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KYBERNETIKA —VOLUME 75 (1979), NUMBER 4

On an Axiomatic Characterization of Entropy
of Order « (Theoretic Measure)

A. Basar KHANY)

An axiomatic characterization of an information (entropy of order «) theoretic quantity as-
sociated with a pair of probability distributions having the same number of elements has been
given, using some simple and clear postulates. This quantity under additional suitable condition
]ezads to Kullback’s relative information. Moreover the quantity also reduces to Pearson’s
X °-statistic.

1. INTRODUCTION

Vajda ([9], [10]) has investigated properties of a-entropy of a measures P with
respect to Q defined as

(1.1) H,(P, Q) = |p"q" " du,

where p and g are Radon-Nikodym densities with respect to a dominating measure u
defined over the same measurable space. He has established the relation between
H,(P, Q) and Bayes risk.

Rényi [6] introduced a measure of information of order a as

(1.2) L(P,Q) = —l—l log, H,(P,Q), for a+0.

o

*) The work is supported by Senior Research Fellowship award to the author by Council
of Scientific and Industrial Research (India).
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We take a measure of information (entropy) of order « in two discrete probability
n
distributions P = (py, ... p)s 220, Y pi=1 and Q=(q,....q,), 4; 20,
n i=1

Y g; £ 1 having the form
i=1

(13) (P, Q) = wo) [ Y, pigi™* — 1], «+0,
i=1

where p(x) (0) is an arbitrary constant that depends on the parameter o.

An axiomatic characterization of information on theoretic measure associated
with a pair of probability distributions having the same number of elements is
given through some postulates in Section 2 and some of its special cases are also
discussed.

2. CHARACTERIZATION OF I¥(P, Q)

Theorem. Let K,(Py, o, Pus Ggs oy i 20 @320, i=1,cm Y pr=1;

Y g, £ 1 be a function of p;’s and g,’s satisfying the following postulates:

i=1
() Continuity: K¥(py, ..., Pu; d1s -+ 4n) is continuous in the region.

(ii) Symmetry: K{(py, ..., Pu; Q15 -+ 4a) is symmetric for any permutation of
elements in P followed by the same permutation of elements in Q.

(iii) Generalized Branching Property:

() . =
Kn+1(P1: ceoy Pim1o Uits Hizs Piggs oo Pus Qa5 -5 Qi—15 Uity Viza Qi 15 -+ ‘In) =

= K®(P, Q) + pig} K (uj, RO El)
Pi P 4 4
for every

Ui Uiz = pi >0 s i=1,..,n, a0, a>0;
vy + V2 =¢;>0

then we have
Ld .
(21) K1y os Pud s - ) = 1) [.leiqi““ =17
£

First we prove the following lemmas:

Lemmal If u, 20,0, 20, k=1,..,m,

m m
Y=p;>0; Yu =g >0;
k=1 k=1



then
(22) Kﬁm—x(!’u v Pivgs Wiy oot Lo Pitts oos P
15 ooy Gim15 Vs ooy Uy Gigqs o0 o5 qn) =

= KP(D1s ov0r Pus qrs - 4n) + D545 Ky [pis ooy il D5 04/ - vl -

The proof of this lemma follows on the lines of the proof of Lemma 4 in the paper

by Sharma and Tancja [8].

Lemma 2. If u; 20, j=1,..,m;, Yu;=p; >0, ¥ p,=1and v;; 20,
j=1 i=1

mg

j=1,..,my Yv;=q;>0,i=1,..,n Y q,=1 then
j=1 i=1

o5 Unm,, 5

(@)
(’7 3) 1<m1+m2+.4.+m“(u11! cons Uy ooy Upgs «

Dygseos Vtmgs ooos Unts oo or Upmy) =

= K1 oo P Gar e ) + L Pl K
When m; = mfor all i = 1, ..., n, then the above lemma becomes

{a) . —_
(2~4) Kmn(ullr coos Uy woes Upgy ooos Unms Op15 oo Uty <05 Ungy -0 o5 Uum) =

a 1—a

= K(pys oo Pus Qs s 4a) + 2 P45
i=1
. KS:)(MU/P.', e “im,’/pi; Uil/v‘h" e ”im/‘Ii) .
Proof directly follows from postulate (iii).

Lemma 3, Let

1
(2:5) w(nz,r)zkirf)(i,,,.,i;;,..., %) for rzm.

For1 £ m £ r; 1 £ n < s where m, n, r and s are positive integers, we have

o, 1) = )+ (1) (3) ot

Proof. Taking

1 1 . ;
Uy =—, v;=—, i=1L.,n, j=1,..,m,
mn rs
1

u;; = 0 otherwise, ;= —,
s

|
Wit Pis + s iP5 02/ Qis -5 Vil €)-
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in (2.4) and using (2.5) we have

z—1 1 1-x
(2.6) Y(mn, rs) = y(n, s) + <1) () Y(m,r).
n i
Symmetry in mn and rs implies

@7 mnrs) = om, 1) = b, ) + (i) (1) ¥(n.)

which concludes the proof.
Lemma 4. If o % 0(>0) then

o)

where p(«) (#0) is an arbitrary constant depending on the parameter «(<0).

Proof. On comparing (2.6) and (2.7) we get
Y(m, 1) B ¥(n, s)

Tl s = PR = (o) say,
[ONCI R CROR
which gives
Wm, ) = u(e) [(Y—t) (l) - 1]

when m < r and when r = m

Y(m,r)=0.

Proof of the Theorem. We prove the theorem for rationals and then continuity
(axiom (i)) gives the result for reals. For this let m, r;, and ¢; be positive integers
such that

REt, i=1.,n; Yri=m
i=1
Now if we put
r; t;
pi=—, ¢=—, i=1,..,n,
m r

=

where Y t; < r; then by using Lemma 2
i=1 :
. 1 (@)
5= e =) = RSPy s Pud Qs oo ) +

gofL 1 1
" m m r r

S 2 i-a 1 1.1 1
+ Y. piai K}.’)(~, - - -)

3

i=1 r; ry b t



by (2.5) and Lemma 4 becomes

x 1-a

'p(m’ r) = Kf.“’(l’p coes Pus G5 oo q,.) +‘Zl piq: 'l/(ri, Qi)
e

or

KPP oo Pai 1o oo @) = W(mo ) = 3 037 0 1)

1 a—1 1 1-o
K(Dis oeos Pus Q1 v oer 4a) = pi() [( ) (*) - 1=
m r
= L) () +_;p7q,~‘"“:| =

=) [T riai™ = 1].

or

which conclude the proof.

Particular cases
Case I. Measure (1.3) under the condition

(1,0, 4, 4) =1
reduces to
n
IO(P1s e Pus Qs oo @) = (27 = 1) (Y P57 = )5 a0,
=1
Now if « = 1, we get
n
b
L(P1s oo Pus 415 - 4a) = 2., pi 108, m
i=1 ;

which is Kullback’s [4] relative information, which is characterized by Campbell
[L], Hobson [2], Kannappan [3], Rathie and Kannappan [5], Sharma and Ram
Autar [7], Ng [11].

Case 11. Measure (1.3) under the condition

L0 31 =271 1
reduces to ’

1-a

Ii(P1s s Pud Qs oo ) = [._le‘fqi - 1].
If o = 2, we get

n
Lpss s P 41+ 40) = T (pif91) = 1

which is Pearson’s y’-statistic and is a measure of discrepancy between the two
discrete populations P and Q.
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