
Kybernetika

Ivan Kramosil
Extremum-searching hierarchical parallel probabilistic algorithms

Kybernetika, Vol. 24 (1988), No. 2, 110--121

Persistent URL: http://dml.cz/dmlcz/125128

Terms of use:
© Institute of Information Theory and Automation AS CR, 1988

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/125128
http://project.dml.cz

KYBERNETIKA— VOLUME 24 (1988), NUMBER 2

EXTREMUM-SEARCHING HIERARCHICAL
PARALLEL PROBABILISTIC ALGORITHMS

IVAN KRAMOSIL

Considering a large finite set A together with a mapping/which takes A into a set with linear
ordering, the extremum-search problem for < A , /) consists in searching for an element of A
for which/attains the minimum (or maximum) value. Simple randomization or "non-idealized"
parallelism are proved not to improve the situation substantially when compared wit a system­
atical exhaustive inspection. Therefore, hierarchical parallel probabilistic algorithms for the
problem in question are suggested and their time computational complexity is investigated and
minimized.

1. INTRODUCTION

Many algorithms of artificial intelligence as well as of other domains of applied
mathematics contain sub-algorithms for various extremum-search problems. In its
full generality, the extremum-search problem can be described in the following
very simple way.

Let A = [au a2,.... aN] be a non-empty finite set of abstract elements (i.e. their
nature is not important for what follows), let B a non-empty set equipped by a linear
ordering r£. Hence, for all x, y, z e B, x ;£ x, x :£ y & y ^ x => x = y, x :g v =>
=> (y •§, z -•> x S z) a n d x ^ y v y :§ x. Let us mention that throughout all this
paper the interpretation of B as the real line (— oo, oo) equipped by the usual-ordering
can be kept in mind as a useful illustration. Let / be a mapping defined on A and
taking this set into B, let A0(f) be the set of elements in A on that / takes its minimum
value, i.e.

(1) Ao(j) = {«: a e A,f(a) ^ f(b) for all b e A} =

= f){a:aeA,f(a)^f(b)}.
bsA

110

In the sequel, the analogous formulations and solutions for maximum values will
be strictly dual and will not be presented explicitly. Extremum (hence, minimum) -
search problem for <A,j> consists in finding at least one element from A0(j); as
A is finite, A0(j) is trivially non-empty.

Clearly, our abilities to solve this problem as well as time, space or other demands
and expenses connected with a solution, decisively depend on a priori knowledge
and testing devices being at our disposal. Let us consider a situation when these
tools are rather limited. Namely, take an oracle which contains an element a e A
(this initialization is not substantial, as shall be easily seen) and works as follows:
when b e A is put on the input, the device compares f(a) with f(b) and replaces a
by b iff f(b) <, f(a); if this is not the case, a is left unchanged. The work finishes
by putting at the output the instantaneous value of a, i.e. such an element among
the tested ones, for which the value ofjis minimum. The device works on the "black-
box" principle, so that no insight into the way in which the device decides is possible.

Under the condition that the time necessary to test an element of A is the same
for all elements and does not depend on N, and taking into consideration the usual
"worst-case" analysis, the time complexity of an exhaustive systematic search for an
element from A0(j) is in the C(N)-class. Clearly, this worst case occurs if A0(j) is a
singleton,its element being tested as the last. As can be easily seen, the most elementa­
ry randomization does not improve the situation. Or, applying the Laplace principle
and taking the uniform probability distribution over A (each element can be sampled
with the same probability N~l), we obtain this probabilistic algorithm: take M
statistically independent random samples from the uniform distribution over A
and find an element among them with minimal value ofj. The probability of error,
i.e. the probability that this element is not in A0(j), can be easily computed to be

(2) PE = (1 - (card A0)/(card A))M .

Hence, for card A0(j) = 1, M must be at least (In (l/e)) N in order to obtain PE < e.
So, the time complexity is again in 0(N), and this result holds in general, if card A0(/)
is a constant independent of JV. However, one advantage of this probabilistic algorithm
is worth to mention for what follows: using the systematic exhaustive searching
procedure we must assure, somehow, that each element of A is tested just once.
When discussing the time complexity of this algorithm, we have not considered
the time consumptions necessary to satisfy this demand. In the case of the probabilis­
tic algorithm in question, on the other hand, statistical samples from A have been
taken independently and with possible repetitions. All the "past" of the procedure
is "hidden" in the instantaneous value j(a) with which the function value for the
element just tested is compared. In what follows, we shall try to improve the prob­
abilistic algorithm outlined above by using the fact that random samples and tests
of the sampled elements can be taken and done simultaneously by a number of
identical copies of the testing oracle (processors). On the other hand, we shall
accept rather realistic assumptions concerning the limited possibilities in inspection

111

and cummulation of outputs of parallel processors and the corresponding time
demands. These assumptions are realistic particularly in comparison with the usual
conventions in the theory of non-deterministic algorithms.

2. TWO-LEVEL EXTREMUM-SEARCHING HIERARCHICAL
PARALLEL PROBABILISTIC ALGORITHM

Consider sets A, B, a mapping j : A -> B, and A0(j) as above. The work of the
testing oracle described informally in the previous section can be formalized by
defining the mapping MIN which ascribes, to the given j and to each finite sequence
<«,->"= i of elements of A, an element MIN (j, <a,->"=1) defined by induction as
follows:
(3) if n = I . then MIN(f, < « . » = a. ,

MlN(f,(al,...,an,an+1)) = an+1, if f(an+l) ^ f(MIN(f,(au ..., a„») ,

MIN(f, <a., ..., a„, a„ + 1 » = M/7V(j, <a ls ..., a„» otherwise .

Definition 1. Let A, B, f, A0(j) be as above, let m, n, k be positive integers. Let
{X(i,j)}1'=1"=i be an (m x n)-tuple of statistically independent and identically
distributed random variables defined on an abstract probability space <Q, &', P),
taking their values in A and such that, for each i ^ m,j S n and a e A,

(4) /°({co:coeO, X(U)(a>) = a}) = (card A)"1 (=N~l).

Let {Z|}*s,i be a /c-tuple of statistically independent and identically distributed
random variables defined on <iQ, ̂ , P>, taking their values in the set 1, 2 , . . . , m
of integers and such that, for each / <; k, s g m,

(5) P({co: coeQ, Z,(co) = 5}) = m~l .

Then the pair 9£ = <{AT(i,i/')}f=1"_1, {Zj},= 1> is called two-level extremum searching
hierarchical parallel probabilistic algorithm (2-ESHPPA, abbreviately) for the
extremum search problem <A, B,f). 9C can be identified with a random variable
taking <0, y , P) into A and defined in this way:

(6) #((») = <T(A, B, j , co) = M/N(j, {M/iVCt, {Z(Z,(o)), j) (0,)}; = ,)}*. t) .

In spite of its rather difficult form, the intuition behind (6) is quite straightforward.
Each random variable X(i, j) samples an element from A and the ith processor
finds such one among the elements X(i, 1) (co), X(i, 2) (co), ..., X(i, n) (co) for which
the value of j i s minimum, putting this elements as its own output. Random variables
Zt, Z2, ...,Zk take random samples from the set of all processors and the (unique)
second level processor (supervizor) finds such an element among the output values
of the sampled processors, which minimizes the value of j . This value, denoted in (6)
by if(ft>), is called solution to the extremum search problem <A, B,f) given by the

112

2-ESHPPA^". The solution is correct, if 8?(<o) e A0(f); it is wrong otherwise.
Probability of error PE(X(A, B,f)) is defined as the probability of wrong solution,
i.e.,

(7) PE(9C(A, B,f)) = P({co: co e Q, ,f (A, B,f, co) e A - A0}),

and the value of this probability serves as an important quantitative characteristic
of statistical qualities of the 2-ESHPPA in question.

Theorem 1. Let X = <{*(.,J)}"-ly-i. {Z,}"=,> be a 2-EHSPPA with the para­
meters m, n, k for the extremum search problem <A, B,f), let e > 0 be given. If
m . n _ (In (2/e)) (card A/card A0(j)), and k _ In (2/e) m, then PE(X(A, B,f)) < s.

Proof. Random variables X(i,j) take m . n independent random samples from A.
When computing the probability that at least one sample is in A0(j), we obtain

(8) P({co:coeQ,f ixAo(f)(X(i,j)(co))>0}) =
; = i j = i

= 1 - P(0 n {»: « 6 Q, X(i,j) (co) e A - A0(f)}) =
; = i y = i

= 1 " II fl P({"- °> 6 O. X(i,./) (co)eA- A0(/)}) =
1 - 1 J = l

= 1 - (P({co:coeQ,X(i,])(co)eA - Ao(j)}))m'" =

- 1 - (1 - (card A0(/)/card A))m'"

due to the supposed statistical independence of random variables X(i,j) and their
uniform probability distribution over the set A. If m . n _ (In (2/e)).
. (card A/card A0(/)), then

(9) 1 - (1 - (card A0(j)/card A))'"'" _

_ 1 - (1 - (cardA0(j)/cardA))(ln(2/£»(card^ /card^<'(/» =

= 1 - ((1 - (cardA0(/)/cardA)card-4)(ln(2/£» /card '4['(/) _

> l _ /e-card^o(/)\(ln(2/E))/Card^o(X) _

_ X _ e - t a (2 / «) _] _ eta(E /2) =] _ ^ _

Now, if at least one sample X(i,j) (co) is in A0(/), then at least one among the m
processors contains a value from A0(j) as its output value. 9C{of) = 1 iff at least
one such output is sampled by some Z,, / _ k; due to the assumptions imposed on
Z, we obtain

(10) P({co: coeQ, X(A, B, f, co) e A0(/)}/{co: coeQ,

't in0uiK'J)H) > o}) = i - (i - m-j _ i - (l - nr
1)<ta<2">" _

> 1 - (e - 1) ' » ' 2 « = l _ (£ /2)

113

analogously as in (9). Combining (9) and (10),

(11) P({co: coeQ, X(A, B,f, to) e A0(j)}) =

= P({co: coeQ, X(A, B,f, co) e A0(j)} [[co: co e Q, f f X^o(/)(X(/,j) (co)) > 0}).
i = i 7 = 1

P({co: coeQ,£ f xAo{f)(X(i, j) (co)) > 0}) ^
l - l 7 = 1

>= (l - e/2) (1 - e/2) > 1 - e ,

so that PE(X(A, 73,/)) < e and the theorem is proved. •

3. OPTIMIZATION OF COMPUTATIONAL COMPLEXITIES
2-ESHPPA'S

The conditions of Theorem 1 bind the product mn, hence, the natural question
arises, which ratio of m and n is the optimal one from the point of view of minimiza­
tion of the corresponding time computational complexity. To be able to answer
the question we are to precise it, i.e. to define quantitative criteria for time computa­
tional complexity, namely, the two following most simple criteria originating from
[2] will be taken into consideration. Both these criteria will be defined as linear
functions of the number of random samples which need to be successively executed,
but the time complexity of particular samples will be treated in a different way.
If X is a 2-ESHPPA with parameters m, n and k, then its unit time (computational)
complexity TCU(X) is defined by atn + a2m + a3 with appropriate <xu a2 > 0,
a3 >. 0 independent of A, 73, and/ . The logarithmic time (computational) complexity
TCL(X) is defined by /3X« log2 card A + a2fclog m + /?3 with appropriate ^, fi2 > 0,
/?3 > 0 independent of A, 73, and/ . Hence, in the first case the random sample from A
is considered to be of constant time complexity no matter which the sampled element
and the cardinality of the sample space may be (but for different set, say, A and
{1, 2,..., m), the constants may be different). On the other hand, in the logarithmical
case the complexity of random samples increases linearly with the binary logarithm
of the cardinality of the sample space, as if the samples were realized through a se­
quence of independent regular coin tosses (so that the length of this sequence must
be rlog2 card An, withr_1 denoting the upper integer part).

Theorem 2. Consider an extremum search problem <A, 73, j> and the class &P
of all 2-ESHPPA's satisfying the conditions of Theorem 1 with respect to this problem.
If Xe 3V with parameters mN, nN, kN (N= card A) is such that TCU(X) < TCU(X')
for all X' e S%', then, for v = card A0(j),

(12) m ^ r v ' O W O v W 1 ,

nN = r ln(2/£)V(a2arV>)VN\

kN = rln (2/g) «V •

114

If SC e #? with parameters mN, nN, kN is such that TCL(%) ^ TCL{SC') for all .2" e ,.sf,
then

(13) mN = r >/(/8x^_'(In 2) iT1) ViV"1 + j,(iV),

«ff = rln (2/a) V(/i2(log2 e) /?" V ') N/!Vn + j2(iV),

£„ = rln (2/e) V + /3(N),

wherej;(iV), i = 1, 2, 3, are appropriate &(*JN)-functions.

Proof. For each x', y', z' e <(0, oo), satisfying x ' j ' 2: D"1 In (2/e) N, z' ^
^ In (2/e) x', and minimizing the value of a^x' + a2y' + a3 (= TCU(9C)) there are
x, y, z such that xy = ln(2/e)iV, z = In (2/e) x, and a,x + a2y + a3 = a :x' +
+ a2y' + a3. Putting y = x - 1D~' In (2/e) N and z = In (2/e) x into a tx + a, j ' + a3,
we obtain

(14) f(x) = a1x~1 tT1 In (2/e) N + a2 In (2/e) x + a3 .

Hence,

(15) (d/dx)/(x) = - a ^ 1 In (2/e) Nx~2 + a2 In (2/e) = 0

yields

(16) x2 = a.0."-"-1.?-, x = v W _ ' o " ') VlV

so that, after an easy calculation,

(17) y = (In (2/e)) V(a2a"' iT ') V'/V , z = (In (2/e)) x ,

and taking the lowest integer values, we obtain (12).
In the case of the logarithmic criterion we have to minimize the expression

(18) pty log2 N + p2z \og2 x + &

under the same constraints, so setting y = D"1 In (2/e) Nx~', z = In (2/e) x, and
differentiating with respect to x, we need to solve the equation

(19) (dldx)(p1x~1v-1 ln(2/e)iV + 02 In (2/e) x log2 x + j?3) =

= -fS^-'x'2 In (2/e) TV + /?2 In (2/e) log2 e((d/dx)x In x) =

= - /?1D- ,x-2 ln(2/s) iV + p2 In (l/e) log2 e(In x + 1) = 0 .
Hence,

(20) In x + x2 = AiV/_

with

(21) A = - , & > " ' In (2/e) , _ = p2 In (2/e) log2 e .

Let xiV solve the equation (20), let xN solve the equation x2 = AN IB, then

f'?'>\ In Xjy + xlV .

xN

Evidently, xN < xN for almost all N. Let there be 0 < K < 1 such that, for infini-

115

tely many iV's, xN 5£ KxN, then

, . - , lnxN + xN \nKxN + K2xN 2 , ln/C + lnxjy
Vzi) 1 = 2 = K + -

xN xN xN

= K2 + lnK + ^AAB~1) + (lj2)\nN _ R2

AB"XN

as At -* co, hence, for each K',K < K' < 1, and for almost all At's, (In xN + xN)JxN <
— K' and this inequality contradicts (22). So lim (xNJxN) = 1 and computing the

JV-»oo

values A and B we obtain (13). The assertion is proved. •

4. MANY-LEVEL HIERARCHIES

Summing the results of Chapters 2 and 3, we can see that two-level hierarchies
improve significantly the time complexity for the extremum-searching problem
reducing this complexity from the ©(At)-class into the C(N/A)-class (in the case of
unit criterion), or from the &(N log N) class into the 0(s/(N) log At)-class (for
logarithmic criterion). As shown in [3], this quadratic speed-up is, in a sense, the
optimum which is reachable by two-level hierarchies with independent random
choice. On the other hand, the straightforward idea arises to improve the results
of foregoing chapters by an appropriate many-level application of the hierarchical
principle. Let us begin with a simple example.

Again, consider an extremum-search problem (A, B,f} and suppose that At =
= card A = 2K for a positive integer K (the modifications necessary if it is not
the case are not important for what follows). Given 8 > 0, set S = ejK, and At; =
= A/2', i = 1, 2, ...,K, so that NK = 1. Consider Nx processors of the first level,
each of them taking r2 In (i/5)n independent random samples from the uniform
probability distribution over A and putting on its output the latest among the sampled
elements which minimizes the function/ (according to the definition of the operation
MIN). Consider At2 second-level processors, each of them taking, again r2 In (l/cSj1

independent random samples from the uniform probability distribution over the
At! = 2At2-element set of first-level processors, and putting on its output the last
sampled output value, among the sampled first-order processor, which minimizes
the function / (again, the operation MIN is applied). Consider At3 third-level pro­
cessors and proceed by induction. Finally, there is just one Kth level processor,
which takes r2 In (1/5)1 random samples from the set of the two (K — l)-st level
processors with one-half probability of sampling for each of them in each step,
and which outputs this one from the (one or two) sampled output values which
minimizes the function / . Such a statistical decision procedure can be called many-
level extremum-searching hierarchical parallel probabilistic algorithm
(MLESHPPA, abbreviately) for the problem <A, B, /> ; if this MLESHPPA is

116

denoted by 9C, its output (result) may be denoted by £(co) and we may ask whether
this result is correct (i.e. whether X(co) e A0(f)), or whether it is wrong (false, i.e.
X(C0) E A - A0(j)).

Let us consider the probability P({co: to e Q, X(co) e A0(j)}). Multiplying the
number of first-level processors by the number of samples made by each of them
we can easily see that at least N In (l/<5) statistically independent random samples
from the uniform probability distribution over A have been taken. As easy calcu­
lation analogous to that in the proof of Theorem 1 yields that with probability at
least 1 - 5 at least one processor samples an element from A0(j) at least once.
But, if a processor samples a value from A0(f), its output value must be also in
Ao(j) due to the definition of the MUV-operation. Hence, with a probability at least
1 — 5 there is at least one element from A0(j) among the output values of the Nt

first-level processors. This calculation can be repeated by induction and we obtain:
if there is at least one element from A0(j) among the output values of the ith level
processors, then with probability at least 1 — 5 there is a value from A0(j) also
among the output values of the (i + l)-st level processors. Combining these condi­
tional probabilities we obtain that the output of the Kth level processor (i.e. £(co))
is in A0(j) with probability at least

(24) (1 - 5f > 1 - K5 = 1 - s,

so that the probability of error is majorized by s. At each of the K levels we have
performed 2 In (l\5) samples, so the number of samples to be taken sequentially is

(25) 2K In (1/5) = 2 log iV In (K[s) = 2 log N In ((log2 iV)/s).

Generating straightforwardly the definition of TCU and supposing that a, = 1
for all (' ^ K and aK+1 = 0, the expression (25) yields immediately TCU(£). In the
case of logarithmic criterion with /J; = 1, i ^ K, and fiK+l = 0, we obtain that

K

(26) TCL(£) = I r2 In (1/5)1 log2 Nt =
; = o

log2N log2^V

= X r 2 In ((log2 N)\sf log 2 (N/21') = £ 2i r ln ((log2 N)jSf =
<=o ;=o

= 2 r ln ((log2 N)lef (l /2) r l o g 2 JVn (r l o g 2 N^ - 1) =

= r l n ((log2 N)\sf ((log2 Nf - log 2 N).

Hence, TCU(£) is in ©(log N log log N) and TCL(S£) in ©((log Nf log log N), so

tha t the result for two-level hierarchies are substantial ly improved. A result showing

the l imitat ions of this improvement will be given later.

General iz ing this example, the formalized definition can read as follows.

Definition 2 . Many-level extremum-searching hierarchical parallel probabilistic

algorithm £ for extremum-search problem <A , B,f} is defined by a sequence

(27) X = (K, {Nt}U, {kt}?ml, {X. / j f i^ , , {Z(i,j, 0}f-.-f7=Vto

117

where

K £ 2, JVX > N2 > ... > NK = 1, k2, fc2, ..., fcK are positive integers,

{Xij}"il
kj1

=1 is an (Nt x fc^-tuple of statistically independent and identically
distributed random variables, each of them taking the probability space (Q, £f, P>
into A and such that, for each a e A,

(28) P({co: coeQ, Xt/m) = a}) = (card AT1 (= W" 1) .

For each i ^ K — 1, k ^ Ni+1, I ^ k i + 1 , Z(i, k, I) are statistically independent
random variables defined on <£3, £P, P>. Each Z(/, k, /) takes values in {1, 2, ..., N j
and for each j g JV;, / ^ fc.+i,

(29) P({co: co e Q, Z(i, k, I) (co) = j}) = N71 .

3C can be taken as a random variable taking <0, £f, P> into A and defined, by induc­
tion, as follows.

(30) Yk\co) = MIN(f, (Xkj(co)}% t) , fc = 1, 2. ..., N. ,

Yfc
i+1(co) = M/JV(L <Fi(,,;;J)(ra)>V=

+
1

1 fc = 1, 2, ..., JVi+1 ,

iF(oj) = $(A, B,f, co) = Ytfco).

As in the case of 2-ESHPPA's the solution S'(co) to the problem <A, E,j> is correct,
if %(co) e A0(j), and it is wrongr (false), if if (co) e A - A0(j); the probability of
error PE(3,'(A, B,f)) is defined as the probability of wrong solution.

5. OPTIMIZATION OF COMPUTATIONAL COMPLEXITIES
FOR HOMOGENEOUS MLESHPPA's

We shall not solve the optimization problem for MLESHPPA's in its full generality
and we limit ourselves to certain subclasses of such algorithms.

Definition 3. Let e > 0, X > 1 be given, an MLESHPPA °I with K levels for an
extremum search problem <A, B,f) is called (s, X)-homogeneous (is in the class
2tf(s, X)), if the following conditions hold

(31) K = rlogA card A1 = rlog, N1

(32) Nt]Nl+1 = X for all i - 0, 1,2,..., K - 1 , N0 = N ,
Nt+1 Ni

(33) P({co: co e Q, (J {Y;+1(co)} n A0(j) * 0} I {co: co e Q, \J {YJ(co}} n
J-t J = I

n A0(j) 4= 0}) > 1 - (e/K) for each i = 1,2, ...,K - 1 . Q

In fact, condition (31) is not necessary, being implied by (32), and is introduced
here just because of a more lucidity. Also the condition (33) is rather simple, in spite
of its difficult formalization, and it reads: Supposing that there is an element from

118

Ao(/) on the output of some of the ith level processors, then with the probability
at least 1 — (sjK) there is an element from A0(/) on the output of some of the
(i + l)-st level processors. Combining these conditional probabilities we can easily
deduce, using (24), that PE(X(A, B,f)) < e for all 9C e J>f (e, X).

The optimization problem within the class (J 3%(s, X) is solved by the following
assertion. A > 1

Theorem 3. Given e > 0, consider the class X £ = U ^ (e , A) of MLESHPPA's
x>\

for an extremum search problem <A, B,f} such that card A0(/) = 1. Let the homoge-
K

neous unit time (computational) complexity TCUH(X) of 3C be defined by £ kt
i = l

(generalization of TCU with al = xz = 1, a3 = 0, to the many-level case). Then
XN satisfying the equality

(34) (In In N + In e"1) (In X - 1) = (In X - l) In In X - 1

has the property that for each 3£ e ff(s, XN), PI0 e 3tfc, TCUH(&) % TCUH(3C°),
hence, the homogeneous unit time complexity is minimized when the ratio between
iV;andiVi + 1 is XN.

Proof. If A0(/) is a singleton and if {Y}(co)} = A0(f) for some i <, K ~ \,j S Nh

we need [N ; In (lJ(ejK)J] independent samples made in total by the (i + l)-st level
processors in order to assure the validity of (33). If, moreover, NtjNt+1 = X, each
processor of the (i + l)-st level must take _X In (l/(e/K))] samples, hence,

(35) k, = VX In (lJ(ejK)y = rX In (KJB)1 = VX In (logA Njsf ,

and, for 3C e Jf(e, X),
K

(36) TCUH(X) = X fc; = !<rA In ((log;. iVj/e)"1 =
;=i

= X (log;. iV) In ((log;. N)Js) = X(ln iV/ln X) In ((In iV)/((ln A) s)) .

The only we need to find is the minimum value of the function

(37) f(x) = (x/ln x) (In In N - In In x - In e) =

= (x/ln x) (In In N - In e) - ((x In In x)/ln x),.

But,

(38) (d/dx) (x/ln x) = (In x - 1) (In x) " 2 ,

(39) (d/dx) (x In In x/ln x) =

= (In x) - 2 [(d/dx) (x In In x)] In x - x In In x[(d/dx) In x]) =

= (In x) ~ 2 [In x(ln In x + (in x)_1) - In In x] ,

119

so that

(40) (dj(x)/dx) = (In x)~2 (In In JV + In e~l) (In x - 1) -

- (In x)-2 ((In x - 1) In In x + l) ,

and this value is zero just when (34) holds, so the assertion is proved. •

The only value XN which minimizes TCUH(&), and which is in «j>(ln JV)-class, can
be approximated by XN x e = 2-718 ... in the following sense. Take the function

(41) h(X, N) = (A/In X) In JV In In JV ,

if ^ e -f (e, A), then

(TCUH(X) __ (A/In X) In JV(ln In N - In In XNe) __

' JV™ h(A,JV) ~;v™ (A/lnA)ln'iVlnlnJV

. r In In XNe . ,. In In In N
= 1 — hm — S: 1 - lim = 1 .

JV-.OO InlnJV JV-OO lnlniV

Hence, TCUH(%) « h(X, JV) in the sense of (42) and h(X, JV), taken as a function
of A, is minimized by A = e (as (d/dA) (A/In A) = (In A) - 2 (In A - 1)). The fact that
only XN e <?(ln JV) are considered is not restrictive, as for XN e (P(\n N) we obtain

(43) TCUH(%) e ©((In N)2)

and this result is qualitatively worse than that with A = const (when we were in
&(\n N In In JV)). For the same reasons also XN increasing more rapidly than In JV can
be avoided from our considerations.

Let us close this paper by some remarks concerning thr further possibilities of
investigation and development in the domain in question. Some of them are inspired
by [4], when we have investigated similar hierarchical parallel algorithmic structures
for the searching problem; this problem consists in answering the question whether
a subset of the basic set A is empty or not or not supposing that the only device
being at hand is an oracle which tests whether at random sampled elements of V
ate in the subset in question or not. So the following problems may be considered:

— optimization of 3C for broader classes than those investigated here.

— instead of probability of error in the sense defined above (i.e. SC(w) e A - A0(f))
some other criterion should be optimized, e.g., the expected distance £Q(2C((O),
Ao(f)) between 9C(oS) and A0(f) should be minimized supposing that A is equipped
by a metric Q and Q(SC((O), A0(fj) = min Q(%((O), X).

xeAoif)

— instead of "classical" worst case analysis the Bayesian one can be applied, so
that the extremum-search problem <A, B,f) is supposed to be sampled at random
(by the so-called apriori distribution) and probabilities of error or other qualitative
characteristics for the worst cases are replaced by their expected values with

120

respect to the apriori distribution. This involves a number of problems connected
with the Bayesian approach in general, and we do not go here into details.

- the possibility of failure of the oracle which compares f(a) and f(b), for a, b e A
can be incorporated into the model, i.e. we may suppose that if f(a) ^ f(b),
then the device gives this correct answer with probability 1 — e < 1, and gives
the wrong answer f(a) > f(b) with positive probability e. In [4] we have in­
vestigated this possibility of failure for the searching problem, and the way
in which the probability of failure combines with the other uncertainties within
our model proved to lead to qualitatively different results than those in the case
of failure-proof oracles.

In the list below, Feller's monography may serve for all references concerning the
elementary notions, models and results of probability theory used in this paper.

(Received April 30, 1987.)

R E F E R E N C E S

[1] W. Feller: An Introduction to Probability Theory and its Applications, Vol. I. Second edition.
John Wiley and Sons— Chapman and Hall, New York—London 1957 (Russian trans­
lation: Mir, Moscow 1964).

[2] U. Manber and M. Tompa: The complexity of problems on probabilistic, non-deterministic,
and alternating decision trees. J. Assoc. Comput. Mach. 32 (1985), 3, 720—732.

[3] J. Reif: On synchronous parallel computations with independent probabilistic choice. SIAM
J. Comput. 13 (1984), 1, 4 6 - 5 5 .

[4] I. Kramosil: Hierarchical connection of probabilistic approach and parallelism in searching
tasks of artificial intelligence (in Czech). In: Aplikace umele inteligence AI' 87, 23 — 31.

RNDr. Ivan Kramosil, DrSc, Ustav teorie informace a automatizace CSA V (Institute of Infor­
mation Theory and Automation — Czechoslovak Academy of Sciences'). Pod voddrenskou vezi 4,
182 08 Praha 8. Czechoslovakia.

121

		webmaster@dml.cz
	2012-06-05T18:24:07+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

