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KYBERNETIKA — VOLUME 29 (1993), NUMBER 6, PAGES 609-616 

A NEW ROBUST STABILITY MARGIN 

P E T E R M.M. BONGERS 

The aim of this paper is to derive a new robust stability margin. Known sufficient 
conditions for robust stability stated in gap-metric sense contain inherent conservativeness 
in the formulation of the various steps. In this paper conservativeness in one of the steps is 
removed, resulting in a new robustness margin. The key issue is that more information of 
the specific controller is taken into consideration. The resulting robustness margin is less 
conservative than the margin in directed gap-metric sense and is as easy to compute. The 
advantage of this robustness margin will be illustrated by an example. 

1. INTRODUCTION 

When a perfect model of the real plant is available, it will be non-linear and of 
extremely high order. In engineering practice the plant will be described by a high 
order linear model. This nominal model is an approximation of the real plant. The 
discrepancy between the nominal model and the plant is then approximated by an 
uncertainty plant model. The plant uncertainty models are allowed to contain a 
different number of unstable poles. This leads in a natural way to a coprime factor 
approach of model descriptions. 

In the next step a controller will be designed in such a way that it robustly 
stabilizes the nominal model with a prespecified performance, methods to design 
such controller are for example given in [2, 4, 8]. 

The feedback loop will be called robustly stable if the closed loop transfer function 
T(P,C) remains stable for all plant variations described by the uncertainty plant 
model. 

In some recent papers [2, 6] a sufficient condition for robust stability of a closed 
loop system under plant perturbations have been stated in the gap-metric. In the 
gap-metric robustness the nominal plant is factorized in normalized coprime factors. 
The difference between a perturbed plant and the nominal plant is described by 
perturbations on the normalized coprime factors of the nominal plant. Robustness of 
the closed loop for a class of perturbed plants is guaranteed if the norm of the coprime 
perturbations is small enough. The maximum allowable norm of the perturbations 
is determined by the infinity norm of the closed loop, hence only crude information 
about the nominal plant and controller is taken into consideration. 
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The main idea behind the new and less conservative robustness margin to be 
considered in this paper is to take more information about the nominal closed loop 
system into account. One can think about this information as refinement of the in­
finity norm to frequency dependent maximum singular values, and the directionality 
of the feedback loops in multivariable systems. 

In order to take the closed loop characteristics into account, a normalized coprime 
factorization of the nominal plant is modified by a normalized coprime factorization 
the nominal controller. 

The difference between a perturbed plant and the nominal plant is now described 
by perturbations on the modified coprime factors of the nominal plant which includes 
detailed information about the controller. 

It will be shown that this new robustness margin allows a larger class of coprime 
factor plant perturbations than allowed in the gap-metric. 

The layout of this paper is as follows: after some preliminaries in Section 2 
stability of a nominal closed loop system is discussed in Section 3. Then the new 
robustness margin will be derived in Section 4. Relations with other robustness 
margins, such as the gap-metric, will be discussed in Section 5. The whole procedure 
will be illustrated by an example in Section 6 followed by conclusions in Section 7. 

2. PRELIMINARIES 

In this note we adopt the ring theoretic setting of [3, 9] to study stable multivariable 
linear systems by considering them as transfer function matrices having all entries 
belonging to the ring Ji. Here we will identify the ring H with IRPQO, the space of 
stable real rational finite dimensional linear time-invariant continuous-time systems. 
We consider the class of possibly non-proper and/or unstable multivariable systems 
as transfer function matrices whose entries are elements of the quotient field TofTi 
(T := {a/b | a € H, be W\0}). The set of multiplicative units of 7i is defined as: 
J := {h £ H | h~x e K). In the sequel systems P e Tmxn are denoted as P e T. 

Definition 2 .1 . [9] A plant P e T has a right (left) fractional representation if 
there exist At, M(N,M)_e H such that P = NM~X (= M~XN). 

The pair M, N(M,N) is a right (left) coprime fractional representation of P 
(rcf or lef) if it is a right (left) fractional representation of P and there exists 
U, V(U, V) e H such that: UN + VM = 1 (NU + MV - I) 

The pair M,N(M,N) is called a normalized right (left) coprime fractional rep­
resentation of P (nrcf or nlcf) if it is a coprime fractional representation of P and: 
M*M + N*N = / (MM* + NN* = I) with M* = MT(-s). 

3. CLOSED LOOP STABILITY 

In this paper we will study the closed loop configuration according to Figure 1, where 
we assume that a stabilizing controller C has been designed for the nominal plant 
P . 
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F i g . 1. Closed loop structure. 

The closed loop transfer function T(P, C), mapping the external inputs (ei, e2) onto 
the outputs (u,y) is given by: 

T(T,C)=[^](/ + C P ) - 1 [ / C ] (1) 

For bounded (ei,e 2 ), stability of the closed loop, i.e. the controller C internally 
stabilizes the plant P, is guaranteed if and only if T(P, C) G H. 

Theorem 3.1. Let P G T be given as P = N M'1 with (N, M) a rcf of P and let 
the controller C G T be given as C = X~XY with (X, Y) a kf of C. Then stability 
of the closed loop is equivalent to: 

A=[XY] 
M 

ЄJ (2) 

P r o o f . Inserting a coprime representation of P,C in (1), then T(P,C) can be 
written as: 

r(p,c)=[5J](M + YN)~1[x ?] 

Now pre-multiplying T(P, C) by the Bezout factors of (N, M) and post-multiplying 
by the Bezout factors of (X, Y) proves the theorem. D 

For robust stability it is essential that the closed loop transfer function remains 
stable for plants PA "close to" P which form a feedback system with the controller 
C. Usually the controller C is designed with knowledge of P only. 

4. MAIN RESULT 

Theorem 4.1 Assume a controller stabilizes the nominal plant according to The­
orem 3.1. Let a perturbed plant P& be given by: 

PA = (NAQ)(M*Q)-1 QeH 

= (N-AN)(M-AM) AN,AM&H 
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with ( N A J M A ) a nrcf of P A , then a sufficient condition for PA to be stabilized is 
given by 

A M 
AN ' < L 

P r o o f . T(PA,C) €H iff Al1 £ J with AA = [X Y] | ^ A ^ 1 € J. Inserting 

the definition of the coprime factor perturbations of Theorem 4.1 we have: 

H ÌM 

= ('-[**[£] A-) A. 
Next we use the fact that A € J by definition, the normalized left, coprimeness of 
[ H ] and the small gain theorem to obtain the following sufficient condition for 
A A G J : 

. - A » J loo 
which proves the theorem. Q 

The coprime factor perturbations can be written as the difference between the nrcf 
of the nominal plant P and an arbitrary rcfof the perturbed plant PA: 

£ ] = [*]-[£]'«» <3> 
This means that there is freedom left in Q to choose a specific rcf of PA. In view 

is as small as possible A м | л- i of the robustness measure a Q such that „, 
||L A;v 

can be determined. Define the smallest value as S\(P, P A ) , then the determination 
leads to the following minimization: 

w-)-ttl([ *]-[*: ]«)--!• «> 
Although the optimization is over Q €fi, when 6\(P, PA) < 1 then Q € J by virtue 
of AA € J. 

5. RELATION TO OTHER CRITERIA 

In this section the relation with other robustness criteria such as the gap-metric 
and a point-wise criterion is discussed. It will be shown that the derived robustness 
margin is less conservative then the gap based margin. Finally it will be shown 
that the whole procedure also provides a less conservative margin when the plant is 
input-output weighted. 
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The gap [5] between P and P& can be defined by: 

s^-iMM]-lM:]Q)l <5) 

where P and P^ are factorized according to Theorem 4.L Next, define: 

AA/ 1 f M 1 [ MA 
AJV I " I N | I Лtд ' Q 

[ AM 1 
. we have the 

following sufficient conditions for robust stability: 
The closed loop system is stable for all PA , if: 

* ( [ A M 1 A _ 1 ) < L for all* € JR. (6) 

Notice that (6) is more restrictive than Theorem 4.1 since Q is minimizing (5) instead 
of (4). A more conservative margin is obtained when the above is terms are split 
and the equality ff(A~l) = ff(T(P,C)) is used: 

•([*.]) <T(T(P,C)) < 1, for alls € jR. (7) 

A one step more conservative margin is obtained when the infinity norm is used: 

A M 
AN ,I | |T (P ,C ' ) | | 0 0 <1 . 

Notice that (8) is the gap-metric robustness [6]. 
The improvement of the new robustness margin can be interpreted as follows. 

Starting from the gap-metric robustness (8), less conservativeness is obtained by the 
refinement of the infinity-norm towards maximum singular values, as in (7). Further 
refinement is obtained in when directionality of A is taken into account, as in (6). 

It is easy to see that all margins are the same in the case that A = al, where 
a 6 E. It can be shown [1] that this corresponds with a particular control design. 

[7] proposed a weighted gap-metric by scaling the input- and output spaces ac­
cording to Pw = W„PWi, with iy„,W,- G J- Since Pw is then represented by its 
nrcf, again we obtain a less conservative robustness margin. 

6. EXAMPLE 

In this section the application of the presented robustness margin will be illustrated 
using an example. For simplicity only SISO systems are considered, which implies 
that the improvement of the new robustness margin by taking into account direc­
tionality of the feedback loops can not be demonstrated. 
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Using the control design method described in [2] a controller C of order 2 has 
been designed on the nominal plant model P of order 4 such that ||T(T, COIloo ' s 

minimized. In Figure 2 the amplitude part of the frequency responses of the nominal 
plant model P, controller model C and three perturbed plant models P'A are shown. 

10* є 

102 L 

101 102 10" 

frequency [rad/s] 

Fig. 2. Amplitude part frequency response P (—), PA (- -), PA (...), PA (-.-), C (- -). 

If the robustness is measured in the gap-metric, the closed loop system T(P&,C) 
remains stable provided 

t>(P,P*)<\\T(P,C)\\-J. 

The gap between the nominal plant and perturbed plants is: 

S(P, P i ) = 0.53 

8(P,Pl) = 0.25 

8(P,P't) = 0.69 

The nominal plant,controller pair imply a robustness margin of: \\T(P, C)\\~^ = 0.14. 
It is obvious that the plant perturbations do not satisfy the robustness margin, 
therefore stability of the perturbed feedback system can not be guaranteed. 

Improvement by taking into account the frequency dependency of the feedback 

system is illustrated in Figure 3, where A, = . f . Plants PA are stabilized in 
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the point-wise margin if (r(A') < <r(A), while they are also stabilized in the gap if 
f r ( A ' ) < | | T ( P . D | | - 1 . 

frequency [rad/s] 

Fig . 3 . Frequency response <x(A) (—), <r(Ai) (- - ) , Sr(A2) (...), <r(A3) (-.-), \\T(P,C)\\^ 

( - - ) • 

The refinement towards the new robustness margin can be seen as follows: The 
frequency where the largest difference between P and P A lies is not taken into 
account in 6(P, P A ) , it is in 6A(P , P A ) - Thereby the area of allowable P'As is extended 
towards the solid curve in Figure 3. 

It can be seen in Figure 3 that the perturbed plants do not satisfy the gap-
robustness of (8). P A satisfies the point-wise margin of (7). 

When the stability robustness is measured in the new robustness margin (Theo­
rem 4.1), the perturbed closed loop T(PA>CA) remains stable provided: 

C 5 A ( P , P A ) < L 

The lambda-margins between the nominal plant and the perturbed plants controller 
are: 

6\(P,Pk) 

6\(P,P2
A) 

6\(P,PÌ) 

= 0.9 

= 0.3 

= 0.86 

It can be seen easily seen that robust stability of the perturbed feedback system is 
guaranteed by the new robustness margin. 
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7. C O N C L U S I O N S 

T h e derivation of a new robust s tabi l i ty margin has been presented. It has been 
shown t h a t this margin is less conservative t han similar robustness marg ins s ta ted 
in the gap-met r ic . T h e improvement of the new margin lies in the fact t ha t frequency 
dependency of t he feedback sys tem and direct ionali ty of t he feedback loops are taken 
into account . T h e appl ica t ion of th is robustness margin has been i l lustrated by an 
example . 

(Received March 3, 1993.) 
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