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K Y B E R N E T I K A - V O L U M E 30 ( 1 9 9 4 ) , N U M B E R 3 , P A G E S 2 8 9 - 3 0 0 

ON CONSISTENT M-ESTIMATORS: TUNING 
CONSTANTS, UNIMODALITY AND BREAKDOWN1 

IVAN MIZERA 

The existence and uniqueness of values of location M-functional are explored. For the 
symmetric population distributions, the role of studentization is revealed - the Freedman-
Diaconis conjecture is proved. The asymmetric case is studied with respect to unimodality 
considerations. The lower bound for the breakdown of studentized estimators is derived. 

1. INTRODUCTION 

The article of Freedman and Diaconis [7], see also Freedman and Diaconis [6] brought 
to attention some weak points of behaviour of location M-estimators. Freedman and 
Diaconis have presented examples of location M-functionals which are not identifi­
able at certain population distributions and hence not consistent for samples drawn 
from these distributions. Among positive results, they have shown the identifiability 
of location M-functionals in the convex case and in the nonconvex case for the 
symmetric unimodal probabilities. The objective of this note is to add some new 
virtues to this picture. Roughly, the problem of identifiability can be in some cases 
overcame by studentization with a multiple of a suitable scale estimator. This is 
the "big-tuning-constant-conjecture" of Freedman and Diaconis. The unimodality 
approach can be extended to the asymmetric case. 

Recall first some facts concerning functional approach to M-estimation. The set 
of the values of a (location) M-functional T at a probability P (a member of the set 
V of all probabilities on JR, all defined on the underlying Borel (T-algebra) is defined 
as the set of those t in which a function 

Лp(() = J ^Шåp(y) (1) 

attains its minimum. The M-estimate T{y\, j f t , . . . , Jfo) can be viewed in this frame­
work as a value of M-functional T evaluated at the empirical probability induced by 
a sample yu y2,..., yn. 

J The research was supported by the GAS Grant A06. Some of the results constitute a part of 
the thesis written under supervision of Prof. Jana Jureckova, whose help and encouragement are 
gratefully acknowledged. 
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The most popular reason for including a scale functional S(P) (corresponding 
to some suitable scale estimator, the favorite being MAD, the median of absolute 
deviations from the median) is a need of good invariance properties for the resulting 
M-estimator. The "objective function" is determined by a function <f> together with 
a value of a tuning constant k. The function r/> usually follows some of the known 
commended shapes. Among them there are convex ones (leading, among others, to 
the mean, the median or the Huber location estimator) and redescending ones. In 
the sequel we assume that every <j) is absolutely continuous - a primitive function of 
a function denoted by ij> - and that t/> is bounded. We call a function <j> redescending 
if ij)(x) -+ 0 as \x\ —* oo. If 0 is redescending, it can be bounded (the integrals of 
the popular Andrews sine wave, the Tukey biweight or the Hampel three-part-linear 
shape belong to this category, but also the less known "mean likelihood", formed by 
the reverted Gaussian curve) and also unbounded (with the Cauchy (log)likelihood 
as a representative). For the details, see Andrews et al. [1], Huber [11], Hoaglin, 
Mosteller and Tukey [9], Hampel et al. [8]. All functions <j> considered are even, 
due to the fact that for symmetric P the centre of symmetry serves as the natural 
and accepted location parameter. We lack such a natural location parameter for 
asymmetric distributions. 

The functional T is said to be identifiable at P if the set of its values at P contains 
exactly one member. Identifiability encompasses existence - thus supposing that the 
integral in (1) is defined for enough many values of t and the minimum of Xp(t) is 
attained in at least one t - and uniqueness. Identifiability of the M-functional at 
the population probability P has a great impact on the asymptotic behaviour of the 
sequence Tn = T(Yi, Y2,..., Y„), when a sequence Y\, Y2,... consists of independent 
random variables, identically distributed according to the law P. 

The most unambiguous situation is observed when 4> is convex: then Xp is also 
convex, if defined. Thus the main identifiability problem lies in the existence. The 
best way to save moment assumptions is to deal with a (monotone) derivative of <f> 
and work with M-estimators defined as roots of equations. This approach is quite 
classical and its theory rather well developed, beginning from Huber [10], see also 
Huber [11]. Convexity itself yields only a sort of a "weak" uniqueness: the value 
set is an interval. Some other, relatively weak conditions are needed to make this 
interval a singleton. Differentiability of Xp can be used; however, this technique, 
developed by Clarke [3], gives only local uniqueness in the nonconvex case. 

The case of redescending 4> is more intricate. These shapes are widely com­
mended and used, despite the fact that the theoretical properties of the resulting 
M-estimators are not yet completely disclosed. It should be noted that a use of a 
function <f> which falls neither under the convex nor the redescending category have 
not been registered. 

t 

2. THE SYMMETRIC CASE 

Each example of Freedman and Diaconis consists of an even density / and an even re­
descending function <f>. They are paired in such a way that the resulting M-functional 
T is not identifiable at the probability P represented by / . The corresponding func-
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tion Xp(t) exhibits in these cases two equally deep minima located symmetrically 
around 0. This means that the values of Tn for large n almost surely oscillate be­
tween small neighbourhoods of these two values. (Freedman and Diaconis supply a 
sophisticated proof of this fact.) Consequently, the M-estimator is not consistent at 
P in any sense; it does not converge to the "true" location 0, nor to some uniquely 
determined asymptotic value. 

The density / is in all three cases multimodal and has a unique maximum at 0. 
Function 0 in the first example corresponds to the Cauchy likelihood (j)(x).s = log(l-f 
x2), in the second example, the biweight (<p(x) = —(1 — a;2)3 for |â | < 1, <j>(x) = 0 
otherwise) is used. Freedman and Diaconis conjecture, on the basis of preliminary 
computations, that in both cases the M-functionals are identifiable (for all P) if the 
timing constant k (not depending on P) is set high; as S(P) afunctional representing 
MAD is used. However, their third example introduces a "somewhat artificial" (in 
fact, it corresponds to the first known M-estimator introduced by Smith in the 
nineteenth century) function <j)(x) — — (1 — a;2)2 for |.c| < 1, <f>(x) = 0 otherwise. In 
this example, given any k there exists a probability P such that the corresponding 
M-functional is not identifiable at P. 

Fig. 1. The derivative of V* for the Cauchy likelihood (—), the biweight (--) and the 
Smith <j> (—). 

To see what is happening, the derivatives (," of ip are plotted in Fig. 1 for the 
functions t/; from the all three examples. Since the functions t/> are odd (if)(—x) — 
—ij)(x)), for a symmetric P holds that A'p(0) = 0. The sign of 

X'P(0) = Jc(x)dP(x) (2) 

determines whether Xp has a local minimum or maximum at 0. The property of 
MAD yields 

P[9-S(P),6 + S(P)}>]- (3) 
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for 9 — 0. Hence more than a half of the mass contributes to the integral (2) with 
a value greater than C(0) — 1A- This contribution for large k dominates minC(u), 
making the integral in the first two examples positive; in the third example, masses 
of magnitude 1/4 can be placed right and left such that their contribution is negative 
enough to make the whole integral negative. 

Consequently, given any k, a local maximum at 0 can be obtained for some P, if 
for every e > 0 

min C(x) < _ minC(#)-
*€{-«,*] «eJR 

The contrary is true if the reverse inequality holds for at least one e > 0: if, say, C 
is continuous at 0 and 

C(0)>minC(x). (4) 

This suggests a "test", which, say, by the Andrews wave or the Hampel <f> for a certain 
choice of parameters is not passed. The case when V; is not absolutely continuous 
can be treated in an analogous manner: involving delta functions in C, appropriate 
counterexamples can be found heuristically and then exactly checked. Proceeding 
this way, we obtain, for instance, that the skipped mean (see Huber [10]) fails the 
test as well as the skipped median. 

For those <f> which satisfy (4) and hence pass the test, like the biweight, the 
Cauchy likelihood or the Hampel <j) for certain choice of parameters, the more pecu­
liar problem is to determine whether the local minimum at 0 is the global one. Fix 
<f) and define an auxiliary function 

$(x,«) = j ^(x ~ a) + ^(x + a)l ~ 4>(x)-

Note that $ is continuous. The set of all symmetric probabilities on R is denoted 
by S. 

Theorem 1. Suppose <f> is even and let for S the condition (3) hold for all P G S, 
with 9 standing for the centre of symmetry of P. Suppose that Xp is defined for all 
t. Let a constant k be given. If for all a > 0 

inf $ ( x , a ) > 0 (5) 
*e[o,i/Jb] v ; 

and 
inf $(ar,a)-r inf $ ( . c , a ) > 0 (6) 

«€[o,i/t] v } *e(iA,oo) ' v 

then the M-functional T is identifiable at every P £ 8. 

P r o o f . For the notational convenience, set 9 = 0. Since Xp is, due to symmetry 
of (j> and P, symmetric, it has a global minimum at 0 if and only if an inequality 

A p ( a ) ~ A P ( 0 ) > 0 (7) 
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holds for every a > 0. The assumption of existence of Xp is trivially satisfied by 
bounded <f>. If <j) is unbounded, then 

KDSMDOT) (8) 

could be used in (1), resulting in a modified definition of T. Note at this occasion 
that (7) indicates the statement of Theorem is not affected by such an improvement, 
hence the existence assumption is not essential. 

Fix a. Again by symmetry, the inequality (7) turns to 

- * i щ p ) . , d p ( x ) > 0 -I W(w$+*(ww. 
This inequality is violated by some P if the value of 

rOO i ^ 0 0 

J -[<fi(z-a) + <Kx + a)]-4>(x)dQ(z) = J *(x,a)dQ(x) 
'o 

is nonpositive for a measure Q defined by 

and satisfying 

//Wd )̂ = //(^)dPW 

Q [ o . i ] = P [ 0 , S ( P ) ] > i (9) 

By (5), (6) and (9) 

/•oo r\/k r-oo 

/ <P(x,a)dQ(x)> / Q(x,a)dQ(x) + 4>(x,a)dQ(x) 
JO JO J\/k 

> inf 4>(x,a)Q [o, 7 | + inf *(x,a)Q [ 7 , o o | 
~ xe[o,i/*] V I *J .-€(l/*,oo) V ' [k J 

> - ( inf <f>(ar,a)+ inf $ ( x , a ) ) > 0 , 
" 4 V*elo,i/tj x€(i/fc,oo) V 

and the statement follows. • 

If MAD is taken for S, the conditions (5) and (6) are necessary for identifiability; 
if they are violated, a symmetric probability P can be found such that T is not 
identifiable at P. Note that if S satisfies (3), then so does also its multiple by a 
constant greater than 1 — this indicates why conditions (5) and (6) need not be 
necessary in a general case. Due to continuity, the first inf in (6) (and in (5)) can be 
changed to min. If <f> is redescending, then for a fixed $(x, a) tends to 0 as x —• oo 
and the second inf can be replaced by min as well. 

The conditions (5) and (6) involve only the function (f>. Their validity can be 
checked numerically - resulting with k > 1.23 for the Cauchy likelihood and k > 5.40 
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for the biweight, the figures which are in accord to those given by Freedman and 
Diaconis. Another possibility is to carry an exact proof for a given <j) of the assertion 
that there exists a k > 0 such that (5) and (6) are satisfied. We give such proofs for 
the Cauchy likelihood and the biweight in the Appendix. Unfortunately, a simple 
umbrella criterion appears not to be available - although there are some clues, it 
seems unavoidable in some cases to proceed just in an ad hoc manner, utilizing 
preliminary exploratory graphs and calculations with derivatives and inequalities. 

Having established identifiability, we can truly speak about consistent M-estimators, 
due to fact that the M-functionals under consideration are weakly continuous - con­
tinuous as mappings from S with respect to topology of weak convergence on <S (see 
Billingsley [2]). The following theorem is formulated just to fulfil our present needs; 
the greatest generality is not achieved. 

Theo rem 2. Suppose 0 is even, redescending and nondecreasing on [0,oo). Sup­
pose T is identifiable at P 6 V. If a scale functional S be weakly continuous at P, 
then M-functional T is weakly continuous at P. 

P r o o f . See Mizera [15]. • 

Theorem 2 can be extended to cover the case when T is multi-valued at P; 
in this setting, an appropriate notion of set convergence ("upper convergence") is 
used. For the details, see Mizera [15]. Note that for unbounded <f>, the existence of 
T(P) presumes the existence of the function \p(t); hence some moment condition 
is needed. Such a condition can be eliminated, using the modified definition of T 
in the vein of (8); the derivative of (f> is then supposed to be nondecreasing on [0, c] 
for some c > 0, nonincreasing on [c, +oo) and tending to 0 as the argument goes to 
+00. This covers all practical cases; for the details, see again Mizera [15]. 

Weak continuity implies that Tn converges to T(P) almost surely. Another conse­
quence is qualitative robustness (see Huber [11], Hampel et al. [8]). Weak continuity 
of MAD can be obtained adapting the approach of Huber (1981, [11, § 3.2, § 5.2]. 
See also Mizera [15]. 

3. THE ASYMMETRIC CASE 

In the asymmetric case we have no longer a natural parameter of location as the 
centre of symmetry. However, there is interest in identifiability also in this case: 
identifiability ensures that the sequence Ti,T2,... converges to a well defined unique 
quantity T(P). Under Fisher consistency, a postulate which demands the equality 
of the estimated parameter to T(P), consistency is achieved. 

Unfortunately, Theorem 1 is not valid for asymmetric distributions - a counter­
example can be constructed. Its highly asymmetric nature suggests that in the 
case of mild asymmetry, Theorem 1 might hold. Freedman and Diaconis imposed 
unimodality as a regularity condition to achieve identifiability in the redescending 
symmetric case. We present a polished version of their result, with a short proof 
adapted from Davies [4]. 

A probability P is called unimodal if it has a density / and a point c exists such 
that / is nondecreasing on (—00, c] and nonincreasing on [c, oo). If only one c with 



On Consistent M-estimators: Tuning Constants, Unimodality and Breakdown 295 

this property exists, the probability P is called strictly unimodal. (Freedman and 
Diaconis use "strongly unimodal" instead of "unimodal".) 

Theorem 3. Suppose <f> is even and nondecreasing on [0,oo), with the unique 
point of the global minimum at 0. Suppose that Xp is defined for all t. If P E S is 
a strictly unimodal probability, then the M-functional T is identifiable at P. 

P r o o f . Again, set 0 = 0. Let / be a density of P. By symmetry, for all a ^ 0 

/[• 
the strict inequality due to the fact that zero is a common point of strict monot-
onicity of <f> and / . Multiplying and using (1), the statement follows. Note that the 
assumption of existence of Xp is again inessential here. • 

Theorem 2 corresponds to the well-known fact that the convolution of symmetric 
unimodal probabilities is itself unimodal. In asymmetric case this is true only if one 
of the densities is log-concave - strongly unimodal (Schoenberg [16], Ibragimov [13], 
Karlin [14]). We call a function <j> extra strongly unimodal if for all a > infxg/R <t>(x), 
the logarithm of the function max{a — <f>(x), 0} is strictly concave (only the logarithm 
of positive values is considered). It turns out (for the details, see Mizera [15]) that 
extra strongly unimodal functions are linear transformations of functions, which are 
bounded from below by 0 and are either convex with unique minimum or bounded 
from above densities with a strictly concave logarithm. Hence, \x2, \x\ or the Huber 
<f> are extra strongly unimodal, as well as the Andrews wave, the Hampel <f> or the 
biweight; but not the Cauchy likelihood. 

Theorem 4. Suppose that <j) is extra strongly unimodal. If P E V is a strictly 
unimodal probability, then the M-functional T is identifiable at P. 

P r o o f . See Mizera [15]. • 

A numerical counterexample exists indicating that for not strongly unimodal <f>, 
like the Cauchy likelihood, a unimodal probability can be found such that the result­
ing function Xp attains its minimum in exactly two points. Thus bounded functions 
<f> are favored against the unbounded ones. This contradicts the consequences of 
breakdown point investigations. In the article of Huber [10], the breakdown point | 
is established for the redescending M-estimators with unbounded <f>. For a bounded 
4>, the breakdown point depends on the sample configuration: choosing for each sam­
ple size the worst configuration possible, the value £ tending to 0 can be obtained. 
This is due to the a "uniform" character of the widely used definition of Donoho 
and Huber [5]. A definition involving the sampling distribution - like the original 
Hampel's definition of breakdown point — might be more appropriate in this case. 

However, for the studentized M-estimators, the situation radically changes. 
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Theorem 5. Suppose <j> is even, bounded and nondecreasing on [0,oo). Let the 
breakdown point of S be ^ and let for every P G V a location 9 (depending on P) 
exists such that (3) holds. If 0(0) = 0 and swpJ.^]R<f>(x) = 1 then for the breakdown 
point e* of T an inequality 

є* > è-G) 
holds. 

P r o o f . Fix a sample y\, y2, • • •, I/n- Let sn be a finite sample breakdown of S at 
the sample size n. Choose m such that 

<mi»(i-*(TUl (10) 
m + n \2 \k 

This means that --£-- > ± + <f> (!•). Pick 7/ > 0 such that 

- ( l - ' / ) > o + ^ T n + m 2 \ fc 
Let P denote the empirical measure formed by the extended sample yi, t/2, • • •, 3/n, 
2i, «2» *'•'• i *m- P01" a n y configuration of 2i, 22, • • •, -*»*> the value of S(P) remains 
bounded by B < oo. Let x = max,- |XJ|. Pick A > x + 3H such that 0(£ — .4) > r;. 
The interval £? of length 2S(P) < 2B covering half of the extended sample must 
cover some of X{, hence E C [0, .4]. Since <f> is nondecreasing, 

Xp(e) -L* (W^)) dP(x)+P{R v E) - * (i)P(E)+p(iR v E)> 

hence for |T| > .4 

minAp(t) < 0 f i ) + i < -^— • 1 + - m — • 0 < AP(I) (11) 
t€i5 \A:y 2 n + m 7i+ m 

By (10) and (11) follows that the global minimum of Ap cannot be attained at t 
satisfying \i\ > A and therefore 

^?.&-d-G-*(i),*,) = -"*G)-
The equality is attained, if MAD is used for ,S': the converse inequality can be 

observed considering a sample with ^ of points placed in — 1, |- of points in 1 and 
the remaining m points placed in i. If y~lj» exceeds the bound given by Theorem 
5, still remaining not greater than | , then the estimator T breaks down to t, which 
can be drawn to infinity. 

Theorem 5 gives e* ± 0.42 for the biweight with k = 6 studentized by MAD. 
Huber [12] reports a numerically obtained value e* > 0.49 "in typical situations". 
In this context it is also interesting to quote Donoho and Huber [5], who outlined 
a connection between identifiability and so-called variance breakdown point, de­
scribed roughly as the smallest portion of the sample which can cause breakdown of 
asymptotic variance to infinity. 
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4. APPENDIX 

To prove that 0 satisfies (5) and (6) for k sufficiently large, usually some additional 
properties of possible functions <f> are used: 

(i) V> is a primitive function of ( and I = — inf^fcoo) C(x) > — oo; 

(ii) J = s u p x € [ 0 o o ) y ; ( x ) < o o ; 

(iii) there exists C £ (0, oo) such that V; is nondecreasing on [0, C] and nonincreas-
ing on [C\ oo). 

We keep assuming that <b is a primitive function of ip, that 0 is nondecreasing on 
[0, oo), even and 0(0) = 0. The value of C(0) is denoted by K. To satisfy (4), K > I 
must hold. 

Using this assumptions, we establish some general claims. Suppose k is given. 
Clearly, (6) holds for a > 0 if 

M(a)= inf $(x,a)>- inf 3>( .p,a)>- inf $>(x,a) = m(a). (12) 
*€[0,1/Jfc] *G(1/Jfc,oo) v ' - *e[o,oo) v 

If m(a) > 0, then (12) implies also (5). 

Claim 1. Let (i) hold. Then for every a > 0, m(a) < \la2. 

P r o o f . Follows from the representation 

<&(x,a)= l- I f C(v)dvdu. (13) 
2 Jx Ju-a 

D 

Claim 2 . Let (ii) hold. Then for every a > 0, m(a) < \Ja. 

P r o o f . Follows from the inequality 

1 r ,x+a , * -j j j-x+a 
$(x,a)= - I ij>(u)du — I il)(u)du > - I if>(u)du. 

2 {.Jx Jx-a J -• Jx 

Claim 3 . Let (iii) hold. Then for every a > 0, m(a) < \<f>(C + 2a) and if a > c, 
then \<f>(C + 2a) < \<t>(2a) + ±T/)(2a)c. 

P r o o f . Since <j> is nondecreasing on [0,oo), <f>(x) < <f>(x + a) for a > 0 and 

*(*,«) > r; W * - «) + 0(* + «)] - 0(x + a) = - [0(z - a) - 0(.r + a)] . 

The last expression attains its minimum for x satisfying if)(x — a) = V>(# + a) (this 
can be seen by differentiating; but the proof without the differentiability assumption 
is also easy). Hence, there is £ 6 [0, oo) such that C E [x — a, £ + a] and 

<K*>«) > ^ W * - a) - 0(£ + a)] > -{-<j>(x + a) > - | * ( C + 2«). 
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The rest of Claim follows from the expression 

I rc+2c 

ha 

Note that if <f>(x) is bounded from above by L, then m(a) < L/2 for all a > 0. D 

1 1 1 ľC+2a 

-ф(C + 2a) = -ф(a)+-J ф(u)du. 

Claim 4. Let (i) hold. Then for a G (0,A]. M(a) > \(K - eA)a2, where eA = 
K -Mx&[0>A+i/k]C(x). 

F'roof. Follows from the representation (13). D 

Claim 5. Let (i) hold. Then for every a > 0, M(a) > <f)(a) — ek, where ek = 

* ( l ) + 3fr- I f K = 8UPr€.«C(*), then ek > -gjf. 

Proof. We have 

1 
Ф(c.a) = - [ ^ ( - a ) ^ ( a ) ] - ^ ) 

r-a+x j rati yr 

+ A / V;(u) du+ - I V;(w) du — ij)(u) du 

I f°+x fu J 
= <f,(a) - <j>(x) + - J I ((v)dvdu><f>(a)-<fr(x)+-x2 

and # £ [0, £] . For the rest of the statement, note that <f>(x) = f* /0" ((v) dv du. D 

Fig. 2. Plot of 4>(a), ±Ia2 and jfa for the Cauchy likelihood (left) and the biweight 
(right). 

Now, consider the Cauchy likelihood. By computing the values where derivatives 
vanish, we obtain that C = 1, J = \, K = 2, I = - . Since e° = 1 + 0 and 
e16 < 3 1 6 < 98 < 178 we obtain, by convexity 6fh'\ that ez < (1+z)8 for y G [0, 16]; 
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hence ^ a 2 < log(l -f- a 2 ) . Since K > I, Claims 1 and 4 yield, provided k is small, 
(12) for a small, tha t is, for a G (0, A], where A is given by Claim 4. Claims 1 and 5 
yield the same for a € [A,4]. Finally, for a > 4 (12) follows via Claims 3 and 5, 
since if a > 4, then elementary calculations yield (1 -f- a2)2 > 4(1 -f- 4a 2 ) , resulting 
in an inequality log(l + a2) > \ log(l + (2a)2) + ^T+TsT- IR a ^ fcliree cases, (5) was 
established as well. Note that Claim 2 was not needed here (see Fig. 2). 

The biweight offers not so much space to spare (see again Fig. 2). On [—1, 1] is <f> a 
polynomial: hence all its derivatives are polynomials and the computations of values 
for well-defined fractions are exact, without numerical approximations (albeit little 
a bit tedious). Computat ion of roots of derivatives gives C = \ / 1 / 5 . J = ^ v ^ , 
K = 6, I — -g-. For small a is again (12) a consequence of Claims 1 and 4, since 
K > I. On the interval (0, | ] is if) strictly concave, since its second derivative 
24a(5a2 — 3) is negative there. Let a = | 1 0 0 . Since ij)(a) > la and V;(«) > t a for all 
a e [0,5], we obtain that (f)(a) > \la? (note that i/»(0) = 7 - 0 = 0). Hence (12) by 
Claims 1 and 5. Since also ip(a) > j , as well as T/>(|) > y and <f>(a) > \Ja, we have 
(j)(a) > \Ja and hence (12) for all a £ [a, \] by Claims 2 and 5. Finally, for a > ~ 
is <f>(a) > i ; hence (12) follows by Claims 3 and 5. Again all in cases (5) holds. 

(Received March 3, 1994.) 
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