
Kybernetika

Josef Kolář
A new possibility in bi-directional search

Kybernetika, Vol. 13 (1977), No. 1, (11)--22

Persistent URL: http://dml.cz/dmlcz/125114

Terms of use:
© Institute of Information Theory and Automation AS CR, 1977

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/125114
http://project.dml.cz

K Y B E R N E T I K A — V O L U M E 13 (1977). N U M B E R 1

A New Possibility in Bi-Directional Search

JOSEF KOLÁŘ

A new variant of bi-directional heuristic search algorithm is given, which provides a very small
number of nodes generated during the search process.

1. INTRODUCTION

A great number of problems solved in the field of Artificial Intelligence can be
characterized by two distinguished sets: the set of states and the set of operators.
It is known that the process of solution of such problems can be formulated as a search
for a certain subgraph in some oriented graph which corresponds to the stated
problem. The nodes of this graph correspond to different states, the edges represent
the operators. By the solution of the problem we mean any sequence of operators,
which transforms the given initial state into one of the desired goal states. This
sequence defines path from the initial node to some goal node in the corresponding
graph.

There are well known algorithms for path-finding in a graph, so the main difficulty
lies in the fact that the graph being searched is so large that it is practically impossible
to express it explicitly. The graph must be specified by some procedure capable
of generating all successors of any given node. This makes it possible to generate
only the close neighbourhood of the path being searched for. The successive selection
of nodes for expansion (i.e. for successor generation) is controlled by some evaluation
function which assigns a nonnegative value to every node. This value is computed
using some information about the problem state which corresponds to given node.

The aim of this article is to propose a new variant of bi-directional searching
algorithm, which seems to have some good properties with respect to the search
effort.

2. PROBLEM GRAPH

Suppose that a problem A is formally given by the ordered quadruple <S, Q, Q, £„>,
where

E = {^, <J2, . . . } is the set of states,

Q = {cot, u>2, ...} is the set of operators,

where every coeQ is a (partial) mapping co : E -> E, Q is the goal predicate defining
the set of goal states of problem A and £„ e E is the selected initial state of problem A.

By the solution of problem A we mean the sequence (con, coi2, ..., coik), which
satisfies

eKK-,(--.<MU •••)))•

If there exists more than one such sequence, it is possible to state an additional requi­
rement that the number k, giving the length of this sequence, be as small as possible.

For a given problem A = <[E, Q, Q, £„> we define the corresponding problem
graph as an oriented (multi-) graph G = \H, U, <r] with a bijective mapping cp : U <->
<-» E and a mapping f/ : H —> Q, whose edge set H and incidence relation a <=. H x
x (U x U) satisfy the following condition:

Let us denote by Q^ c Q the set of operators applicable to the state £ e S and by
H+ c / / the set of edges leaving the node u; then for every £, = cp(u) e S the mapping
)j|Hu+ is a bijection of the set H* on the set Q^ and for every h e H* we have

(1) /; a\u, v] A ti(h) = co => <f>(f/) = a>(£).

We see that the relation of immediate succession T defined for the nodes of the
problem graph G will satisfy

(2) uTv <=> 3co e S2(<p(u) = »(<?("))) •

With respect to the one-one correspondence between the set of solutions of problem
A and the set of paths starting in the node s = <p_1(^) and ending in some node
t satisfying Q(cp(tj), it is not necessary to deal with the graph G during the search
process in its full complexity. We can lestrict ourselves to the subgraph induced
by the set T*(s) of all successors of the initial node s (T* is the reflexive-transitive
closure of T). For every node in this subgraph we are further interested in the shortest
path connecting the initial node s with the given node. From this it follows that for
an implicitly stated graph <s, T> we construct explicitly only some part of its minimal
tree rooted in s.

3. SYMMETRIC BI-DIRECTIONAL SEARCH

Pohl studied the possibilities of searching in graphs with just one goal node and
in [3] he has formulated the bi-directional search algorithm. His algorithm has good
properties with respect to the optimality of the solution path, but it leads to a great
number of generated nodes. Pohl states that there is no theoretical guarantee for
obtaining good results in bi-directional heuristic search.

We shall describe our version of bi-directional heuristic search (called SYBIS
as acronym for Symmetric Bi-directional Search) and we shall present the main
theoretical results derived for this search algorithm. The main difference between
SYBIS and the other search algorithms is in the fact that the search is directed
symmetrically both from the initial and from the goal node. The nodes are expanded
in pairs and the evaluation function of the node pairs approximates the length of the
solution path containing this node pair.

Let G = [H, U, er] be a problem graph of some problem A = (3 , Q, Q, £„>.
We suppose that every edge h e H is associated with some real 1(h) > 0 defining
the length of the edge h (the trivial case is 1(h) = 1 for all h e H). Without loss
of generality we can further suppose that G has no parallel edges, for every group of
parallel edges could be regarded for pur purposes as one edge having the minimal
length (if ha[u, v] we can express the length 1(h) as l(u, v), too). The edge length
induces in the straightforward manner some (partial) distance function d(u, v) defined
on those node pairs [u, v] for which v e F*(u). We start now by introducing some
symbols which will be used further.

s, t - initial and goal node of the problem graph, resp.
S, T — two sets of nodes called open in the forward and backward

direction, resp.
S, T — two sets of nodes called closed in the forward and backward

direction, resp.
gs(u) = d(s, u) — oriented distance from the node s to the node u
gt(u) = d(u, t) — oriented distance from the node u to the node t
h(u, v) = d(u, v) — oriented distance between the nodes u, v
f(u, v) — gs(u) + h(u, v) + g,(v) — the length of solution path containing the nodes

u, v
§s(u), (j,(u) — approximation of the distance gs(u) and g,(u), resp. measured

on generated part of minimal rooted tree of the problem graph
h(u, v) — approximation of the distance h(u, v) (we call h the heuristic

function and h the perfect heuristic function)
f(u, v) — §s(u) + n(u, v) + cj,(v) — evaluation function defined for ordered pairs

of nodes [u, v~\
k . ~ the shortest solution path length

The SYBIS algorithm demands the following input informations:

— the nodes s and t (represented by corresponding states of problem A)
— the procedure representing the immediate succession relation T (and its inverse

T-1)
— the edge length (giving the value l(u, v) for every v 6 T(u) or u e T 1(u))
— the procedure representing the heuristic function h defined for all pairs of U x U.

The goal of the algorithm is to find the shortest path between the nodes s and t
(this path will be represented by the sequence of nodes as we suppose no parallel
edges).

The SYBIS algorithm proceeds by constructing 4 distinct sets of nodes denoted 5, S, T
and T. The sets S and S are constructed from the initial node s in the forward direc­
tion using the relation T, the sets T and f are constructed from the goal node t
in the backward direction using the relation T_1 (the application process of T or
T_1 to some node is called expansion of this node). The nodes of the sets S and T
are closed — all their successors and predecessors, resp. have been generated. The
sets S and Tcontain boundary nodes which are called open.

Every node u e S u S is associated with the triplet [£,'„, gs(u), up_\, where £'u denotes
the representation of the state of the problem A corresponding to the node u, gs(u)
is the length of so far obtained minimal path from s to u and up is the predecessor
of the node u on this minimal path. Analogously, every node u e T u f i s associated
with the triplet _c'u, gt(u), us_\, where £'u denotes the same as above, g,(u) is the length
of so far obtained minimal path from u to t and us is the successor of the node u
on this minimal path. Both the information gs(u) (gt(

u)) and up(us) can be updated
during the search, the first is used in computation of the evaluation function values,
the second permits the reconstruction of the solution path when the search is finished.
Now we give the formal description of the SYBIS algoiithm.

The SYBIS algorithm:

1) We set S := {s}, S := T(s), T:= {t}, T: = T_1(f), kmin := +oo and we set the
information associated with the nodes of S u S u Tu Tappropriately.

2) If S = 0 or T = 0 the search fails, otherwise we continue.

3) We choose the pair \u, v] e S x T such that f(u, v) is minimal over the set
S x T; we set S:= S u {u}, S:= S - {u}, T:= Tu {»}, f:= T- {v}.

4) For every node x 6 T(«) we perform the following steps:

a) if x e S u S and gs(x) > gs(u) + l(u, x), then we associate the node x with
the new value gs(x) = gs(u) + l(u, x) and with predecessor u and if x e S
we set S := S - \x}, § : = S u {x};

b) if x $ S u S, then we set cjs(x) = gs(u) + l(u, x), associate the predecessor
u with it and place the node x into the set S,

c) in remaining cases the node x is left ignored.

5) For every node xeT 1(t>) we perform the following steps:

a) if x e Tu Tand gt(x) > gt(v) + l(x, v), then we associate the node x with the
new value gt(x) = gt(v) + l(x, v) and with successor v and if x e T we set
T:= T- {x\, T:= Tu{x};

b) if X£T\J T, then we set §t(x) = gt(v) + l(x. v), associate the successor v
with it and place the node x into the set T,

c) in remaining cases the node x is left ignored.

6) If C = (S u S) n (T u T) * 0, we find such node zeC for which the value k(z) =
= #s(z) + gt(z) is minimal. We set fcmin := min (kmia, k(z)) and if kmm j£ j(w, v)
for every [w, s] e S x T, the search suceeds by finding the solution path of length
kmin. Otherwise we return to the step 2).

We see that the SYBIS search starts by the expansion of the pair [s, t] (we suppose
s 4= t, for it is trivial to test the case 5 = t and then the use of any search algorithm
does not make any sense). In the step 3) we choose such node pair from the open
nodes in opposite directions for which the approximated length of the solution
path containing this node pair is minimal. This step, based on originally formulated
form of the evaluation function f(u, v) plays decisive role in obtaining advantageous
properties of the SYBIS algorithm.

The step 4) guarantees dynamic updating of the distance approximations of newly
generated nodes in the forward direction and forms in this way better approximation
of the partial minimal tree rooted in s. In the step 5) the same is done in the back­
ward direction. The step 6) contains a little elaborated terminating test of the SYBIS
algorithm, which guarantees (provided that some assumptions about the heuristic
function h(u, v) are valid), that the shortest solution path will be found. This step
can be simplified to the test C 4= 0, if we wish to accelerate the search process by
accepting arbitrary (possibly slightly suboptimal) solution path.

4. BASIC PROPERTIES OF THE SYBIS ALGORITHM

Theoretical analysis of the basic unidiiectional heuristic search algorithm A*
presented by Hart, Nilsson and Raphael in [1] can be adapted for the SYBIS algo­
rithm, too. This analysis shows that with respect to admissibility and consistency
our algorithm has the same properties as algorithm A* mentioned above (for details
see [4]). However, A* benefits from this comparison because it is more simple and
effective than SYBIS. The main advantage of SYBIS is demonstrated by the "worst
case" analysis introduced by Pohl in [2], which gives surprisingly good upper bounds
for the number of nodes closed by SYBIS during the search process with respect
to the A* algorithm.

16 We shall further suppose for simplicity that our problem graph is symmetric
(i.e. T = T~l) and that it is represented by an undirected binary tree (every edge
of this tree represents the pair of oppositely oriented edges of problem graph which
are incident with the same pair of nodes). Let the length of all edges of this tree
be equal to 1. We shall further suppose a slightly modified version of the SYBIS
algorithm called SYBIS*, which terminates whenever (S u S) n (T u T) + 0.

Theorem 1. If the heuristic function used by SYBIS* is perfect, then SYBIS* is
optimal, i.e. the sets S and Tcontain always only nodes of the solution path.

Proof. Let P = {x0, xv x2, ..., xk_u xk}, x0 = s, xk = t be the solution path.
We prove our statement by induction.

1) We have x, e T(s) and i , _ , £ T_1(t), so

f(xu x t_j) = l + / c - 2 + l = / c

For every u e T(s), ve P" l(t), [u, v] + [xu xk_,] we have

f(u, v) = 1 + h(u, v) + 1 = h(u, v) + 2^k + 2>k,

for at least one of the nodes u, v is not on P. Consequently, in the first step the pair
[xj, x t_j] will be selected for expansion.

2) Suppose in the i-th step the pair [x;, x t_ ;] was selected. We prove that the
following pair selected will be [x ; + 1, x t_ ;_j] (unless the algorithm is finished).
We have

/ (x i ,x t + i) - - / (.+ i , x _ - . - 0 = k

k-2i

Fig. 1. A search with perfect heuristic function.

and we can test only the pairs of T(x;) x T_1(xfc_;). Let [w, u] eT(x ;) x T~1(xfc_l),
[u,v\ + [xi+n x t _ { _ J , then we have

/ (« , v) = gs(u) + h(u, v) + g,(v) = i + 1 + h(u, v) + i + 1 ^

= 2i + 2 + k-2i = k + 2>k

(the value of h(u, v) is obvious from Fig. 1). fj

Remark 1. We can generalize the evaluation function f(u, v) to the form

f(u, v) = a gs(u) + P g,(v) + (1 - a - 0) h(u, v) ,

where 0 < a < 1, 0 < ft < I, 0 < a + ft < 1. It can be shown that under appro­
priate conditions for the values of a and fi Theorem 1 remains valid for the SYBIS*
algorithm using the generalized evaluation function.

As a rule, we do not know the perfect heuristic function h(u, v). In the best case
we can only give some estimate of error of our function h(u, v) in the form

(3) h(u, v) - s < fi(u, v) g h(u, v) + B .

We can state the question, as to how the magnitudes |S| and |T| at end of SYBIS*
depend on the value of s. We shall try to give some upper bounds for these values.

Theorem 2. Let h(u, v) be any heuristic function satisfying (3) for all pairs [M, U]
and some fixed e 2: 0. Let the distance of the node M and v from the solution path
be M'J and w2, respectively. Then

(4) Wt + w2 > e

implies that neither the pair \u, v\ nor the pair _v, u] will be selected for expansion
by SYBIS*.

Proof. In every step of SYBIS* the sets S and T contain just one node of the
solution path P. Let this be the nodes x-, and xk_j, respectively. Then 0 < i < k —
— j < k and we have

f(xb xk.j) = i + h(xh xk_j) +j<i + (k - i - j + e)+j = k + e

'1 k - i r j 1 j

x o = s i i x! XH T A \-i xk
=t

/ \ iw, w2| / \

* y
Ou vo

Fig. 2. Expansion of nodes situated off the solution path.

On the other hand, for the pair [M, V\ (see Fig. 2) we have

j(M, v) = (i_ + w_) + h(u, v) + (j_ + w2) __

l ii + w + (k - i_ - j_ + w_ + w2 - e) + j j + w2 =

= k + 2(w_ + w2) - e > k + e .

Consequently, the pair [xt, xt_/J is available with better value of evaluation function

and the pair [u, v] will not be selected. •

Remark 2. The previous theorem excludes from the selection only the ordered

pairs [u, v] and [v, u] and not the individual nodes u, v.

Let us suppose now that we have some node u of the solution path P. From

Theorem 2 it follows that this node could be selected for expansion with some node v

situated in the distance less than, or in the worst case equal to, e from the path P.

This leads immediately to a conclusion which seems to be rather pessimistic:

SYBIS* algorithm can expand nodes in distance up to e from the solution path.

The same is true for the A* algorithm, but we shall show that SYBIS* — in con­

trast with A* - cannot expand all nodes up to this distance.

Theorem 3. Let h~(u, v) be any heuristic function satisfying (3) for all pairs

[u, v] and for some fixed even e ^ 0. Suppose the set S and T, just before termina­

tion of SYBIS*, contains kt first nodes and k2 last nodes of the solution path, res­

pectively. Then we have

(5) |S | g k.r12 + fc22
(E/2)~1

(6) \T\^kx2
("2)-1 + k2?

12

Distance from the
solution path

Maximum number of expanded nodes
in given distance Distance from the

solution path
belonging to 5 belonging to T

0
1
2
3

s / 2 - 1
fi/2
e/2+ 1

fi- 1
є

*1
*i

Щ
4*,

r'2-2kt

Г'2'1^
2e'2-2k2(ì)

k2

k2

k2

k7

2k2

4k2

r'2'-2к2

Г'2'1^
Г'г-2к, (!)

кx

Proof. Theorem 2 states which pairs [M, t>] have the possibility to be ever expanded
by SYBIS*. Let us imagine the worst case, when expanded nodes are as far from
the solution path as possible. The k± nodes of S n P could have been expanded
(in the worst case) in pairs with kx nodes of the set T situated in the distance 8
from the solution path. In the same way, kx nodes of S in the distance 1 from P
could form the pairs with kx nodes of Tin the distance e — 1 from P, etc. Numbers
obtained in this way can be ordered in the preceeding Table 1. By computing the
sums of the second and the third columns we obtainthe upper bounds presented
in (5) and (6), respectively. •

Remark 3. In the previous theorem we suppose that the problem graph is a binary
tree with root s and goal node t situated in some distance k from s. This means that
the goal node t should have its degree equal to 3 and not to 2 as we have used above.
This difference is in fact negligible, for it influences only the factor k2 in Table 1
changing it to k2 + 1 in all but the first and the last rows. The binary tree serves us
only as a conveniently simplified model of actual problem graph and we can conse­
quently suppose that the search by SYBIS* advances from two roots of opposite
binary trees.

Remark 4. Since the problem graph is a tree, the nodes are never reopened using
the steps 4a) or 5a) of SYBIS* and the sets S and T will always contain the same
number of nodes. Consequently, the right-hand sides of (5) and (6) could be inter­
changed. The worst case is obviously obtained when kx = k2 or \kt — k2\ = 1.

Theorem 4. Let h(u, v) be any heuristic function satisfying (3) for all pairs [M, V\
and for some fixed odd e > 0. Suppose the set S and T, just before termination
of SYBIS*, contains kx first nodes and k2 last nodes of the solution path, respectively.
Then we have

(7) .51 = 1-1 = (f c i + fe 2)2 (£ + 1) / 2 .

Proof. Using Table 1 from the proof of Theorem 3 divided for odd e in two
equal parts between the ((s - l)/2)-th and the ((s + l)/2)-th row we obtain the
desired result. •

Theorem 5. Let h(u, v) be any heuristic function satisfying (3) for all [M, t>] and for
some fixed e 1= 0. Then the upper bound N for the number of nodes closed by SYBIS*
during the solution search given by the expression

(8) N = 2 + (k-l) 2E1,

where ex is the integer part of (e + 3)/2 and A: _: 2 is the solution path length.

Proof. We can suppose that the solution path is found at the moment, when the set
S contains its first kx nodes and the set Tcontains its last k2 nodes. The last expanded
pair will contain one or both end nodes of available parts of the solution path.
Obviously, we have fc — 2 ^ f c 1 + fc2='fc— 1. The worst case is obtained (see
Remark 4), when

and

k — Í
ki = k2 — for odd k

k
k, — fc, + 1 = - for even k .

1 2

Using (5) and (7) we obtain

|S| = |T| ^ i{k - 1) 2 (E / 2)"1 for even e, odd k ,

\S\ = |T| S (f& - 1) 2 (£ / 2) _ 1 for even e, even k ,

|S| = |T| g (f c - 1)2 (E + 1) / 2 for odd e.

Since |S u T| = 2|S|, the upper bound N is given by the maximum of previous
values (represented by the last expression) multiplied by 2. The leading term 2 expres­
ses the possible concluding expansion of both the nearest nodes. •

It is well known that for the A* algorithm the upper bound is given by

(9) N' = k T

and for other algorithms this value remains roughly the same. Using (8) we obtain

lim — = 0 .

This implies that we can expect the number of nodes closed by SYBIS* to be much
less than the number of nodes closed by A*.

5. EXPERIMENTAL RESULTS

The SYBIS* algorithm was tested by searching for a solution of the well known
"15-puzzle". The results are given in Table 2.

From Table 2 we obtain summary results presented in Table 3.
Although the statistical importance of the presented pattern is relatively small,

we see that our theoretical results are in close correspondence with practical experi­
ments.

Problem No. 1 2 3 4 5 6 7 8 9 10

Algorithm k 27 33 27 37 31 24 42
A 26 83 226 207 27 38 168

A* B 34 88 238 224 38 42 170

c 60 171 500 464 500 431 65 80 338 500

Algorithm k 27 27 24 27 28 35 31 24 29
A 33 47 39 34 38 60 36 43 38

SYBІS* B 28 44 35 27 37 52 32 35 *) 37

c 61 91 74 61 75 112 68 78 75

k = path length, A = number of open nodes, B = number of closed nodes, C = total number
of generated nodes.

*) time exhausted.

Algorithm
Number of

problems
Solved

(%)
Total of

nodes
Closed nodes
per problem

Pene-
trance

A* 10 70
SYBIS* 10 90

3109

995
119

36(!)

0-122

0-364

6. CONCLUSION

We have introduced a new bi-directional search algorithm and its basic theoretical
properties together with some experimental results. Our algorithm is superior in com­
parison to the A* algorithm of Hart, Nilsson and Raphael with respect to the number
of nodes closed during the search. On the other hand, the computation time compari-
con shows that the A* algorithm is shorter due to the relative complexity of the
SYBIS* algorithm. Our further effort will be devoted to possible improvements
leading to less complexity and shorter computation time of SYBIS*.

(Received March 3, 1976.)

REFERENCES

[1] P. E. Hart, N. J. Nilsson, B. Raphael: A formal basis for the heuristic determination of mini­
mum cost paths. IEEE Trans, on SSC 4 (1968), 2, 100-107.

[2] I. Pohl: First results on the effect of error in heuristic search. Machine Intelligence 5 (eds. B.
Meltzer, D. Michie), Edinburgh Univ. Press, Edinburgh 1970.

[3] I. Pohl: Bi-diгectional search. Machine Intelligence 6, Edinburgh Univ. Press, Edinburgh
1971.

[4] J. Kolář: K možnostem zvýšení efektivnosti heuristického řešení úloh (Some possibilities
of optimization of the heuristic search). Technical University, Prague 1975 (dissertation).

RNDr. Josef Kolàŕ, katedra počitačû elektrotechnické fakulty ČVUT (Department of
Computers — Electroengineering Faculty — Czech Technical Universitÿ), Karlovo nám. 13,
120 00 Praha 2. Czechoslovakia.

		webmaster@dml.cz
	2012-06-05T03:43:54+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

