
Kybernetika

G. H. Matthews
Analysis by synthesis in the light of recent developments in the theory of grammar

Kybernetika, Vol. 1 (1965), No. 3, (271)--280

Persistent URL: http://dml.cz/dmlcz/125079

Terms of use:
© Institute of Information Theory and Automation AS CR, 1965

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/125079
http://project.dml.cz

KYBERNETIKA ČÍSLO 3, ROČNÍK 1/1965

Analysis by Synthesis in the Light of Recent
Developments in the Theory of Grammar*

G. H. MATTHEWS

The definition of the notion analysis-by-synthesis with special regard to natural language is
done and its applications are discused.

This paper describes an algorithm for finding all and only the structural descrip­
tions of any sentence with respect to a given grammar constructed in accordance with
the theory of grammar which has been developed by linguists at the Massachusetts
Institute of Technology — for the most part by N. Chomsky [1] — and which is
discussed by E. S. Klima at this colloquium [2]. In an earlier paper [3], I described
an analysis-by-synthesis algorithm for the class of grammars described by N. Chomsky
in publications that had appeared prior to 1962 — especially his Syntactic structures
[4]. In this paper, I assume a familiarity with the works [2], [3], and [4], restating
parts of them only where it is necessary for clarity.

My work toward a useful and efficient sentence-analysis routine has been based on
three assumptions:

a) only a routine which provides the complete structural description of any sentence
with respect to the given grammar can be considered useful,

b) given the theory of grammar within which we have been working for the last
several years, only routines which are — at least partially - synthetic can provide
complete structural descriptions, and

c) given a grammar of a natural language there should be a general method
— preferrably an algorithm — for constructing the sentence-analysis routine.

* Communicated at the Prague Colloquium on Algebraic Linguistics and Machine Translation,
September 18th—22nd, 1964.

This work was supported in part by the U.S. Army, Navy, and Air Force under Contract
DA 36-039-AMC-03200(E); in part by the National Science Foundation (Grant GP-2495), the
National Institutes of Health (Grant MH-04737-04), the National Aeronautics and Space
Administration (Grant NsG-496), and the U.S. Air Froce (ESD Contract AF19(628)-2487).

Given these three assumptions, it is natural to inquire into the status of my work
in analysis by synthesis in the light of recent developments in the theory of grammar
discussed in the works [1] and [2]. The quick answer to this inquiry is that, — with
a few minor changes — the original proposal presented in the paper [3] is still
adequate. The second answer is that a considerably more useful and much more effi­
cient analysis-by-synthesis routine can now be proposed which greatly reduces the
need for preliminary analysis to — perhaps — merely a dictionary look-up routine.
(You recall that the preliminary analysis was necessary in the earlier described routine
in order to make it even possibly efficient enough for actual use.) What follows, then,
is a sketch of an analysis-by-synthesis algorithm for the class of grammars described
by what might cautiously be called the "current theory of grammar".

This analysis-by-synthesis method to be described here is based upon the fact that
it is possible to assign to each sentence of a language a unique number which — as in
my earlier paper — I refer to as the specifier of the sentence. Specifiers, themselves,
are composed of a finite, but unbounded, sequence of vectors, each of which is unique
to one of the kernel sentences of the language. In a given specifier, the order of these
vectors determines just how each of these kernel sentences are related to one another
within the sentence. The vectors are finite in length and they all have the same number
of places in each of which can appear one of a finite number of entries. Furthermore,
the number of possible entries for the i'h place of the vectors remains constant for
all vectors and for all specifiers. Thus, there are a finite number of vectors that may
be used to make up the specifiers of sentences.

To show the nature of the relationship between vectors and kernel sentences we
will first consider a part of the phrase structure of English, i.e., as it appears to us
today.

(-) s - { (f f } (NEG) NP AUX VP (Post-s)I {A} -
(2) VP->(Asp) MV

[COMP\
(PRT) (NP (AGNT))
(Dir J } (RP5) (Man) | (Frq) (Dur)

ATT (NP) (AGNT)
Loc

(PRT) PRED

(4) Post-S -> (Loc) (Tim) (if COMP then)

!

ADJ (COMP) l(PRT) -

t, N
like NP

(3) M V - > V (

to
(6) ATT-+] for \ NP

Prep

(7) RSP -* Prep NP

(8) Dir -» Prep NP

(9) Man -* AD J Ly

(10) Frq -* Prep NP

(11) Dur -> Prep NP

(12) Loc -» Prep NP

(13) Tim -> Prep NP

(14) JVP -> Det N ((COMP) /{ ~ AfX I)

(15) Det -> (Pre-Art) Art Num (Post-Art)

(16) M M - { £ j }

(17) P - e - A ^ (D , f l) { - - } . ,

(l.)!^^^^}!)^)^^^^}-
l l l - 1 J

f De/ /[~ P/ ro'a/

(19) .4r/-> j 1(0/) -
Indef

(20) AUX -* Tns (M)

(21) Asp -+ (haue En) (be Ing)

<->«- - i s }
(23) AGATT- be En by

One important feature of this phrase structure is that it is a sequential grammar.
A sequential grammar is one which for all /', if a symbol is expanded by rule (("), then
there is no rule (i + n) — for n S; 0 — which introduces that symbol. This means,
of course, that the phrase structure generates a finite number of sentences. However,
it does not mean that a rule cannot be applied several times within a single derivation.
For example, by the time that rule (14) is to be applied, there can have been several

NP's introduced in the derivation. Rule (14) then has to be applied as often as possible,
i.e., once for each NP in the current line of the derivation.

Many of these phrase structure rules are actually several rules of the type defined
by Chomsky as phrase structure rules [5], which have been abbreviated by paren­
theses and braces. For example, rule (17) is an abbreviation for four different phrase
structure rules that give expansions for the symbol Pre-Art, viz., Deg Integer of,
Deg Degree of, Integer of, and Degree of. Rule (14) is an abbreviation for five
phrase structure rules that expand the symbol NP. Two of these expand NP into
Det N CO MP and the other three expand it into Det N* We refer to these several
expansions of a symbol given by a rule as the subrules of that rule. Thus, each
application of a rule requires a choice from among its applicable subrules. Finally,
each rule in the grammar is obligatory, i.e., if the rule is applicable, it must be applied.
We are now able to establish a useful relationship between vectors and kernel sen­
tences. The positions in the vectors from left to right correspond to the rules of the
phrase structure from the first rule to the last, and the possible entries in a given
position correspond to the subrules of the rule associated with that position.

*) There is, in fact, an algorithm for unpacking parenthesized and bracketed rules into an
ordered set of rules of the type defined by Chomsky, which also designates some of them as
obligatory and others as optional. Rule (14) is an abbreviation for the subrules (14a) to (14e)
where (14a) and (14b) are optional and (14c), (14d), and (14e) are obligatory.
(14a) NP AUX-^ Det N CO MP AUX
(14b) V NP ~> V Det N COMP
(14c) NP AUX -> Det N AUX
(14d) V NP -^ V Det N
(14e) NP -> Det N
Similarly, rule (7) has one subrule, and rule (18) has eighteen subrules. To show how use is made
of enumerated braces we give here these eighteen subrules of rule (18).
(18a) PL Post-Art -> PI Integer other Rel COMP
(18b) PI Post-Art -»PI Total other Ret COMP
(18c) PI Post-Art -> PI Integer other
(18d) PI Post-Art -> PI Total other
(18e) PI Post-Art-^Pl Integer Rel COMP
(18f) PI Post-Art -> PI Total Rel COMP
(18g) PI Post-Art -> PI Integer
(18h) PI Post-Art -> PI Total
(18i) PI Post-Art -> PI other Rel COMP
(18j) PI Post-Art -> PI other
(18k) PI Post-Art-^Pl Rel COMP
(181) Post-Art -> one other Rel COMP
(18m) Post-Art -*• one other
(18n) Post-Art -> one Rel COMP
(18o) Post-Art -> one
(18p) Post-Art -> other Rel COMP
(18q) Post-Art -> other
(18r) Post-Art -> Rel COMP
Of these subrules, (18k) and (18r) are obligatory, the others are optional.

However, it is not quite as simple as this. One difficulty arises from the fact mention- 275-
ed above that some rules may be applied several times because there may be several
instances of the symbol that the rule expands in the current string of the derivation.
In the particular grammar presented here, when rule (14) is about to be applied, there
may be several iVP's in the string, due to the fact that NP's are introduced by ten
different rules, viz., rules (l), (3), (5), (6), (7), (8), (10), (11), (12), and (13). Further­
more, the symbol Loc, which is expanded by rule (12), may itself appear several
times in the string when rule (12) is to be applied, for there are three rules that
introduce Loc, viz., rules (3), (4), and (5). And, since the expansions of these several
NP's are independent from one another, there have to be twelve positions in the vector
that govern rule (14), i.e., one position for each NP that might appear in a line of
a derivation.* Similarly, the constituent Det is introduced by two rules — (5) and
(14); but since rule (14) may be applied as many as twelve times in a derivation, we
must assign thirteen positions in the vector to rule (15); and since this is the case
with rule (15), it is also with rules (16) to (19). We should note here, however, that no
matter how many instances of a symbol may be introduced by a phrase structure
grammar, — and thus positions in the vector assigned to a single rule, — the restric­
tion that the grammar be sequential assures us of vectors of finite length.

We stated earlier that every rule of the phrase structure grammar is obligatory.
Consider now rules (7), (8), (9), (10), (11), (12), (13), and (23). Each of these rules
has just one subrule; so, since every rule is obligatory for as long as it is applicable,
these rules in fact present no choice. How each of these rules is applied is determined
entirely by the rule itself, and whether one of these rules is to be applied is entirely
determined by the choice of subrules made earlier in the grammar. This means that
there is no need to have positions in the vector corresponding to these rules. In this
particular grammar, the statement of rule (14) is such that it is easy to see that only
in the case of the subject NP and some instances of the object NP is there a choice,
in the expansion of NP; in all other cases, NP must be expanded into Det N. We still
need a position in the vector for the object NP for those cases when we do have a choice
Furthermore, our algorithm would also provide positions for the other NP's, for in

* For this phrase structure grammar, we actually need to provide only eight positions for
rule (14). This is because there are many combinations of applications of rules that cannot be
used in the derivation of a sentence. In the case of NP's, rule (1) introduces one, rule (3) may
introduce an NP and at most four other constituents which, by rules (6), (7), (8), (10), and (11)
in turn introduce AT's, and finally rule (4) introduces a Loc and a Tim which by rules (12) and (13)
provide for two more NP's. Thus, a line of a derivation cannot contain more than eight NP's.
However, in keeping with the goal of providing an algorithm that •— given any grammar —•
automatically gives an analysis routine for the structural descriptions of sentences with respect to
that grammar, we will not make use of any information which cannot be obtained by any but the
most cursory examination of the grammar. Data of this sort, arising from a study of the grammar
as such, is of value for increasing the efficiency of an analysis routine which has already been
given by the algorithm.

general it is not possible in principle to know what the environments of any given
symbol may be in an arbitrary context-sensitive grammar.

We have now seen a need for a vector; or equivalently, a program which will
govern the operation of this 23-rule phrase structure grammar. Due to the fact that
it must have several positions corresponding to some of the rules, and no position
corresponding to others, as well as the possibility of having an algorithm which will
define its structure given the grammar; we have seen the need for the vector for this
grammar to have 86 positions. Perhaps now it will clarify what we have said if we
consider a concrete example. We will consider a vector, and for convenience we
will place over each position the symbol which is expanded by the corresponding
rule.

S VP MV Post-S PRED ATT NP NP NP NP NP NP NP NP NP NP NP NP
(8 1 1 9 2 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0

Det Det Det Det Det Det Det Det Det Det Det Det Det NUM NUM NUM
4 0 0 0 0 0 0 0 0 0 0 0 0 2 , 0 0

NUM NUM NUM NUM NUM NUM NUM NUM NUM NUM Pre-Art Pre-Art
0 0 0 0 0 0 0 0 0 0 0 0

Pre-Art Pre-Art Pre-Art Pre-Art Pre-Art Pre-Art Pre-Art Pre-Art Pre-Art Pre-Art

0 0 0 0 0 0 0 0 0 0

Pre-Art Post-Art Post-Art Post-Art Post-Art Post-Art Post-Art Post-Art Post-Art
0 0 0 0 0 0 0 0 0

Post-Art Post-Art Post-Art Post-Art Post-Art Art Art Art Art Art Art Art Art
0 0 0 0 0 3 0 0 0 0 0 0 0

Art Art Art Art Art AUX Asp Tns
0 0 0 0 0 2 3 1)

This vector specifies that the following subrules of the phrase structure grammar are
to be applied.

S 8 S -> NP AUX VP

VP 1 VP^Asp MV

MV 192 MV-> V

NP 3 NP AUX -> Det N AUX

Det 4 Det -> Art NUM

NUM 2 NUM -> Pl

Art 3 Art -> Def

AUX 2 AUX^ Tns

Asp 3 Asp -> be Ing

Tns 1 Tns -» Pres

And this set of subrules generates the following constituent structure:

• # S #

I i ~~ i
? NP AUX VP

Det N Tns Asp MV

Art NUM Pres be Ing V

Def PI

We haven't introduced lexical items yet, but when that is done, this constituent
structure will underlie such sentences as The leaves are burning. If we consider the
verb stems that might appear in this structure, we see that they are just the intransitive
verbs that can have a noun — as distinct from a nominalized sentence — as the
subject. But this fact, i.e., that an intransitive verb that may have a noun as its subject,
must be used in this structure, does not represent any choice made at this point in the
derivation, rather it is completely determined by the choices of subrules made in rules
(3), (5), and in the expansion of the subject NP in rule (14). In fact, the class of verbs
from which a stem must be chosen is always determined by the subrules that were
chosen in these three rules. We can even say then that the name of the verb classes are
the ordered sets of subrule choices that may be made from rules (3), (5), and the
expansions of subject and object NP's from rule (14). Thus, the name of the verb
class whose members may appear in the structure above is (192, 0, 3, 0). Similarly, the
class of nouns is determined by the choice of subrules made from rules (15) to (19).
Thus, in this sentence the noun is chosen from class (4, 2, 0, 0, 3). In addition to the
verb and the nouns, we also have several other terminal symbols in this phrase
structure which must be expanded into specific stems. These are PRTintroduced by
rule (3); AD J introduced by rules (5) and (9); Prep introduced by rules (7), (8), (10),
(11), (12), and (13); Deg and Degree introduced by rule (17); Integer introduced by
rules (17) and (18); and Total introduced by rule (18). Assuming again that these are
all completely independent of one another — which of course is not the case — we
must add 76 more positions to the vector, for each of these stem classes contains
several stems among which to choose from in order to generate a complete sentence.

Up to now we have systematically ignored the symbol COMP which is introduced
by several rules of the phrase structure. We now add one more phrase structure rule
to this grammar which will make the grammar what I call a cyclical sequential
grammar.

\278

(24) COMP - #

Past will
for to
WH
[that

hP1
S

This rule reintroduces the initial symbol of the grammar, and thus allows for an
infinity of sentences to be generated by the phrase structure. There is just this one
rule which has this property of introducing a symbol that is expanded by an earlier
rule of the grammar; and this earlier rule is in fact the first rule of the grammar.
Another important characteristic of rule (24) as that the symbol which is expanded
thereby is what might be called a generalized modifier constituent. The rules that
introduce it — rules (3), (4), (5), (14), and (18) — use it as a modifier of some other
constituent that is introduced by the same rule. So what this phrase structure is saying
is that all modifier constituents in a natural language are primarily sentences of that
language. Note incidentally that rule (1) states that an S dominated by COMP
cannot be expanded into a sequence beginning with WH.

Now with this type of phrase structure, it is clear that what we have actually done
is to generate the underlying structure for all the sentences of the language directly
within the phrase structure part of the grammar. What remains for the transforma­
tional component of the grammar is to suitably modify the actual form of the several
subtrees of the derivation which are dominated by the initial symbol S. In fact, some
of the elements that are used in this modification are themselves introduced by rule
(24). For example, when the symbols Past will are inserted into the following clause,
the result is a conditional clause of the type usually beginning with the conjunction if.
A COMP that modifies an adjective must have the two morphemes for and to added
to it. Relative clauses must begin with the element WH. Finally, for to clauses, WH
clauses, that clauses, and certain nominalizations may appear as parts of NP's.
Rule (24), of course, does not exhaust all of the types of dependent constructions
of English; but it is in the general format of the rule that does so. We must now add
one more position to the vector to accomodate rule (24).

This completes the description of the vectors for kernel structures. From here it is
a simple step to the description of specifiers. As we said above, a specifier is a finite
but unbounded sequence of vectors. In the computation of a vector, the application
of rule (24) as often as it applies introduces a certain number of the symbol S. For
each one of these S's introduced, we must have a vector to govern its expansion. Thus,
if we order the several vectors of a specifier in a Polish-like order, the number of S's
generated by each vector will be the number of vectors that it immediately dominates.
Thus, a properly constructed specifier is a linear representation of the complete
underlying structure of some sentence.

Note now that the phrase structure introduces various elements which have the

effect of naming a transformation which must be applied in order to transform the
underlying structure of a sentence into its surface structure, i.e., into the structure and
shape it has on the printed page. For example, rule (1) may introduce the element WH;
the presence of this element indicates that the question transformation must be applied
to the kernel structure within which this appears. Rule (3) may introduce the element
AGNT, which calls for the application of the passive transformation, the characteristic
morphemes of which are introduced by rule (23). Similarly, what now corresponds to
generalized transformations are also obligatorily applied; the elements introduced
by rule (24) designate which of these transformations must be applied in order that
the kernel structure dominated by the 5 take on the proper shape of the type of
dependent clause it is and also be properly positioned with respect to the other clauses
of the sentece.

In my previous publication on analysis by synthesis [3], I discussed how specifiers
of sentences might be used in an analysis program for sentences of a natural language.
The specifiers described here assume no previous use of a preliminary analysis
program. However, the simplest type of analysis, viz., a dictionary that assigns one
or more parts of speech to each word, would greatly increase the efficiency of an
analysis-by-synthesis program: It would allow the removal of that part of a vector
which makes a choice of a stem from a class. This alone reduces the number of posi­
tions in the vectors for the grammar we have presented here from 163 to 87, and in
addition, these positions so removed are just the ones which present the greatest
number of choices. Further reduction in the length of the specifier can sometimes be
made through study of the grammar itself. For example, in the grammar here,
rule (14) presents a choice of subrules only in the case of the iVP's that are introduced
by rules (1) and (3); thus the vector need not have positions assigned for the control
of the expansions of the other iVP's that might appear in the derivation anymore than
it needs positions to govern the expansion of such symbols as hoc and Man. This
reduces the vector to 77 positions.

One important characteristic that specifiers as described in this paper as distinct
from those described earlier is that there is a direct relationship between the vectors
and the kernel structures of the language as well as between the entries in a given
position and the way that a specific symbol is expanded. This should make it quite
easy to define operators which would, for example, convert the specifier for any
sentence of a class into one for a paraphrase thereof. Operators might also be definable
for converting specifiers into routines which search through a previously stored and
structured body of data. We might also look forward to a time when sufficient
knowledge of semantics has been acquired when operators might be definable to
convert the specifiers of sentences of one language into those of their translations in
another.

(Received November 9th, 1964.)

REFERENCES

[1] Chomsky N.: Aspects of a Theory of Syntax. M.I.T. Press (to appear).
[2] Klima E. S.: Current Developements in Generative Grammar. Kybernetika 1 (1965), No. 2,

pp. 184—197.
[3] Matthews G. H.: Analysis by Synthesis of Sentences of Natuгal Languages. In Proceedings

of the 1961 International Conference on Machine Translatioп of Languages and Applied
Language Analysis, National Phyşical Laboratory, Symposium No. 13, pp. 531—542, London
1962.

[4] Chomsky N.: Syntactic Structures. The Hague 1957.
[5] Chomsky N.: On Certain Formal Properties of Grammars. Information and Control 2 (1959),

pp. 137—167.

Analýza vět syntézou ve světle současného vývoje teorie gramatiky

G. H. MATTHEWS

V prvé části stati se shrnují dosavadní výsledky zkoumání v oblasti teorie gramatiky.
Nejdůležitější je tu zavedení odlišování derivované a původní struktury věty. Zjištění
této distinkce a její přímé důsledky umožňují značriě zjednodušit formulaci analýzy
vět přirozených jazyků pomocí syntézy. Tato část rovněž obsahuje explicitní definici
pojmu analýza syntézou, a to v podobě vhodné pro práci s přirozenými jazyky.

Druhá část obsahuje podrobný popis obecného programu analýzy syntézou
a několik doplňkových postupů, které zvyšují její účinnost.

V poslední části práce jsou rozebrány některé možné aplikace obecného programu
popsaného v části druhé.

G. H Matthews, Department of Modem Languages and Research Laboratory of Electronics,
Massachusetts Institute of Technology, Cambridge, Massachusetts, U.S.A.

		webmaster@dml.cz
	2012-06-04T11:27:02+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

