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KYBERNETIKA CISLO 2, ROCNIK 2/1966

Static Programming of Data Handling

PaveL Kovanic

The presented method splits the process of the optimum digital data handling into two
stages: in the first stage the vectors—operators are calculated, in the second one they are applied
on measured data. In this way the demands to the computers can be substantially diminished.

INTRODUCTION

Many operations effected during data handling can be understood as an application
of some “filters”. A “signal” is induced on the input of handling process which con-
tain a useful information, and also unwanted random disturbances. The task of the
“filter” is to offer on the output the best approximation to the useful component
of input signal or to the quantity obtained by the given transformation of this com-
ponent. For the region of continous signals L. A. Zadeh and J. P. Ragazzini [1]
have formulated and solved a problem which is an important generalization of the
Wiener’s problem [2]. The development of digital technique enforced, however,
solution of similar problem also for discrete filters. The solution was a continuation
of paper [?] by A. N. Kolmogorov and was gradually developped in many papers
from which we mention: A. B. Lees [4], M. Blum [5], [7], K. R. Johnson [6].
V. P. Perov [8], Ya. Z. Cypkin [9], V. V. Solodovnikov [10], P. D. Krutko [11],
L. N. Volgin [12].

In these papers time sequences of signals are discussed which are separated by
regular time intervals. Methods of solution are in accordance with the regularity of
the time sequence of signals. These methods, however, have a limited applicability
for solution of practical problems where the handled “signal” is presented as a set
of digital values of input function, given for other distribution of values of the in-
dependent variable (the variable need not mean time) within the interval of observ-
ation.

The mathematical statistics solves problems which are essentially related i.e.
estimation of linear forms, handling of indirect observations, linear and nonlinear
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regression, smoothing of measuring by means of given functions {13], [14]. The
matrix solution which is often applied in this field is very comprehensible and allows
not to limit oneself by a regular distribution of the interval of observation. The
attention, however, is here paid more to the statistical properties of deviations of
measured values from the smoothed curves than to the properties of functionals of
those curves. Nevertheless, in problems of the Zadeh-Ragazzini type the securing
of optimality of those functionals plays the essential part. Moreover, in the known
problems connected with the method of least squares [13], [14] the useful random
component is not considered. Therefore in paper [15] the author tried to use the
matrix method for solving the generalized problem of Zadeh and Ragazzini and for
a proof that the optimality of solution of this problem and the optimality of smoothed
curves are in a connection. The main results of paper [15] as a theoretical basis of
method of static programming are necessary to be presented in this article. The
proposed procedure tends to the calculation of finished and in a certain sense un-
variable matrices for effecting of the optimum digital operations and does not tend to
the algorithmes for computing operation matrices within the process of data handling
as we can see in paper [ 16] by P. E. Kalman and other papers e.g. [ 17]. These dynamic
methods allow to solve an essentially broader range of problems, however, with much
higher requirements to the computer.

GENERALIZED DISCRETE ZADEH-RAGAZZINI'S PROBLEM

We are given a set of measured values y(z;) (j = 1,2, ..., n) of the input variable
¥(1) being a function of the independent variable r. Variable ¢ may represent e.g. time
or space coordinate. The distribution of the points ¢; on the t-axis is not necessary
to be uniform. Let us suppose the input function being a composition

(1) (1) =Z§al-x,»(t) + #(1) + x(1)

of m given nonrandom linearly independent functions x,(7), of a useful stationary
random function %(f) and of a stationary random function X(t) representing noise,
measuring errors, statistical fluctuations of measured variables etc. The a; are any
unknown numbers. All functions and numbers are real. Correlation functions of X
and X are given. The ensemble average of both £ and X can be taken as zero after
including their means into the sum.

The set of y(t;) can be considered as a random vector Y and the Eq. (1) can be
rewritten as

(2) Yy = AL Xon Xy, + Xy,

1,m™mn

The first index indicates the number of rows of the matrix, the second one the number
of columns. The size of the matrices will be shown in necessary cases only. T denotes




the transposed matrix. The matrix X represents the given functions x,(t) by their

numerical values:

m i " -
o Ji x(t,) . ~\m(tn) Il
The number of points () is supposed to be greater or equal the number of func-
tions (m).
What would be desired to be the output of handling of input vector Y is a number z;
being the result of linear transformation & of the useful input component

&) X o x = ¥lt). -xm(h)f‘ '

@ 5= f{:gna,-x,«(t) - 50}

e.g. the predicted value of a linear combination of first derivative and of the value
of this component for ¢ = f,. But z; cannot be determined cxactly because of the
presence of the statistical disturbance X(r). Thus, it is necessary to limit oneself to
determining the best estimate z of z,. Here the following conditions must be respected:

1. The z is searched for as a linear estimate of the form
(5) z= YW,

W being a vector (a matrix W, ;).

2. The z must be exactly equal to zin the absence of the both %(z) and *(r) (the
estimate must be unbiased).

3. The variance of the z (ensemble averaged square of the deviation of z from the
mean) must be minimum.

It can be shown that the constraint equations warranting holding of the condition 2
are of the form

(6) XTW=L
if

‘ fl{x}(t)},r
L= :

(e
| (50, |

where the t, denotes the value of ¢ for which the estimate is determined. In dependence
on the choice of 1, in relation to the “observation interval” (1, + 1,) the operation
performed can be characterised as the smoothing (interpolation) prediction (extra-
polation) or filtering. The choice of the operator & determines what function is to
be smoothed, predicted or filtered. We can understand the £ as the symbol denoting
the derivating, integrating, convolutory integrating or as the symbol for linear com-
bination of this and similar operations. % may be the identical transformation also.
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Thus, the vector L (7) defines the type of the estimate and the matrix equation (6)
warrants the analytical properties of the digital operator W.
The variance of the estimate z denoted by D,_., can be shown as

(8) D._, = WIBW — 2CW + d
where
©) B,, = x'x + X'X + 2x'x

is the covariance matrix of x + x, € and d being given by

X NE x(t, f
| TE G
| 2{2(0)}, . (%(1) + X)) |

(1) diy =[2G}

The line above the symbols denotes the ensemble averaging. The matrix B, vector C
and number d can be calculated from given correlation functions.

Three conditions mentioned above define what is meant by the words ““best estim-
ate”: The estimate is linear, unbiased and its variance is minimum. The linearity of
the estimate (7) leads to an important advantage in regard to the effectiveness of
using the digital operator W for calculation: The number of numerical operations
is minimum: for consideration of each measured value y; within the process of hand-
ling the vector Yonly one multiplication and one addition is needed. Thus, the estimate
has a given analytical accuracy, minimum statistical error and minimum require-
ments to the computer.

|

SOLUTION OF THE PROBLEM AND ITS PROPERTIES

The Lagrangian method gives the solution in the form of
(12) W= B U X(X"B7'X)"'L + [E— B~ X(X"B"'X)"' X"] B~'C"

where the E, , is the unity-matrix and B™! is the invert of the B. It can be shown
by substitution into Eq. (6) that this equation is satisfied by W of the form (12).
The minimality of the variance is proved in the Appendix. Another important pro-
perties of the solution can be pointed out:

A. Let us use the operator W for smoothing the input function y(t) having the form
of (1). Let us estimate the smoothed values j(t;) for all j. Then not only the variance
of each separate (f;) is minimum but also the ensemble average of the sum of

squared deviations (y(t;) — 3(t,))* reaches its minimum. In the case of ¥(z) = 0
the sum of squared deviations is minimized, too.



B. The smoothing of the smoothed function gives no changes in values j(t;). The
analytical operation % performed on the smoothed function gives the same result
as the direct using of the operator W calculated for the same operation %. The
practical consequence of this fact will be considered below.

C. Matrices appearing in (12) can be used not only for computing the estimate z.
The estimate A of the unknown vector A (see Eq. (2)) can be performed as
(13) A= YB ' X(XTBTIX)",
This estimate is unbiased and the expression (A — Z) (A— Z)T representing the
sum of squared errors is minimum for the class of linear estimates of the vector A.
Proofs of the statements A, B, C are omitted here, they can be found in [15].

STATIC PROGRAMMING

The main idea of static programming consists in the distribution of all operations
of digital data handling into two stages:

1. Calculation of optimum digital operators and of variances, resp. of covariance
matrices of output quantities.

2. Application of operators.

The simplest realization of this idea is demonstrated in Fig. 1. For the sake of
simplicity calculation of variance of the result is not shown in Fig. 1. The input
vector is Y. By means of a preliminary study of this vector or from theoretical consi-
derations the necessary correlation functions were obtained and the matrices B
and B~ " were calculated. Functions x (f) being given, the matrix X is also given. The
operator & and point f, are determined by requirements for the type of operation
and therefore the vector L is also determined. The vector C is calculated from correl-
ation functions for the given operator % and point ¢,. In the phase a of the first stage
of static programming the matrix

(14) M =B ' X(X"B~'X)"!

is calculated as well as the matrix E — M (E being a unit matrix). In the phase b of
the first stage the vectors L and B™'CT are calculated for the required operator %
and point 7, and also the vector-operator W which is an output quantity of the first
stage. Calculations included in the first stage are effected only once for the given
conditions. In the second stage which is repeated many times for various input
vectors Y only the calculation of the required output quantity by means of applica-
tion of the operator W is performed, i.e. the scalar product YW is being calculated.
We proceed as follows

(S1) fa—1b—2--2—2—-2—2—-2 ...

161



Given

age | Phase | :
Stage | Phase quantities |

1
{
|

S
=N
|
!
i
|
;
|
I
|
|

|

1 | Nonrandom |
i functions  |—%=1 X -
! X
|

I

:__
|
.
|
4
)
|
|
|
|
j
‘{!' -
i
i
|
|
|
|
|
!
|
|
\
|
|
|
!
A

Lol M=B- )X (XTB-1X)—1
.

|
|
Correlation [ ‘
functions =i B-)
|
|

W =ML +(E-M)B—!CT

b

| APl
| of X,.¥
i SUUPRY T O M
! I
‘ : B-ict |
| !
'] Operator # || |
|

and point s,

|

!

|
T

[ E

Input¥ Output z

Fig. 1. Stages and phases of the first scheme of static programming.

Here the first stage can be carried out e.g. by means of an efficient medium size off-
line computer and the second stage by means of a small on-line computer.

The method according to Fig. 1 is advantageous for one or for a few single opera-
tions of a given type on many input vectors. Two important cases of the second stage

Store: Input:
vl

SoYW .

Fig. 2. Second stage of static )
programming for nonstationary ()

space estimation.
Output

of static programming can be mentioned here. In the first case, demonstrated in

Fig. 2, all values of components of the vector Y are taken in the same instant e.g. the

independent variable ¢ is a space coordinate. In the computer store the vector W




calculated in the first stage is stored. The process represented by components of the
vector Y can be nonstationary. In every instant of estimating z the computer takes
the operator W off the store and all components of the vector Y off the input to
effect the scalar product YW. The vector Y has not to be stored after finishing the
operation.

The vector Y, however, can be formed by time consequence of values of the input
function, the independent variable ¢ being time (Fig. 3). In the store of computer
also the vector Y is stored formed by the last n measured values and supplemented
by the newest measured value. The oldest value is forgotten in every further step.

Input
Store I: Store I (recent value)

y(tn) i—-—l;v(ln+1)_J
A

yin) ;——-I i) I

Cutput (to forget)

Fig. 3. Second stage of static programming for time estimating.

If more operations on the same vector Y are required {e.g. k) it is necessary to
calculate in the first stage vectors —operators for using in the second stage i.e. the
matrix operator W, ;. If the existence of useful random component %(¢) is not pre-
sumed and when it is necessary to perform a great number of various operations on
every vector Y then two stages of static programming accord. to Fig. 4 are more con-
venient. Calculation of covariance matrices of output quantities is again omitted
in Fig. 4. The handling proceeds according to the following scheme

(S,) la—1b—2a—2b--2a—2b-—2a—2b—2a—2b ...

This case differs from using k vectors W accord. to Fig. 1 only by the requirements
to the storing of matrices passing from the first stage into the second one: according
to Fig. 1 it would be necessary to store a matrix with nk elements, accord. to Fig. 2
to store one matrix with nm clements and one with mk elements. The method accord.
Fig. 4 enables to condensate the input data for storing and later handling. Then

(Ss) la—2a—S—2a—S—2a—S—2a—S—2a—S ...
(S denotes the operation of storing the vector A). The later handling proceeds accord.
to the scheme

(S4) 1b—E—2b—E—2b—E-—2b—E—2b ...
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(E denotes extraction of the vector A off the store). A direct storing of p vectors Y, ,
would require pn cells, a condensed storing needs pm cells. (Often n > m.) Moreover,
there is a possibility in later handling to change the type of operations and repeat
the chain (S,). Furthermore, there are some important cases, e.g. harmonic analysis,
where the chain (S,) need not exist at all and the handling proceeds according to (S,)
only.

Lok

R - |
| ag | ase quantities | P = |
s |
I | |
| | } Nonrandom I |
| | functions §— = X |
! I ‘ i ! I
L 1 } Mg (B-1X)-1 | ]
| | | | Correlation] | i
functions f—= B-1
| | |
| | | of ¥ } }
! i
R R e D
! ‘ I 10 P ; i i
perator £ L) |
} : } and point 7y P—J. (kh :
[ I‘ [ i | — I
b ! ! |
b ‘ ! ™ Mo |
b | |
: Operator £ ;
i ,‘ 1‘ and point 14§ | by I
oo |
= =

Input¥ Output A Qutput =

Fig. 4. Stages and phases of the second scheme of static programming.

It is necessary to mention that in practical using the chains (Sy) up to (S,) can be
variously modified and that the static programming can be realised in a less pure
form than it is presented here. It depends both on the complication of solved problems




and on the necessity to calculate in some cases not only the estimates of the wanted
quantities but also their errors.

SOME EXAMPLES OF USING THE STATIC PROGRAMMING

Following examples can be mentioned from the field of using the computers for
control of reactors and nuclear power stations and for handling the data in nuclear
engineering:

From the temperature of various fuel elements of a reactor it is necessary to calcul-
ate in regular time intervals the mean temperature, i.c. to integrate the smoothed
curve. An on-line computer can carry out this operation according to Fig. 2. Accord-
ing to the same scheme e.g. time behaviour of thermal gradient in the most stressed
spots of a pressure vessel or of cooling piping can be followed. By double using the
scheme accord. to Fig. 2 we can obtain the local value of buckling as the negative
ratio of the local value of the second derivative and of the local value of the curve
representing a smoothed space distribution of neutron flux.

Examples for the scheme represented by Fig. 3 are as follows:

Calculation of the predicted value of a controled quantity for using in the optimum
control.

Calculation of the exact value of the instantaneous period of a reactor as a ratio
of an instantaneous value and of an instantaneous value of the first derivative of
the smoothed reactor power function.

Calculation of the predicted value of temperature of important elements of a reactor
for alarm or scram signalisation.

Calculation of the instantaneous value of reactivity as a convolution integral from
the neutron flux.

For functionning accord. to Fig. 3 the sampled interval (i.c, the interval between
two values of an independent variable 7) is accepted as a constant one. For proceeding
accord. to Fig. 2 the distribution of the points ¢; is determined by constructional
aspects (by the possibility of situating the detectors) and often it is not regular. This
must be respected when calculating the matrix X.

As an example of the method of calculations accord. to Fig. 4, we can mention
a digital registration of the space distribution of neutron flux for a later further
handling: for the phase a of the first stage a system of linearly independent functions
x,(t) and thus also the matrix X is chosen so that a small number of functions x{r)
could characterize the approximated curve with sufficient accuracy. In the phase a of
the second stage an analysis of measured curves as a linear combination of given
vectors of the type AXT, calculation and storing of the vector A accord. to the chain
(S,) is effected in necessary time intervals. In a later phase of handling the accumulated
data accord. to the chain (S,) it is possible e.g. to carry out an analysis of time depend-
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ence of some functionals from measured curves. Another example of a supplementary
handling is an analysis of time dependence of components of the vector A. In this
case, e.g. the i-th components of these vectors form a new input vector (YA)i which
can be further analysed according to any of the mentioned schemes after a new
choosing of suitable matrix X and after absolving the calculations of the new first
stage. Thus we can effect e.g. a time interpolation of components of the vectors A
for the moment for which the measuring was not carried out and obtain the time-
interpolated distribution curve. The advantage of this method is the reduction of the
influence of random errors, storing the condensed data and little extra demand on
the on-line computer.

One Example in More Details: Optimum Digital Harmonic Analysis

To get a real idea about the importance of redundance (being represented here
by the difference n — m, by using the n measured values for calculation of the m un-
knowns) for reduction of errors of the result and for illustration of the effectivity of
using the optimum digital operators, let us introduce a simple example of using the
static programming for a harmonic analysis.

The method of reactor oscillator is one of the most important methods for ex-
perimental determination of dynamic properties of a reactor as well as of the cooling
systems of the reactor. Evaluation of results of this measuring meets with following
difficulties (particularly in the power range):

a) The measured quantity is disturbed by statistic fluctuations.

b) For practical reasons the amplitude of periodical disturbance must be small,
compared with the mean value.

c) 1t is difficult to warrant that the mean values of all measured quantities are being
constant throughout the whole duration of the experiment.

d) It is necessary to handle a great deal of experimental data for an analysis of the
response not only of the reactor but also of a great number of further elements
of a nuclear power plant at different frequencies.

These difficulties can be essentially moderated by using the static programming
according to Fig. 4, chain (8;).

An example: the vector Y is formed by values of one of the investigated quantities
taken in the moments ¢; up to 7y. Functions x (1) will be chosen as follows:

xy(f) =sin(f), x,(f)=cos(t), x4(1)=1,
x,(t) = sin (21), xs5(t) = cos (21), xg(r) =1,
x3(t) = sin (31), x4(t) = cos (31), xo(t) = £*.

Let the matrix B be a diagonal matrix with the equal diagonal elements Sy. The
useful random component is identically zero. Let the points ¢; be equally distributed



on the interval from ¢; up to ty = ¢; + 2r. The interval 2z is therefore divided into
N — 1 equal intervals. By calculation of the phase a of the first stage one obtains
the matrix of the operators M for calculation of the vectors A. Its first six components
form in this case the best estimates of amplitudes of harmonic components and the
three remaining components are estimates of coefficients of the quadratic polynomial.

Calculation of the phase a of the first stage for the considered case was effected
for various values of N and the obtained operators were used in the stage 2a for
handling of measured values of frequency transfer functions of real parts of a steam
generator of a nuclear power plant. It will be of interest to mention that in the given
case for N = 31 the computer Elliot 803 B needs several hundred times more time
for calculation of the stage 1a than for calculation of the stage 2a which needs a few
seconds for one vector Y. Codes for both stages of calculation were written in
ALGOL 60. Using of the machine code for calculation of the stage 2a would not
represent any problem and could further increase the effectivity of using the con-
sidered method.

For the considered case (after calculation of the matrix M) it is easily possible to
determine variances of every component of the vector A by effecting the product of
the number Sy and of the sum of squares of elements of the respective column of the
matrix M. (The number Sy represents variance of the measured values y;.) Variance
of the amplitude of the k-th harmonic will be determined as the sum of variance
of sine and cosine amplitudes of this harmonic. Variances of amplitudes and coef-
ficients of the polynominal calculated for several values of N are demonstrated in
Tab.I. When N = 9 the redundance equals zero and variances of the output values
are very high. With the increase of N the variances quickly decrease.

Table I.

Variance of amplitudes of the harmonics and of the coefficients of the polynomial at
optimum digital harmonic analysis

n number of points t;on the investigated interval 2z,

S, — variance of the amplitude of A-th harmonic,
2

Sy — variance of k-th coefficient of the polynomial X b1,
k=0

Sy -~ variance of components of the input vector Y i. e. of the measured values.
| ) ]

o Sa | S Saa | Swo Sp1 Sh2 |
AU U B * A 1
| | ‘ . | ~1
‘ 9 ‘ 22:9345, | 2-500 Sy ‘ 1-19073S, 17853 S, 46906 S, | 46875.10 Sy
15 8:38LS, [ 092625, | 0452245, 42:379S, | 4783 Sy | 1:8646.107 ZSy
o3t ‘ 54225, f 0-52175, | 0227665, | 198255, 1 061347 S, | 59759.107%s,
‘ 61 ‘ 3-4398, l 0-3046S, ’ 0-12219S, 10-7848, | 0-0933825, 2-4229.10‘55,,
o —
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The calculation effected for N = 31, for the same polynomial component and for
the same distribution of the points ; on the interval of 2i shows how the increase of
the number of analysed harmonics (II) lowers the accuracy of determining the ampli-
tude of basic harmonic and of coefficients of polynomial component. Results are
summarized in Tab. I[.

Table TI.

Variance of amplitude of the first harmonic and of the coefficients of the polynomial
at optimum digital harmonic analysis at » == 31
H — number of harmonics considered in the analysis. Remaining symbols are the same as
as in Table I.

|

i H Sa1 J Sso ‘ Sp1 ‘ Sp2 i
i i

- [ A I - [ |

Eo 085815, 2:56035, ’ 00743398, | 7A726.10°°S,

3 5422 S, 19825 5, | 0613475, | 59759.107%, |

5 15836 5, 599915, | 1876 S, | 18259.1073s, i

» )
| |

ACCURACY OF OUTPUT QUANTITIES

Error of the output quantities may be caused by four reasons:

. Representation of the nonrandom component of the input signal is not satisfactory,
the chosen functions x,-(t) do not enable a sufficiently accurate approximation to
this component.

2. The output quantities contain a disturbing random component which is intro-

duced into the input of the process together with the useful component.

%)

. Representation of the input and output values and of components of vectors—
operators as well as operations with those members are not sufficiently accurate.

~

Correlation functions which were supposed by us do not sufficiently meet the real
properties of the input random components.

Reason of the type 4 causes that at a certain “analytical’” accuracy of output quanti-
ties the variance of this quantity is greater than it could be if the information of the
input random components were more complete. Sometimes, however, even a rather
nonaccurate knowledge of properties of the input random components is no hindrance
for practical using of results. Beside that, knowledge of statistical properties of input
data can be supplemented and made more accurate within its handling and the digital
operators can be additionally corrected by means of a new calculation 1la.

Reason mentioned under 3 is essentially of technical character. For the second
stage of the calculation i.e. for the proper ensemble data handling the usual accuracy




of an on-line computer will be sufficient, requirements to the accuracy of its input
equipment can be even lower because of the utilization of redundance. On the other
hand, calculations of the first stage require an accuracy which is usually necessary
for effecting of scientific calculations. These calculations, however, even because of
speed and because of requirements to the store are usually necessary to be effected
by means of a medium-size off-line computer warranting the demanded accuracy.

Two components thus remain under 1 and 2 i.c. the analytical and the statistical
component. Unfortunately, decrease of the influence of one of those components
leads to an increase of the other one, the quantity of the input information remaining
constant. The increase of quantity of the input information (the inrease of n) enables
to decrease the result error, however, either for the price of increasing the demands
to technical equipment or for the price of time retardation of the output information
or for the price of both those complications. Therefore it is necessary to consider
even the calculation of variations resp. of covariance matrices of output quantities
as an important component of the first stage of static programming. This calculation
makes it possible to estimate still before the beginning of the second stage the statisti-
cal component of errors of results {supposing a covariance matrix B of the input
vector Y). The calculation of the variance D, __, of the output quantity z for the scheme
according to Fig. 1 is effected according to Eq. (8). One can easily see that the co-
variance matrix K, of the vector A which is the output quantity of the phase 2a
(proceeding accord. to Fig. 4) is given by the expression

(15) K, = (X"B™'X)"!

and the covariance matrix Ky of the vector Z which is the output quantity of the
phase 2b (accord. to Fig. 4) is given by the expression

(16) K, =LT(X"B™'X)"' L

where L, ;. is the matrix composed of the vectors L calculated for cach individual
operation. We see that for calculation of variances or of covariance matrices we need
(beside the given quantities) the matrices which are calculated in the first stage as well.

The question of suitability of the choice of type of the functions x,-(t) and of its
number m is more complicated and cannot be definitely solved in a general case
without a deeper investigation of properties of the input vectors Y although it is
often possible to give the matrix X only by intuition or apriori knowledge of character
of the vector Y and although the analytical error can be roughly estimated under
certain prepositions about properties of the nonrandom part of the input signal.
The verification of suitability of choice of the matrix X is a task of mathematical
statistics, it requires a testing of the hypothesis that the quantities y; — ¥; (thc errors
of smoothing) have really a random character. Even for calculation of the smoothed
vector Y and thus also for the testing of this hypothesis one can use matrices calcul-
ated in the first stage. This test, being not comprised in the mentioned schemes,
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would be effected, if necessary, between the stages 1 and 2 to get a warranty of
the correctness of the method. First then many repeating of the stage 2 would follow.

CONCLUSION

Method of static programming consists in splitting of the handling process into
two stages. In the first stage, the digital operators are prepared, in the second stage
the operators are applied in the calculation of the scalar product into which the
vector-operator as well as the vector of measured values enter. The method allows
to perform operations of an mass data handling most economically and with best
results from the point of view of using the input informations.

APPENDIX

Let us consider a vector W,,VI giving a linear estimate
(A1) 2= YW
which is unbiased:
(A2) XW=L.
The variance D;_,, of z is given by the same formula (8) as the D___:
(A3) D,_,, = WIBW — 2CW + d.

After substitution of (12) into (8) and after subtraction of the equation (8) from (A3)
we have

(A4) D. =D, . =WTB[E ~ B~I X(X'B~'X)™! X"] W —
—2C[E— B 1 X(XTB7'X)"P XT| W +
+ C[E — B~ X(X"B~'X)"! X"] B~'C".

B being a covariance matrix is invertible and symmetrical, it can be therefore repre-
sented by the product of a nonsingular matrix § and of its transponse:

(A5) B = s§
(A6) B~ = (sT) s,

Using (A5) and (A6) we can rewrite the equation (A4) as the quadratic form
(A7) D,..,— D,_,, =

2-zyp

[WT'S — CST][E — S™!X(X"B~1X) X"ST- 1] [W'S — CST]".



The matrix

(A8) R,, = E =S X(XTB~'X) X§7-!

being a symmetrical matrix can be represented as

(A9) R = FIMyF,

where (Mp), , is a matrix of diagonal form and F, is an orthogonal matrix:
(A10) FoFy =E,,.

We can see from (A8) that

(A11) RR =R

but using (A9) and (A10) we have also

(A12) MM, = M, .

This may be if and only if the diagonal elements of the diagonal matrix My, (the real
numbers m;) satisfy the equation

(AT3) mf =m;
that is they are unity or zero.

Thus, the quadratic form (A7) can be represented by

j=n

(A8 Doy Doy =S

i=1
where the p, denotes the j-th component of the vector Fo[ W'S — CST]". Hence
(A15) Dice,— Doy 2 0.

The vector W gives the estimate z the variance D, __, of which is not greater than the
variance of any unbiased linear estimate which fact had to be proved.

(Received July 27th, 1965.)
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VYTAH

Statické programovani pro zpracovani dat

PaveL Kovanic

Clének se zabyvd numerickym zpracovanim dat, jeho¥ cilem je ziskdni nejlepsiho
odhadu hodnoty linedrniho funkciondlu od vstupni funkce, dané &iselnymi hodno-
tami v libovolng rozdélenych bodech nezdvisle proménné. Vstupni funkce je neznd-
mou linedrni kombinaci danych nendhodnych funkei a staciondrni ndhodné funkce.
Do procesu zpracovani vzstupuje vstupni funkce v souttu s ruSivou staciondrni
ndhodnou funkci. Korelaéni funkce obou ndhodnych funkci jsou ddny. Popisovand
metoda statického programovani vychdzi z maticového fe§eni zobecnéné diskrétni
analogie Glohy Zadeha a Ragazziniho. Rozd8luje proces zpracovdni na dvé etapy.
V prvni etapé se pro dané podminky vypoctou &islicové operdtory pouZitelné pro
jakdkoliv konkrétni data. Ve druhé etap® se provddi vlastni zpracovdni dat aplikaci
téchto &islicovych operdtorii vzdy jako skaldrni souin vektoru-operdtoru a vektoru,
tvofeného souborem dat.



Casto se poZaduje mnohondsobné opakovdni procesu zpracovani dat ziskanych
za tychZ podminek. V takovém piipad€ se mnohondsobné opakuje pouze druhd
etapa, vyzadujici minimdlni polet numerickych operaci. Zpracovdni dat podle
uvedené metody je v takovém piipadé optimdini nejen z hlediska disperse vysledku
(kterei je minimdlni), ale i z hlediska ckonomického. Jednoduchost druhé etapy
zpracovéni dat dovoluje podstatn sniZit ndroky na po&ita& (rychlost i pamét), ktery
md pracovat v redlném &ase. V Cldnku jsou uvedeny nékteré aplikace metody na
lohy, vyskytujici se v jaderné technice a pouZiti pro optimdini &islicovou harmonicko-
polynomickou analyzu.

Ing. Pavel Kovanic, CSc., Ustav jaderného vyzkumu CSAV, Rez u Prahy.
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