is given by (6.2) and its asymptotics was investigated in the derivation 
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of the formula (2.8). Thus 

J* ~ n 22ik2S~1 T(l - 25)/[r(l - S) T(S)] . 

Theorem 6.4 ensures that J** = 0(k~1). 
The similar procedure is valid also for J3 . In this case we have J3 = J* - J**, 

where 
pit «u) + lt)/2 

J* = s in2 /cxs in" 2 a xdx, J** =\ sin 2/cx sin"23 x dx . 
J o J to/2 

But J* = 0 according to (6.3), whereas J** = 0(k~1). 
Now consider J2 . Since 

lim (sin2 x)~3 {sin2,5 co - [sin2 (co - xj]s} = 0 , 
x->0 

Theorem 6.4 yields J 2 = 0(/c_1). Quite analogously, J 4 = 0(/c_1). Summarizing 
these results we come to (5.3). • 

Hosking [9] introduces without proof that Rk ~ ak2d~1 cos km. The constant a 
is not specified there. 

Theorem 5.2. SPP is a long memory process. 

Proof. We prove that £|R(/c)| = °°- L e t Y\R(k)\ < °°- T h e n t h e function 

h(x) = (2n)~1 f s~iiaR(k) 
k - - o o 

is continuous (uniformly convergent series of continuous functions has a continuous 
sum). Since h(x) is the uniformly convergent Fourier series of the function f(x) 
on [ —u, 7t], it holds f(x) = h(x) and this equality may be violated maximally in 
a finite number of points (e.g. [6], p. 388). This is a controversy, because h(x) being 
continuous on [ — it, TT] must be bounded, whereas the Lebesgue measure of the set 
{x e [ — Jt, it]: f(x) ^ K} is positive for arbitrary large K. • 

Note that the proof of Theorem 5.2 suits also for other long memory models. 

Theorem 5.3. Let U = {z: \z\ < 1}, V = {z: \z\ < 1}. Put \j/(z) = (1 - <zimz)~° x 
x (1 — e~i0'z)~s, z e V — {eim, e " i o } , where we define wa = exp {a Log w} for 
every complex a and w $ (- oo, 0). Then \j/ is analytic in U. If 

4>(z) = tcnz
n (zeU), 

n = 0 

then w 

E |c„|2 < co . 

Proof (Netuka). For 0 e (0, TT) - {co, -co} we have 

^ ' 2 = 2 - / / s 1 n 2 ^ ^ V 7 s i n 2 0 

2 / V 2 
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Because 5 e (0, £), we can see that 

íe i8)|2 d o < 00 . 

The Fourier coefficients with negative indices of the function \j/(ew) are zeros and 
thus Theorem 17T0 in Rudin [18] implies that YJc„|2 < GO. • 

Now, we derive the MA(oo) representation of SPP. We have 

X, m (1 - eiraB)-*(l - e-iaB)~sst = 

- ( £ bj eUo,BJ' £ bk e~ltoB*) 6, - £ c„et_„, 
j«0 * = 0 « = 0 

where the coefficients bj are given in (6.7) and 

c„ = YJ bkbn_k cos ct)(n — 2fc) . 
„=o 

Theorem 5.3 ensure that £|c„|2 < oo, and thus the series y_c„et_„ converges in the 
quadratic mean. The coefficients c„ can be calculated as follows. Let fik

n) = bkb„_k. 
Then jS0

0) = 1 and 

Ô + n 

n + 1 
Po > Pы-1 — 

k + ò n-k 

n + ô - l - k k + í 
ßf (k = 0,...,n-í). 

Because j8j_B) = /?*"_k, it is sufficient to calculate /.["' only for k < [n/2]. Some co­
efficients jSJi'0 are introduced in the following table. 

Coefficients ß{n) 

Ä 

0 1 2 

0 
1 
2 
3 
4 

1 
<5 

ð(å + l)/2 
<5(<5 + 1) (<5 + 2)/6 

<5(<5 + 1) (<5 + 2) (_ + 3)/24 

<52 

<52(<5 + l)/2 
ð2(ð + 1) (<5 + 2)/6 <52(<5 + l)2/4 

The AR(oo) representation of the SPP can be derived similarly. We have 

8, = (l-e ,»B)*(l-e- ,-B)'= £«_*,__, 

where 
h„ = £ aka„-k cos ca(n — 2k) , 

7í=0 

and the coefficients ak are given in (6.6). The series £«„_?<-,, converges in the quadratic 
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mean because _ m „ m 

E \K\ _ I E \ak\ . \a„-k\ = ( Z Hf < oo . 
n=0 n=0 k=0 j =0 

Denote a[n) = aka„-k. Then a0
0) = 1 and 

_ fe - <5 n - fc 
1 "" 7^5 - 1 - fe fc + 1 

v(» + 1) _ _ ð ~(n) 

x0 — - a0 

П + 1 

v(») (fc = 0, ..., n - 1). 

Also here a['° = a(„nlk and thus it suffices to calculate ak

n) only for fe = 0,..., [n/2]. 

Some a!,n) are given here. 

Coefficients ak

n) 

/t 

0 1 2 

0 
1 
2 
3 
4 

1 
-ð 

( l -<5)( -<5) /2 
( 2 - <5)(1 - <5)(-<5)/6 

( 3 - <5) ( 2 - <5)(1 - <5)(-<5)/24 

ð2 

(1 - Ą <52/2 
(2 - <5) (1 - <5) <52/6 (1 -- <5)2 <52/4 

It is possible also to define the generalized seasonal persistent process (GSPP) 
as the process having a spectral density of the type f(X)fu(X), where f(X) is given 
in (5.1) and/„(A) is a positive continuous even function on [ — %, it]. 

If SPP has a constant mean value \i, we can estimate it also by Xn = 
= (X, + ...+Xn)jn. 

Theorem 5.4. If {X,} is a SPP, then var X„ = O^1). 

Proof. In the same way as in the proof of Theorem 2.3 we get 

sin2 — s i n " 2 - / ( A ) d l , 
2 2 V ; var A-,, = n~ 2 

where j(X) is given in (5.1). Denote 

q(x) = 

After some computations we obtain 

sin [ x ) sin i h x 
) ! 

where 
varX„ = a2%~x 21~45(J1 + Jz), 

r/4 
s i n - 2 x sin2 nx g(x) dx , 

J , as n" sin 2 x sin2 nx q(x) dx . 

W 



Let 
m = min q(x), M = max q(x). 

0 < x S „ / 4 O g x § „ / 4 

Taking into account the inequalities 

x cos x S sin x g x (0 5J x <; 7t) 
and the relation 

sin""2 x sin2 nxdx = | £ e2""!2 dx = H/2 , 
Jo Jo * = i 

we obtain for every n >. 2nj(o 

J1 g m~ln~2 s in~2xsin2 nxdx = (2m/!)""1 , 

/•n/(2n) 

J i ^ M ln 2 x V x 2 cos2 nxdx = TC(4M«)""1 . 

Denote 

m' = min 
» / 4 g X § 

Then 
Mi 

J2йm n z sin z — 
4 

йЛ^OMľ 
П s , v (Hľ љ - o ( "~ г ) - D 

The proof shows that the order of var Xn is really n x and not, for example, 

6. APPENDIX 

Theorem 6.1. If /i and v are complex numbers such that Re /< > 0, Re v > 0, 
then 

(6.1) T ' s i n " - 1 x c o s - 1 xdx = - B ^ , - V 

cm 
rt cos — 

(6.2) s in v _ 1 x cos ax dx = 
Jo Г Ч в ' T + fl + 1 v - a + 1 

(6.3) sinv 1 x sin ax dx = 
Jo 0v-l 

. aтt 
тt sin 

2 
r-чв'v + a + l v~a + í 
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Ґ2 

(6.4) cos" ' x cos ax dx = 
,'v + a + í v - a + 1 

2 v B 
2 2 

Proof. See Gradstejn and Ryzik [3], formulas 3.621, 5; 3.631,8; 3.631,1; 3.631,9. • 

Theorem 6.2. Let 5 e (-^, \) and \z\ < 1. Then 

(6.5) (l--/-fa,*', (i-zr = fv , 
;=o j=o 

where 
(6 6) a = — B L Z - i L - = ( i - l - ^ ( i - 2 - ( 3 ) . . . f l - o ) ( - ( 5 ) 
K'} ' T(-5)r(j + i) j \ 

(6 7) b T(j + g) - ^ I ' " 1 + ^ ) ( j - 2 + ^ ) - . - ( l + ^ ) ^ 
J' r(a) r(j + 1) ;! 

If; -> QO, then 

(6.8) j i + ^ - * i / r ( - 5 ) , ; - - ' * , - l / i t * ) . 

Proof. The assertions (6.5), (6.6) and (6.7) follow from the Maclaurin formula. 
Using the Stirling formula, we get (6.8). • 

Theorem 6.3. Let / be a real integrable function on a finite non-degenerated 
interval [a, b\. Let a be monotonous and finite on [a, b\. Then there exists a number 
£, e [a, b\ such that 

f / ( * ) a(x) dx = g(a) f /(*) dx + g(b) I / (x) dx . 

Proof. See [10], p. 198. • 

Theorem 6.4. Let j be a real integrable function on a finite non-degenerated 
interval [a, b~\. Let 

ak = f(x) c o s kxdx , bk = /(x) sin kx dx (k = .1,2, . . . ) . 

If the variation of j is finite on [a, ft], then the sequences {kak} and {kbk} are 

bounded. 

Proof (cf. [10], p. 484, Ex. 2). Let j be nondecreasing. Then Theorem 6.3 yields 

ak = f(a) c o s kx dx + f(b) cos kx dx = 

= k-'f(a) (sin H - sin ka) + k'1 f(b) (sin kb - sin k£) , 

where £ depends on k. From here we have \kak\ g C, where C = 2|j(a)| + 2|j(fo)| is 
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Then 

a constant. The proof for bk is similar. Finally, every function with finite variation 
can be written as the difference of two nondecreasing functions. • 

Theorem 6.5. Let 

Kn(a) = cos x s i n " 1 - " x sin 2nx dx (a + 0) . 

Kn(a) = 2a~1n sin""" x cos 2nx dx — a'1 sin~" x sin 2nx . 

Proof. We can write K„(a) = §u'(x) v(x) dx, where u'(x) = s in" 2 x cos x, v{x) = 
= s in 1 _ a xsin2nx. Then u(x) = —sin" 1 x and the integration by parts leads to an 
equation for Kn(a). • 

Theorem 6.6. Let 

J„(a) = sin~2~" x sin2 nx dx (a + — l) . 

f.(a) = i ( l + ~)~l ~ sin~a x dx — ^(1 + a)"1 a sin~" x cos 2nx dx — 

- (1 + a)'1 cos x s i n ~ , ~ a x sin2 nx + (1 + a)"1 n K„(a), 

where K„(a) is defined in Theorem 6.5. 
Proof. In this case we have J„(a) = JV(x) v{x) dx, where u'(x) = s in" 2 x, t;(x) = 

= sin"" x sin2 nx. Then u(x) = —cos x sin^1 x and the integration by parts gives 
an equation, which is equivalent to our assertion. • 

Theorem 6.7. Let 8 e(0, \) and n - 1,2,.... Then 

(6.9) cos x s in~ 1 ~ 2 5 xsin 2nx dx = , 
J0 3(1 - 2S)B(1 - d + n, 1 - 5 - n) 

(6A0) s in~ 2 _ 2 < s xsin 2 nx dx = 

Then 

Щ - 20) Г (l+ð)(2 + ð)...(n + ð) -1 

Г 2 ( l - < 5 ) [ _ ð(l - ð)(2-ð)...(n-l-ð)\' 

Proof. Formula (6.9) follows from Theorem 6.5 by using (6.2). It is easy to see 
that s in - 2 x sin 2«x -* 0 for x -» 0+ as well as for x -* n —. 

From (6.2) we get that 

| sin~23 x dx = 7i 22S T(l - 2<5)/r2(l - S). 

The integral J"" s in _ 2 5 x cos 2nx dx is given by (6.2). Since cos x sin_ 1~2 a x sin2 nx ->• 
-» 0 for x -> 0 + , x -> 7t- , (6A0) follows from Theorem 6.6 and from (6.9). • 
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