
Kybernetika

Evžen Kindler
Mathematical theory of static systems

Kybernetika, Vol. 13 (1977), No. 3, (176)--189

Persistent URL: http://dml.cz/dmlcz/125050

Terms of use:
© Institute of Information Theory and Automation AS CR, 1977

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/125050
http://project.dml.cz

K Y B E R N E T I K A — V O L U M E 13 (1977), N U M B E R 3

Mathematical Theory of Static Systems

E V Ž E N K I N D L E R

The paper contains elements of a theory of static system,s, based on the common set theory.
It is the first part of a general theory of simulation which is under investigation and which could
reflect exact properties of all kinds of simulation, including facilities built in various simulation
languages for discrete, continuous and combined simulation. The outline of the theory has been
presented in [5] and [6].

1. INTRODUCTION

The actual practice of simulation - namely of computer simulation — is as
common at present days that the general method of it demands to obtain a suitable
exact basis. One must pay attention to the fact that simulation includes various
attempts to the investigated reality and to the modelling tools. Digital simulation
has had use of many fruits of modern computer science, namely of programming
languages: besides a large number of simulation languages of various properties
and beside simulation packages there are universal programming languages of the
third generation where simulation carries or has carried excellent facilities as in
SIMULA 67. All these tools have been offered to the people of computer profession
and thus the analytical and synthetical rules built in the programming languages
have represented a suitable basis for the intended theory. Let us pay attention to
programming languages — as they are offered to any user for contact with computers
— bring categories of thinking which are new but common for a great part of the
contemporary civilization. Beside digital simulation there is analogue and hybrid
one which has not carried important categories of thinking but which should be
reflected by the same theory. The same fact is true for other types of simulation used
in various special branches (e.g. hydrodynamic simulation): there are certain techni­
ques using non-computer models which nevertheless satisfy all the other demands
which experts express to simulation models. The definition of simulation presented

in [1] and transferred into [2] and [3] has formed a good basis for understanding
simulation and one can hope it will be valid for a long future, similary as it has
been valid since 10 years. It tells that simulation is the technique of replacing a dy­
namic system by a model, in order to gain information about the system through
experiments with the model. The other presented definition of simulation are either
less exact or concern aspects which is not essential for simulation: a clever philosopher
can find an example which either satisfies such a definition and is evidently not a case
of simulation or is evidently a case of simulation and does not satisfy the definition.

Nevertheless, the presented definition needs to specify the terms of system and mo­
del so that they exactly reflect not only the common contents accepted in practice
by simulation professionals but also the richness of simulation facilities fixed in
simulation programming languages.

Simulation, dynamic systems and models are general conceptions of systems
theory because they can be reflected in any object, independently on its physical
nature. The basic notion is system, but its known definitions have not been sufficient:
that by Zadeh, based on finite automata (see e.g. [4], p. 3), cannot reflect continuous
systems while the classical definition of dynamic system, used by specialists e.g. in
regulation, based on differential equations (see e.g. [4], p. 4) loses its importance
in case the fruits of differential equations cannot be applied; it is not only in case
of singularities and discrete systems but also in case of variable number of system
components. The last phenomenon is also the second reason for which the definition
by Zadeh is not suitable: it is oriented for systems as global units while the richness
of simulation (which should be reflected by richness of theorems in the corresponding
theory) concerns mainly the inner structure of investigated systems and their models.
Against other definitions of systems (see e.g. a lot of them presented in [7]) similar
objections can be formulated.

Thus it is necessary to define appropriately the conceptions of system and of simula­
tion model; the last conception is a relation between two systems, satisfying certain
conditions. An outline of the whole theory has been presented in [5] and [6]: the
theory has four main parts: theory of static systems, theory of static models, theory
of dynamic systems and theory of dynamic and simulation models. The theory of
static systems must be constructed as the first phase as their results must be for
disposal at the theory of dynamic systems and that of static models: states of dynamic
systems are static ones and static models are relations between static systems. All
three theories are necessary if building that of dynamic models; the simulation
models are special cases of them. In the present paper the first theory is presented
in details.

As the definitions are rather complicated their english versions are completed or
replaced by corresponding logical formulas. Similar practice is used to be applied
in theorems, lemmas and corollaries. We shall use symbols ~ , A , V , ->, = for logical
operations of negation, conjunction, disjunction, implication and equivalence; the
last one is used also for the definition of predicates; the priority is decreasing with

178 the order in the presented list. (...), 3 . . . , 3 ! . . . and 3 l are quantifiers "for every",
"there is", "there is exactly one" and "there is maximally one" respectively, n , u
and — are used for set intersection, sum and difference, e, $, £ and c for usual set
relations; the last means "proper subset". The expression \JP or similar ones

PsQ

are used for a set sum of a greater number of sets, including that if Q is empty then
the sum is also empty, x is used for Cartesian product, {f(x) | P(x)} for a set of all
f(x) where x satisfies P(x) and (au a2, ..., a„> means an ordered n-tuplet. I f / is
a function then domain(f) is its domain, range(f) is the set of all its values and if
P £ domain(f) then fJP is / partialized to P. Empty function - with empty domain
and range - is admitted.

The predicates and functions defined generally in the theory are identified by acro-
nymes of the corresponding terms. They are printed in bold italics sans serif. As the
theory is built in three levels of its hierarchy (attributes, classes, systems) we respect
the following rule: the functions and the predicates concerning the attributes are
identified in minuscules, those concerning the classes have only the first character
in their identifier as a capital while the other ones are minuscules, the identifiers
of functions and predicates concerning the systems and quasisystems are composed
only of capital letters. Such a system enables to use suitable mnemonic terms for the
whole hierarchy: the danger of misunderstandings is eliminated by different identi­
fying in logical formulas, {a, b, ...} has the usual meaning of the set with elements
a,b, ...

2. STATIC ATTRIBUTES

We need to consider several special sets called standard. One of them, called
<€, contains letters, digits and various signs. It has a subset Sf. In the present paper it
is sufficient that Sf contains two characters: point and colon. Another standard
set is 2T which contains all nonempty finite sequences of the elements of c€. It has a
subset J containing sequences which have no elements of Sf'. The length ln(x) of any
element x of ST is the number of occurrences of elements of Sf in it. Although we
can admit limitations t o . / which are respected for identifiers in various programming
languages, the presented theory does not ask any of them. Similarly the presented
theory does not depend on the decision about the logical contents of the term se­
quence and thus it does not depend on an answer whether <6 £ ST. As there is no dan­
ger of misunderstanding we can have use of the licence that if a = <a l5 . . . , a„> and
b = (bu ..., »,„> are from 9 then ab = <a., . . . , a„, bu ..., om>. If be<g we
read ab as <a t, . . . , a„, b>. The following lemma is useful.

Lemma 1. Let a,- e / , vt e S? and bt e J for i = 1, 2. If at 4= a2 or Vt 4= v2 or
bt 4= b2 then aivlbl + a2v2b2.

Proof. Let au a2, bL, b2 contain n, m, s, t characters respectively. If n + s + m + 179
+ t the matter is evident. Let n + s = m + t, a^Viby = cu a2v2b2 = c2. Let
a t + a2. If n > m the (n + l)-th character of cx is vte£f while the (n + l)-th
one of c2 is not of £f as it is a component of b2. Symmetrically for m > n. If m = n
there is i ^ m such that the i-th character of at (and thus of Cj) is different from the
i-th one of a2 (and thus of c2). If bt + b2, we can limit our considerations to the
case of a t = a2, n + s = m + f. Hence s = * and there must be i ^ s such that the
i-th character of bx (and thus the (i + n + l)-th one of c j is different from the
i-th one of b2 (and thus from the (j + n + l)-th one) of c2. If vt + v2 we can limit
our considerations to the case that ax = a2 and bt = b2. Then c t and c2 differ in
their (n + l)-th characters.

The present theory does not depend on the choice of other standard sets but we
can suppose that they could be other sets of values which can be assigned for usual
variables in classical programming languages. Thus we can assume a set & of real
numbers, Jf of integers, £# of two boolean values true and false etc. It has no
importance whether we suppose X" <=• $ or not. stand(X) means that X is a standard set.

We consider an element none as not present in any standard set. Any set which
does not contain none and which is disjoint with every standard set is called non­
standard:

gen(Y) = none £ Y A (X) (stand(X) -> X n Y = 0)

The closure X of a nonstandard set X is defined as X u {none}. Evidently gen(0).
Static quasiattribute is an ordered pair <n, /> where n e f and / is a func­

tion the domain of which is a nonstandard set. If a = <n,/> is a static quasiattri­
bute - we write it qa(a) - then its name is nm(a) = n, its domain is dm(a) =
= domain(f) and its range is rn(a) = range(f). If x e <fm(a) then a(x) is defined as

/(x); if A £ d"m(a) then a/A is defined as <n,//A>.
If the range of a is a standard set, a is called standard static attribute: sa(a) =

= 3X(stond(Z) A rn(a) £ Z); if the range of a contains none or elements of a non­
standard set, a is called static pointer: pt(a) = gen(dm(a) - {none}). A static
quasiattribute is called a static attribute if it is a static pointer or a standard static
attribute: ot(a) = pt(a) v sa(a). Inasmuch as we shall not handle other attributes
than static ones in the present paper, we shall use to omit the word static in case
the meaning of the text is clear.

3. STATIC CLASSES

Static class is an ordered triplet <n, P, G> where n £ 3~, P is a nonstandard set
and G is a set of attributes with different names and with the same domain equal to P.

Ci(A) = 3n 3P 3G(A = <n, P, G> A n e ST A gen(P) A (a) (a e G -»

-• ot(a) A dm(a) = P A (b) (f e e G A a + o-> nm(a) + nm(b)))).

Because of similar reasons as for static attributes we ommit the word static before
the term class in the following text of this paper. Let A = <n, P, G> be a class.
We define its name as n = Nm(A), its domain as P = Dm(A) and its attribute-set
as G = At(A). In the following text, we will need intensively to handle with classes;
for the simplicity we will use capital letters A, B, C and D only for classes. Thus (A) P
means (A) (CI(A) ->• P), 3P(P) means 3P(C/(P) A P) etc. We say that a class A is
proper if its domain contains at least one element, that it is rich if its attribute-set
is nonempty and that it is rich by pointers if its attribute-set contains some pointer:
Pr(A) = Dm(A) =f= 0, Rc(A) = At(A) #= 0, Rcp(A) = 3a(a e >4t(A) A pt(a)).

4. STATIC QUASISYSTEMS AND SYSTEMS

Static quasisystem is a set of static classes. Let Z be a static quasisystem. We
write QS(Z) and define its domain DM(Z) as (J Dm(A) and its attribute-set 47(2;)

AeZ

as U At(A). In the present paper we shall ommit the word static in case of static
Ail

quasisystems. In the following text, Z, Z1 etc. mean only static quasisystems. In case
our consideration concern only one static quasisystem Z, we shall ommit to express
explicitly the membership of classes. Thus (A) P means (A) (A e Z -> P), 3A(P)
means 3A(A e Z A P) etc.

Z is called proper if all its classes are proper: PR(Z) = (A) Pr(A). Similarly, we
define predicates rich and rich by pointers: RC(Z) = (A) Rc(A), RCP(Z) =
= (A) Rcp(A). We say that Z is a classical simulation one if the domains of its
classes are mutually disjoint: CS(Z) = (A)(B)(A 4= B -» Dm(A) n Dm(B) = 0).
We say that Z is well-named if there are no two equal names of static attributes
in different classes: WN(Z) = (A) (B) (a) (b) (a e At(A) Abe At(B) A A -+ B ->
-» nm(a) 4= nm(b)). Z is called name-eliminating if any two different classes differ
not only by their names: NE(Z) = (A) (B) (A #= B -» Dm(A) #= Dm(B) v At(A) *
4= At(B)). We call Z fictive name one if all its classes have identical names: FN(Z) =
= (A) (B) Nm(A) = Nm(B). Z is called SlMVLA-67-named if any two different
classes have different names: S67(Z) = (A)(B)(Nm(A) = Nm(B) -> A = P).

Let ^ be a binary relation on 21. We write H(Z, =) and say 21 is hierarchical
according to = if the following conditions are satisfied:

(41) reflexivity: (A) A g A,

(4.2) antisymmetry: (A) (P) (A = B A B = A -> A = P),

(4.3) transitivity: (A) (B)(C)(A = B A B = C ^ A = C),

(4.4) tree: (A) (B) (C) (A = C A A = B ~> C = B v B = C) ,

(4.5)" inclusion: (A) (P) (A = B -+ Dm(A) S Dm(P)),

(4.6) inverse inclusion: (A) (B) (Dm(A) n Dm(P) + (D^A = BvB = A).

Static quasisystem is called static system if ail values of its pointers are in the clo- 181
sure of its domain:

SS(Z) = QS(ľ) л (а) (а є AT(Z) л pt(а) -* rn(а) S DM(Z)).

5. PROPERTIES OF STATIC SYSTEMS AND QUASISYSTEMS

In this section there are some consequences of the presented definitions. They can
be formulated and proved for quasisystems though their importance is greater for
static systems.

Theorem 1. Any of the following conditions implies NE(Z):

(5.1) PR(Z) A CS(Z);
(5.2) RC(Z) A (A) (B) (A * B -» At(A) n At(j3) = 0) ;
(5.3) RC(Z) A WN(Z) ;
(5.4) FN(Z).

Proof. Let A, B be any two different classes.

(5.1): CS(Z) -» Dm(A) n Dm(B) = 0. Since Pr(A), Dm(A) * Dm(B).
(5.2): similarly as (5.1) but instead of Dm we use At.

(5.3): it follows from (5.2) as according to the definition of WN the second condi­
tion of (5.2) is satisfied.

(5.4): as Nm(A) = Nm(B), there is Dm(A) * Dm(B) or At(A) * At(B).

Theorem 2. Let RC(Z). If Dm(A) * Dm(B) then At(A) # At(B).

Proof. Dm(A) =# Dm(£) implies that every pair of a e A t (^) and b e At(B)
contains different elements as fn(a) and fn(b) are defined on different domains.
As Rc(A) and Rc(B), such a pair can be formed and thus At(A) =f= At(B).

Theorem 3. Let H(Z, ^) , A be a propre static class. Then Dm(A) a Dm(B)
implies A £ B, Dm(A) = Dm(B) implies A ^ B v B ^ A.

Proof. Dm(A) c Dm(B) implies A # B and Dm(4) n Dm(B) =# 0 because
Pr(A). According to (4.6) it is A S B or B ^ A. B ^ A would imply Dm(i) 3 Dm(B)
because of (4.5) which is in contradiction with Dm(A) a Dm(B) and therefore
A SB. The second statement follows from (4.6) as Dm(A) = Dm(B) and Pr(A)
imply Dm(A) n Dm(B) + 0.

Theorem 4. Let Z be a classical simulation quasisystem or a well-named one, x
be an element of its domain and k be any text. Then 3xa(a e AT(Z) A nm(a) =
— k A x e </m(a)).

Proof. Let a e AT(Z), b e AT(Z), nm(a) = nm(b) = k. According to the defini­
tion of static class, there is no A e Z such that a and b could be in its attribute-set
if they were not equal. But if a is in the attribute set of another class than that in the
attribute set of which b is, then in case of WN(Z) they must differ by their names and
in case of CS(Z) their domains are disjoint and thus x cannot be in both of them.

Theorem 5. Let H(Z, S), k e 3T and A e Z. Then 3lB(B e Z A A ^ B A 3a(a e
e At(B) A k = nm(a) A(C)(CeZAA^CAC^BAC*B-+(b)(be At(C) -*
-> k 4= nm(

Proof. Let B and D have the properties expressed for B in the theorem. A ^ B
and A ^ D and thus B ^ D or D ^ B according to (4.4). For the symmetry we can
limit our considerations to D S» B. D satisfies all conditions expressed for C at the
left hand side of the implication excepting C 4= -B, but does not satisfy the statement
at the right hand side of the same implication. Thus D = B must hold.

6. INCLUSIONS

Let QS(Z) and QS(Zt). We say that Zt is a static subquasisystem of Z and write
SB(Zt, Z) if there is a one-one mapping / of Et into Z such that for any AeZt the
following conditions are satisfied:

(6.1) Nm(A) = Nm(f(A));
(6.2) Dm(A) c Dm(/(A));
(6.3) (a) (a e At(A) -+ 36(6 e At(/(A)) A a = 6/Dm(A))).

From the definition of DM(Z) and from the postulate that two different attributes
of the same static class cannot have identical names, the following corollary is
implied:

Corollary. SB(Zt, Z) -> DM(lt) £ DM(Z); for any A e ZL and for any a e At(A)
there exist just one attribute b of (6.3).

Theorem 6. Let SB(ZU Z). If any of the predicates CS, WN, FN and S67 is valid
for Z, the same is valid for Zx.

Proof. Let us suppose that / has the properties of the definition of SB and that
A and B are different classes of Zt. Then / (A) #= f(B).

Case CS:f(A) 4= f(B) implies Dm(/ (i) j n Dm(/(B)) = 0; as Dm(A) £ Dm(f(A))
and similarly for ft, Dm(A) n Dm(B) = 0.

Case WN: let a e At(A), b e At(B). (6.3) implies that there are aL e At(f(A)) and
bt e At(f(Bj) such that nm(at) = nm(a) and nm(bt) = nm(fr). From / (A) + j(B)
and WN(Z) it follows that nm(a) = nm(at) 4= rim(b1) = nm(b).

Case FN: because of (6.1) and the definition of NE, Nm(A) = Nm(f(A)) =
= Nm(f(B)) = Nm(B).

Case S67: / (A) =j= f(B) implies Nm(/(A)) 4= Nm(f(B)). Thus Nm(A) # Nm(B) as
Nm(A) = Nm(/(A)), Nm(5) = Nm(f(B)).

Remark. Similar theorems do not hold for RC, RCP, PR and NE but we can prove
other ones:

Theorem 7. Let SB(Zt, l). Let any mapping / satisfying conditions (6.1), (6.2)
and (6.3) be onto I. If any of the predicates RC, RCP, PR, FN and S67 is valid for Zt

then the same is valid for I.

Proof. A s / maps £. onto I, there exists its inverse mapping g. Let A, B be any

static classes of I.

Case RC: 3a(a e At(g(A))) implies that 3b(b e At(A)) and thus Rc(A).
Case RCP: we continue the last consideration: a = b\Dm(g(A)) = bjdm(a); thus

rn(a) S rn(b) and pt(a) -»• pt(fr).
Case PR: Dm(fl(A)) 4= 0; Dm(g(A)) s Dm(A) thus implies Dm(A) 4 0.
Case FN: as always Nm(a(A)) = Nm(g(B)), according to (6A) Nm(A) = Nm(B).
Case S67: as A 4= 5 -» Nm(g(4)) 4 Nm(g(B)), according to (6.1) Nm(A) 4= Nm(fl).

Theorem 8. Let SB(rL, I) . Any of the conditions CS(l) A PR(lt), S67(l),
WN(E) A RC(lt) is sufficient that the mapping / satisfying conditions (6.1), (6.2)
and (6.3) is exactly one.

Proof. Let us consider any class A e I± and any two mappings/, g satisfying the
mentioned conditions, let B = / (A) , C = g(A).

PR(lt) implies Dm(A) 4 0, CS(Z) implies that B 4= C -* Dm(B) n Dm(C) = 0.
As 0 4 Dm(A) £ Dm(B) n Dm(C) according to (6.2), B must be identical with C.

S67(l) implies Nm(B) 4= Nm(C) in case B 4 C but according to (6.1) Nm(A) =
= Nm(B) = Nm(C).

WN(i:) A RCIIj) implies that there is a static attribute a e At(A). From (6.3), it
follows that there is b e At(B) and c 6 At(C) such that nm(6) = nm(c) = nm(a);
since in well-named quasisystems the attributes from different classes have not the
same names, B must be identical with C.

Theorem 9. Let SB(Eit I) and H(X, £|). L e t / be a mapping satisfying conditions
(6.1), (6.2) and (6.3) and be one-one mapping similarly as in the definition of SB.
We can therefore define a binary relation Rf on Zt as R/(A, B) = / (A) <£ /(B).
Ry satisfies conditions (4A) to (4.4) and (4.6) of the definition of hierarchical quasi-
system. If moreover any pair of static classes C and D off(E1) satisfy the implica­
tion Dm(C) c Dm(i)) -• Dm(f-1(C)) S Dm(/_ 1(D)) then H(I1 (R r).

Proof. / (A) ^ j (A) implies Rf(A, A). Rf(A, B) A Rf(B, A) implies j(A) g
g f(B) A f(B) ^ /(A); according to (4.2) it implies/(A) = f(B) and thus A = B as

/ is one-one. R/(A, B) A Rf(B, C) implies / (A) ^ j(B) A /(B) ^ / (C) ; according
to (4.3), f(A) g /(C) , and thus Rf(A, C). Rf(A, C) A Rf(A, B) implies / (A) ^
S f(C) A f(A) ^ f(B); according to (4.4), /(C) ^ f(B) v f(B) ;£ /(C) and thus
R/(C, B) v Rf(B, C). Dm(A) n Dm(B) * 0 implies Dm(/(^l)) n Dm(f(B)) * 0
because of (6.2). For (4.6), f (A) g /(B) v f(B) g j(A) and thus Rf(A, B) v R/B, ^) -
Let R/(A, B); then j(A) g /(B) and thus Dm(/(A)) £ Dm(/(P)) according to
(4.5). If the last condition of Theorem 9 is satisfied then also Dm(A) £ Dm(B)
and thus Rf satisfies all properties of the definition of H.

Let SB(ly, I). We say that It is a sta/r'c subquasisystem of I with identical
domains and write SBD(IX I) if every mapping / satisfying the properties of the
definition of SB is a mapping onto I and Dm(f(A)) = Dm(A) is valid for it and
for every A el. Let us mention that in this case we can apply Theorem 7 and that
from Theorem 8 the following corollary follows:

Corollary. Let SB(ZU I) and let there be a one-one mapping/ of T, onto I satis­
fying (6.1), (6.2) and (6.3) and Dm(f(A)) = Dm(A) for every A el. Any condition
of CS(Z) A PRiZi), S67(I) or WN(I) A RC(I,) is then sufficient that SBD^^l).

If the condition of the last Corollary is satisfied, we write SBDW(I1, I) and say
that It is a static subquasisystem of I with identical domain in a week sense. Let
us note that in case of / used in the last Corollary or in the definition of S8D we
can modify (6.3) as At(A) £ At(f(A)), and of course (6.2) as Dm(A) = Dm(f(A)).
Evidently SBD(ZU Z) -> SBDW(Zlt Z) but the inverse implication is valid not
generally (the conditions of the last Corollary can ensure it in certain cases).

Theorem 10. Let SBDW(ZU Z). If P is PR, CS, FN or S67 then P(Z) = P(Zi).
If P is RC or RCP then P(lt) -* P(Z). WN(Z) ~* WN(Zj.

Proof. As we can have use of Theorems 6 and 7 we must take into account only
the following implications: PR(Z) -^ PR(Z1), and CS(Zt) -+ CS(Z). They follow
from the above mentioned modification of (6.2) and from the condition that / is a
one-one mapping onto.

Theorem 11. Let ^ be a relation defined on Z, f have the properties expressed
in the last corollary and Rf be defined on Zt similarly an in Theorem 9. Then
H(Z, S) = H(ZU Rf). (Evidently SBDW(ZU Z) in that case.)

Proof. H(Z, ^) -» H(ZU Rf) follows from Theorem 9. The proof of the inverse
statement can be easily performed similarly as the proof of Theorem 9 if we u s e / - 1

instead of j : j - 1 is fully defined and one-one mapping.
We say that Zt is a static subsystem of Z if Z and Zx are static systems and Zy

is a static subquasisystem of I: SBS(ZU Z) = SB(ZU Z) A SS(Zt) A SS(Z). Evident­
ly, if P i s SB, SBS or SBDW then P(ZU Z) A P(Z, Z2) -> P(ZU Z2).

7. ENLARGEMENTS

Let <m,/> = a be a static pointer of a static system £. We say that it is qualified

into M where M £ £ if rn(a) £ U Dm(A), eventually strictly qualified into M if

rn(a) ?= (J Dm(A). We write q(a, M) eventually sq(a, M). Let q(a, {A}) and £> =
AeM

= (n, g) e At(A). If pt(b) we define junction jn(a, b) of a and ft as a static pointer the
name of which is m : n and the function forming its second component is defined
for x e dm(a) as g(f(x)) in case j(x) 4= none and as none otherwise. If sq(a, {A})
we define strict junction sjn(a, b) of a and b as a static attribute the name of which
is m . n and the function forming its second component is defined for x e dm(a)
as g(f(x)).

In case jn(a, b) eventually sjn(a, b) are defined, pt(jn(a, b)), pt(sjn(a, b)) = pt(b)>
sa(sjn(a, b)) = sa(b), dm(jn(a, b)) = dm(a), dm(sjn(a, b)) = dm(a), rn(jn(a, b)) £
£ rn(b) and rn(sjn(a, b)) ^ rn(b). Let us mention that nm(jn(a, b)) 4 nm(sjn(a, b))
even if sq(a, {dm(b)}), and thus jn(a, ft) # s/n(a, ft) if both exist.

We call a static quasisystem simple if the names of all static attributes of its attri­
bute set are elements of J'. In the further considerations, let I be a simple well-
named static system.

Theorem 12. Let Ael and the sequences {V?}°L., k = 1, 2 are defined recursively:
F} = 4t(A) , V? = 0,

V\+l = {a\3b 3c(b e AT(S) A c e V\ u V\ A a = sjn(c, b))} ,

Vf+. = {a | 3fo3c(/j e /IT(r) A c e Fj u V? A a = jn(c, 6))} .

Let X = \J(VJ u F2), B = {Nm(A), Dm(A),X}. Then the following statements
; = i

are valid:

(7.1) if ; > 0, a e V) and k = nm(a) then k = n.m where m e / and 7T e 3T\ in
case j = 0, k e ^ ;

(7.2) if a e V? then nm(a) = n : m where m e / and n e f ;
(7.3) if a e V) u Ff then Jn(nm(fl)) = ; - 1; dm(a) = Dm(A);
(7.4) if a e V? and fe e V) then nm(a) =# nm(fe);
(7.5) if i +j,ae V\ and b e V) then nm(a) 4= nm(ft);
(7.6) V,1 n V7

2 = 0; if i 4=;' then V* n V$ = 0;

(7.7) if a e Z is a pointer then rn(a) £ DM(E);
(7.8) if a e V*, c is a character contained in nm(a) and ce^ then c is either a point
or a colon;
(7.9) if a eX and b eX then nm(a) = nm(b) -* a = b;
(7.10) Q(B).

Static class B constructed according to the way of the preceding theorem from A
is called enlargement of A in Z and written £n(A, Z).

Proof. (7.1) and (7.2) follow immediately from the definition of V\. (7.3), (7.7)
and (7.8) follow from the same definition by a simple induction. (7.1) and (7.2)
imply (7.4), (7.3) implies (7.5). (7.4) and (7.5) imply (7.6). To prove (7.9) we can limit
our considerations to a case that a and b belong to the same V\ because otherwise
they cannot have the same names for (7.4) and (7.5). Let a e V\, be V\. If i = 1
then k = 1 and (7.9) is satisfied as V\ is an attribute set. Let us suppose that i > 1
and that the elements of V]_r and of Vz

i_l satisfy (7.9). Let us further suppose that
nm(a) = nm(b) and that k = 1 (for k = 2 the considerations are similar). Then
a = sjn(a, a), b = sjn(b, b) and thus nm(a) = nm(a). nm(a) = nm(b) = nm(b).
. nm(E). According to Lemma 1, nm(a) = nm(b) and nm(a) = nm(E). According
to the induction supposition, a = b; as Z is a well-named system, nm(a) = nm(b~)
implies a = b~. Therefore a = sjn(a, a) = sjn(b, b) = b. (7.10) follows immediately
from the definition of B and frcm (7.9) and (7.3).

Theorem 13. The following statements hold for any A e Z:

(l.ll) At(A) £ At(En(A,Z))
12) Dm(A) = Dm(En(A, Z))
13) Rc(A) -> Rc(£n(A, Z))
14) Rcp(A) -» Rcp(En(A, Z))
15) ~Rc(A)-> ~Rc(£n(A , i :))
16) ~Rcp(A) -» ~ Rcf>(En(A, Z))
17) a e At(En(A, Z)) A ln(a) = 0 -» a e At(A)
18) if A e Z and B e Z and if At(A) = At(B) then At(£n(A, Z)) = At(En(B, Z)).

(7
(7

(7
(7
(7
(7
(7

Proof. (7.11) follows immediately from the definition of X presented in the
preceding theorem. (7.12) follows immediately from (7.3). (7A3) and (7A4) follow
from (7.11). If a class has no pointers (if it is not rich or not rich by pointers) the sets
V\ constructed from it as in Theorem 12 have no pointers and V\ for i > 1 are
empty. Thus (7A5) and (7A6) are proved as in the considered case At(A) =
= At(En(A, Z). (7A7) follows from (7.11) and (7.3). (7A8) follows from the definition
by a simple induction.

We call {En(A, Z) \ A e Z} to be (static) enlargement of Z and write it EN(Z).
Evidently it is a static quasisystem.

Theorem 14. SS(EN(Z)) A SBS(Z, EN(Z)) A SBDW(Z, EN(Z)) A WN(EN(Z)).

Proof. (7.7) implies that EN(Z) is a static system. Let us consider the mapping
j(A) = En(A, Z). According to the definition of £n(A, Z) in Theorem 12, (6.1) is
satisfied. According to (7.12), (6.2) is satisfied but moreover, the condition Dm(A) =
= Dm(En(A, Z)) of the definition of SBDW is satisfied (see the corollary following

Theorem 9). (7.11) implies (6.3) in its modified form presented before Theorem 10.
Thus SBS(I, EN(I)) and SBDW(I, EN(I)) are proved. WN(EN(l)) can be proved
by induction: Let a e At(En(A, l)), b e At(En(B, I)). Let nm(a) = nm(b). If
in(nm(a)) = ln(nm(b)) = 0, for (7.17) aeA and beB and for WN(l), A = B.
Let nm(a) = nm(b) imply A = B for any a, b with the length less than i of their
names. Let us consider the static attributes of the length equal i of their names.
According to (7.8), nm(a) = nm(a) u nm(a) and nm(b) = nm(B) v nm(B) where
nm(a)eJ and nm(b)eJ. According to Lemma 1, nm(a) = nm(B) and according
to the induction supposition, a and B must belong to the attribute set of the same
class. As presented in the construction of V), a and b belong to the same class as a
and B.

Theorem 15. Let P be any of the predicates PR, RC, RCP, CS, FN, S67 or NE. Then
P(I) = P(EN(I)).

Proof. Because of the Theorem 10, we must prove only several statements:
RC(EN(I)) implies RC(l) for (7.15), RCP(EN(l)) implies RCP(l) for (7.16). If
NE(I) and Nm(A) + Nm(B) for two static classes of I, then Dm(A) + Dm(B) or
At(A) + At(B). In the first case Dm(En(A, I)) + Dm(En(B, I)) because of (7.12)
and in the second case there is an attribute a e (At(A) — At(B)) u (At(B) — At(AJ).
For the symmetry we can suppose that a e At(A) — At(B). Because of (7.H) and
(7.17) it is in At(En(A, I)) but it is not in At(En(B, I)). If NE(l) and Nm(En(A, I)) +
+ Nm(En(B, I)) for two static classes £n(A, I) and En(B, I) of EN(l) then Dm
(En(A, I)) + Dm(En(B, I)) or At(En(A, I)) + At(En(B, I)). In the first case Dm(A) +
+ Dm(B) because of (7.12). In the second case, iAt(A) + At(B) because of (7.18).

Theorem 16. Let WN(l), H(l, g) . Let R be a binary relation defined on EN(I)
as R(En(A, I), En(B, I)) = A ^ B. R is defined correctly and H(EN(I), R).

Proof. According to the proof of theorem 14, j(A) defined on EN(l) as £n(A, I)
satisfies the properties demanded for j in Theorem 11. R is identical with Rf of the
same theorem.

8. EXPLICATIONS OF INTRODUCED TERMS

The notions of static attributes, pointers, classes and systems correspond to in­
stantaneous states of the notions which are commonly known in computer simulation
under the same words. Such notions as quasiattributes and namely quasisystems
have been introduced only for a better legibility of other definitions but one can see
that a lot of theorems can be proved for them although one could expect their validity
for the notions named without the prefix quasi. Definitions of various types of
quasisystems correspond to certain cases which are not "singular" (as proper, rich,

rich by pointer) or to programming methodology introduced in various groups of
programming languages: thus CS corresponds to conception of systems respected
in various discrete event simulation languages, where one element of a system cannot
be present in two classes. S67 corresponds to the methodology introduced in SIMU­
LA 67 where one element can be present in a class which is a subclass of another class:
such a subclass is reflected in the present theory as another class which differs from
the including one by its name and possibly by attributes (in case the subclass has
declared its proper ones). WN reflects a phenomenon that in a lot of simulation
languages two attributes of different classes must differ by their names: such a rule
can be introduced also implicitely, by so-called qualified referencing, as we know
from SIMULA 67, NEDIS, GSL and even from PL/1. Certain simulation languages
do not introduce the names of classes; it is reflected by FN, where the identical
names of classes have no influence to their differing. NE is a certain generalization
of FN. Hierarchical relations on systems are reflections to SIMULA 67 (see [8]) but
we can apply them also for other programming languages with hierarchical structure,
which have no importance for computer simulation.

Theorems 1, 2 and 3 contain relations among types of static systems which hold
in "non-singular" cases. The following 2 theorems reflect properties of attribute
identification used commonly in simulation languages. The theory of subsystems
has been introduced mainly for the following theory of system enlargements: this
one reflects certain properties of definitions in systems. We have limited the consider­
ations to junctions and strict junctions in the well-named static systems, although
one could generalize them for other types of definitions and for other types of systems:
such generalizations would exceed the task of the present introductory paper while
the matter in the bounds of it can be used for basic techniques in simulation: if e.g.
first is an attribute of a queue, pointing to the first element of it or to none if the
queue is empty, and if sue is an attribute of any element which can enter in a queue,
pointing to its successor or to none if it does not exist, then the attribute "the second
element of a queue" can be expressed as the junction of first and sue.

We did not eliminate the "singular" cases directly in the definition of the static
system, for the states of dynamic ones are very often singular: a state of a dynamic
system can often have some static classes which are not proper. Another reason
for the same matter is that if we respect advanced manners in computer model
building and design (also by means of primitive simulation languages as GPSS)
we can see frequent use of "singular" cases as classes which are not rich or not rich
by pointers. Thus the further theory of dynamic systems would be incomplete if the
states of the dynamic systems could be only proper, rich etc. It would be possible to
introduce a notion of a static class without demand that two different static attributes
of it must have different names. It could simplify several proofs but other theorems
would be valid and the entire theory would be more illegible; we have not met any
simulation language where the mentioned demand would not be satisfied.

(Received July 8, 1976.)

REFERENCES

[1] O. - J. Dahl: Discrete event simulation languages. Norsk Regnesenťral, Oslo 1966.
[2] F. Genuys (ed.): Programming languages. Academie Press, London—New York 1968.
[3] <t>. JKeiuoH (pe^.): ÍI3MKH nporpaMMHpoBaHHH. M H P , MocKBa 1972.
[4] P. Brumovský, J. Černý: Matematická teória sysťémov — mýty a skutočnosť. In: Zborník 7.

symposia SKS o aplikáciach teoretických principov kybernetiky — prehladové referáty.
Bratislava 1976, 1 — 32.

[5] E. Kindler: Teorie simulačních modelů. In: Zborník 7. sympózia SKS o aplikáciach teore­
tických principov kybernetiky— 1. časť, Bratislava 1976, 84—93.

[6] E. Kindler: On the way to mathematical theory of simulation. Elektronische Informations-
verarbeitung und Kybernetik 1976, 10, 497—504.

[7] G. J. Klir: Trends in generál systems theory. Wiley-Interscience, New York—London—
Sydney—Toronto 1972.

[8] O.-J. Dahl, B. Myhrhaug, K. Nygaard: SIMULA 67 common base language. 2. ed. Norsk
Regnesentral, Oslo 1972.

PhDr. RNDr. Evžen Kindler, CSc, katedra matematické informatiky, matematicko-fyzikální
fakulta Karlovy university (Department of Mathematical Informatics, Faculty of Mathematics
and Physics, Charles University), Malostranské nám. 25, 118 00 Praha 1. Czechoslovakia.

		webmaster@dml.cz
	2012-06-05T03:55:45+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

