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KYBERNETIKA ClSLO 3, ROČNÍK 6/1970 

On the Reducibility of a Set of Statistical 
Hypotheses* 

ALBERT PEREZ 

This paper deals with the estimation of the Bayes risk increment implied by a reduction of 
the set of statistical hypotheses in a statistical decision problem. 

In papers [1, 2] we have considered the problem of estimating in Shannon's in­
formation terms the loss of decision quality in a statistical decision problem implied 
by a reduction of the sample space sigma-algebra and/or of the parameter space 
sigma-algebra. In the present paper we develop further certain aspects of the parame­
ter space (statistical hypotheses set) reduction problem taking, namely, account of 
a parallel reduction of the decision space. In addition, we apply some new estimates 
of the decision quality loss in terms of the second order information loss (cf. [3, 4]). 

1. REDUCTION OF A SET OF STATISTICAL HYPOTHESES 

Let us consider a set of statistical hypotheses (probability distributions) 

(1) S = {PYlx,xeX} 

on a measurable (sample) space (Y 9)), where the parameter space X is endowed 
with a sigma-algebra X of its subsets such that, for every set £ e 3 ) (the sample space 
sigma-algebra), the function PY/x(E) of x is ^-measurable. In the terminology of 
Information Theory, such a set of statistical hypotheses constitutes a "channel" 
denoted by the triplet (X, PY/x, 5)). 

Let Px on the measurable parameter space (X, X) be the a priori probability 
distribution of the set of statistical hypotheses. Let us, further, assume that the 
"loss" implied by a misidentification of the hypothesis PY/x e S, respectively of 

* Presented at the 37th Session of the International Statistical Institute, London 3—11 Sep­
tember 1969. 



x e X by d e X is given by the weight (loss) function w(x, d), defined on the Cartesian 
product X x X. This function is supposed to be nonnegative and measurable with 
respect to the Cartesian product sigma-algebra X x X. 

The primary (unreduced) task is to choose (in the sequel we shall suppose that such 
a choice is always possible) for every observed sample value y e Y such a decision 
dyeX that minimizes the "average loss" ry(d), i. e. 

(2) ry(dy) = min ry(d) = min w(x, d) dPx/y(x). 
dEX deX Jx 

Here Px/y denotes the respective conditional probability distribution on (X, X) 
given y e Y. The average value of ry(dy) with respect to the marginal probability 
distribution PY on (Y ?)) is the so-called Bayes risk r0 and the function dy = b0(y) 
is a Bayes (optimal) decision function. 

Let us now reduce the set of statistical hypotheses by reducing the parameter 
space sigma-algebra X to X', i. e. X' <= X. Note that in this case the triplet (X', 
PY/x, ?)) may not be a channel and the weight function w may not be measurable 
with respect to X' x X'. 

The new (reduced) set of statistical hypotheses will be given by 

(3) S'= {P'Y/x,xeX}, 

where -Py/X(E) = SPx{PY/x(E)lx, X'} is the conditional expectation (and, thus, a 
rounded off version) of PY/x(E), E e 9), with respect to Px and to the reduced sigma-
algebra X'. The triplet (X', PY/x, ty) is now a channel. The new (reduced) decision 
problem considered in [1, 2] was in this case defined by the system of elements: 

(4) {(X, X'), (Y, 3J), (P'x, S') = (PY, Si), (X, X), w'} 

where P'x is the restriction of Px on X'; S', = {P'x/y, y e Y} is the converse to the 
set S ' (cf. (3)) with P'x/y defined by dP'x/y(x) = fx(y) dP'x(x), where fx(y) is the Radon-
Nikodym density of P'Y/X with respect to PY (this density exists under the assumption 
we make throughout the paper that the Shannon's information l(Px, S), corespond-
ing to the a priori probability distribution Px and to the system of statistical hypo­
theses S, is finite (cf. [1, 2])); the weight function w'(., d) is for every d eX defined 
as the conditional expectation of the weight function w(.,d) with respect to Px and 
the reduced sigma-algebra X': w'(x, d) = SPx{w(x, d)/x, X'}. Thus, w'(., d) is mea­
surable with respect to X'. 

It is possible to see that the minimal average loss r'y(d'y) (cf. (2)) and the Bayes 
risk r'0 corresponding to the decision problem (4) coincide with those of the decision 
problem defined by the system of elements: 

(5) {(X,X),(Y,V>),(PX,S') or (Pr,Sa(XX),w). 

Here S[ = {P'x/y, yeY}, where P'x/y is an extension of P'x/y from X' to X defined by 



the relation dP'x/y(x) = fy(x) dPx(x) where fy(x) is the Radon-Nikodym density of 
P'x/y with respect to P'x (this density exists under the hypothesis made above). 
This extension dominates Px/y and conserves the information and, as a consequence, 
it conserves also the above risks (cf. [ l , 2]). 

Better estimates of the decision quality losses r'y(d'y) — ry(dy) and r'0 - r0 than those 
obtained in [1, 2] in terms of the first order (i. e. Shannon's) generalized entropy 
it is possible to obtain by applying the method of the constrained extremum of the 
generalized /-entropy (with / («) convex function not necessarily of the Shannon's 
type f(u) = u log u) developed in [3, 4] . Thus, restricting us to the case of the 
second order generalized entropy (/(«) = u2), we obtain under very general con­
ditions the following estimates: 

(6) r'y(d'y) - ry(dy) ^ (r'y(w
2, d'y) - r'2(d'y)f

2 x (H2(Px/y, P'x/y) - if'2 

where r'y(w
2, d'y) = J x wz(x, d'y) dP'x/y(x) and H2(Px/y, P'x/y) is the second order 

generalized entropy of Px/y with respect to P'x/y. If gy(x) is the Radon-Nikodym 
density (it exists) of the first with respect to the second, then 

(7) H2(Px/y, P'x/y) = (g2
y(x) dP'x/y(x), 

(8) 0 ^ r'0 - r0 ^ (r'(w2, b'0) - r'2f'2 x (H2(P, P') - if'2 

where P is generated by PY and Px/y and P' by PY and P'x/y. The second order gene­
ralized entropy H2(P, P') of P with respect to P' is equal to the average value of 
H2{Px/y, P'x/y) with respect to PY. The expression H2(P, P') - 1 represents, thus, 
the "second order information loss" caused by the reduction above whereas in the 
estimates of [1, 2] was implied the "first order (i. e. Shannon's) information loss". 

However, it is more adequate in defining the new (reduced) decision problem, 
corresponding to the reduced set S ' of statistical hypotheses (cf. (3)) as well as the 
respective decision quality loss, to take account of a parallel reduction of the de­
cision space D. Up to now D was taken equal to the unreduced parameter space 

2. PARALLEL REDUCTION OF THE DECISION SPACE 

In the sequel we shall estimate the additional loss of decision quality resulting 
from a reduction of the decision space parallel to that of the set of statistical hypothe­
ses from S to S' (cf. (l) and (3)). 

For the sake of simplicity, we shall here restrict us to the special case where the 
measurable parameter space is the Cartesian product of two measurable spaces 
(Xu £ . ) and (X2, X2) : (X, X) = (Xr x X2, Xy x X2), and the reduced set S' of 
statistical hypotheses corresponds to the reduced sigma-algebra X' = Xt x X2. 



220 Thus, for every set E e ?), 

(9) P'r/X(E) = f PYlx(E) dPX2/Xi(x2) = PY/Xi(E) 
Jx2 

where PXl/Xi is the conditional probability distribution on (X2, 3£2) given x t e ^ ! 
corresponding to Px — PXl*x2-

Similarly, P'x = PXl where PX l is the marginal probability distribution induced by 
Px on (Xu £j) , and the rounded off weight function w'(x, d) is for every deXy x X2 

given by 

(10) w'(x, d) = J w(xu x2; d) dPXl/Xi(x2) = w'(xu d) . 
J x2 

In the sequel we give two different approaches in defining the new (reduced) 
decision problem. 

First procedure 

The new (reduced) decision problem is defined by the following system of elements: 

(11) {(Xu 3.) , (Y % PXl, S' = {PY/X!, x. e X . } , D = (X., X,), w"} 

(as in (4) and (5), the first element represents the measurable parameter space, the 
second element represents the measurable sample space, the third element represents 
the a priori probability distribution, the fourth element represents the set of statistical 
hypotheses (channel), the fifth element represents the decision space, and the sixth 
element represents the weight function). Here w" is defined in a natural way as a 
rounded off version of w'(xu du d2) with respect to d2 eX2 (cf. (10)): 

(11') w"(xu dt) = f w'(x i ;d1 ; d2)dPXl/di(d2) 
JX2 

for Xi and dy of Xt and x2 and d2 of X2. 
The following theorem permits us to estimate the additional decision quality losses 

ry(dy) — r'y(d'y) and r'0 — r'0 on passing from the decision problem (4) or (5) to the 
decision problem ( l l ) . Here ry(dy) = r'y(d'[y) and r'y(d'y) are the minimal average 
losses corresponding to the decision problems (11) and (4) or (5), respectively, and 
r'0 and r'0 are the corresponding Bayes risks (cf. (2)). 

Theorem 1. If the initial weight function w(xu x2 ; du d2) is a metric on Xt x X . 
and if for xteXu x2e X2, d1eX1 and d2eX2, 

(12) w(xu x2; du d2) ^ w(du x2, du d2) , 



then it holds 

(13) w"(xu dj) g 2w'(x1;dl, d2) 

and, as a consequence, it results 

(14) r"y(dly)-r'y(d'y)^r'y(d'y), 

(15) rl - r'0 g r'0 . 

Proof. Let us prove (13). On the base of our hypotheses, 

w(xu x2; du d2) ^ w(xu x2; du d'2) + w(du d'2; du d2) = 

= w(xu x2; du d'2) + w(du d2; du d'2) :g 

= w(x1; x2; du d2) + w(xu d2; du d'2). 

The last inequality is namely obtained on the base of (12). 
By integrating the first and the last member of the above relation with respect to 

x2 by Pxz/Xi w e obtain, according to (10), 

w'(xu du d2) ^ w'(xu du d'2) + w(xu d2; du d2). 

By a second integration with respect to d2 by PX2id1
 w e obtain, according to (IV), 

(10), 

w"(x1, dx) S w'(xy; du d'2) + w'(xx; du d'2) = 2w'(Xi; du d'2), d'2eX2 . 

Thus, the inequality (13) is proved. As to the inequality (14), it results from the fact 
that 

r"y(d"ly) S r"y(d'ly), 

where d\y is the first component of d'y = (d\y, d'2y), minimizing r'y(d), whereas d"ly 

minimizes r"y(dy), dt eXu But, according to (13), 

r'y(d'iy) = w"(xi> d'iy) dPxAxi) = 
Jxy 

S ! 2w'(Xl; d'ly, d'2y) dPXl/y(Xl) = 2 r K ) . . 
Jx1 

Combining this result with the above inequality, we obtain the inequality (14). The 
inequality (15) results immediately from the inequality (14) by integrating with 
respect to PY. Thus, the theorem is proved. 



222 Second procedure 

The new (reduced) decision problem is defined by the following system of elements: 

(16) {(Xu X,), (Y, ?)), PXi, S> = {PY,Xl, x, e Xt} , 

D = {(x„ d2(Xl)), XleXu d2(xx) BX2) , w'} , 

or, equivalently, by 

(17) {(Xr x X2, Xt x X2), (Y, ?)), (PY, S;) = as in (5), D = as in (16), w} , 

where the decision space D c l j x X2, of power equal to the power of Xu i. e. 
the function ti2(x.) of x t e Xu is to be chosen in a manner to minimize the correspond­
ing Bayes risk r'0 of the decision problem (16) or (17). 

Theorem 2. Under the assumptions of Theorem 1 concerning the weight function 
w, there always eXists a decision space D of the above type such that the loss of de­
cision quality on passing from the decision problem (4) or (5), with Bayes risk 
r0, to the decision problem (16) or (17), with Bayes risk r0(D), satisfies the in­
equality 

(18) r'0(D) -r'0Sr'0. 

Proof. Let b be a decision function for the decision problem (5) and take for the 
decision problem (17) a decision function V such that 

(19) V(y) = (xud2(Xl)) for yeb~\Xl*X2) 

with d2(Xl)eX2 to be chosen later. 
By taking PYb~l = Qx for the corresponding average risks r'(b) and r"(b') we 

have: 

r'(b) = w(x'ux'2;xuX2)dP'xlb-HxiyX2)(x'uX'2)dQXl(Xl)dQXllXl(X2), 
Jx, Jx2Jx, Jx2 

r"(b') = vv(x'1,x2;x1,d2(x1))d/5^/6-1(;ciF;C2)(x'1)x2)deXl(
xi)d6x2/Xl(X2)-

J x , J x 2 J x J x 2 

According to the metric hypothesis concerning w, it holds 

w(x'ls x2; xu d2(x1)) = w(x'1, x2; xu x2) + w(xl5 x2; xu d2(Xl)) 

so that by integrating as above we obtain 
(20) r"(V) = r'(b) + 

w(Xl, x2; x l s d2(Xl)) dP'ylb-1{xuX2)(X'u x'2) dQ X l (
x 0 dQX2!xi(x2) . 

Jx,Jx2Jx,J x2 



Let us now define d2(xx) by the relation* 2-3 

(21) w(xu x2; xu d2(xj)) dQX2/xl(x2) = min w(xu x2; xu x'2) dQX2/xXx2) . 
Jx2 x-2eX2Jx2 

On the base of (21), the metric property of w and the property (12), the inequality 
(20) successively gives 

(22) r"(b') ^ r'(b) + 

+ 1 1 1 | M.Xi,x2;x1,x'2)dP'x/b-HxuXl)(x'ux2)dQxi(x1)dQX2lxl(x2)£ 
JxlJx2JxlJx2 

^r'(b)+\ Hxux2;x'ux'2)dP'x/b-1(XuX2)(x'ux'2)dQXl(x1)dQX2/xi(x2) = 
JxJx2JxJx2 

= r'(b)+\ w(x'ux'2;xux2)dP'xlb-HxuX2)(x'ux'2)dQxi(xi)dQX2ix(x2) = 
Jx,Jx2JxiJx2 

= 2r'(b). 

By taking as b the Bayes decision function b'0 of the decision problem (5), let 
(b'0)' denote the corresponding decision function V defined by (19), and let D be 
chosen according to d2(*i) as defined by (21) for Qx = PYb'0

l. On the base of (22) 
we can then write 

r"0(D) 5S r"((b'0)') ^ 2r'(b'0) = 2r'0 

and, thus, the theorem is proved. 
Theorems of the type above, combined with inequalities of the type (6) and (8), 

permit us to obtain estimates of the decision quality loss r"0 - r0 implied by a given 
reduction of the set' of statistical hypotheses (and a parallel reduction of the decision 
space) and, thus, the study of the reducibility of such a set (compatible with a given 
decision quality loss) may be facilitated. 

(Received January 29, 1970.) 

* In the general case, instead of min it should be taken in/ by adding an arbitrarily small 
positive e. 
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O reduktibilitě souboru statistických hypotéz 

ALBERT PEREZ 

V [1,2] byl uvažován problém odhadu pomocí Shannonovy informace snížení 
rozhodovací kvality, vyplývající z redukce c-algebry výběrového nebo parametrového 
prostoru v statistickém rozhodování. 

V tomto článku je uvažováno o některých dalších aspektech problému redukce 
parametrového prostoru, resp. souboru statistických hypotéz. Zejména je vzata 
v úvahu paralelní redukce prostoru rozhodnutí. 

Odhad celkového snížení kvality rozhodování, resp. celkového zvýšení Bayesova 
rizika při redukci prostoru parametrů a paralelní redukci prostoru rozhodnutí se 
provádí ve dvou etapách. V první etapě (§ 1) se odhaduje zvýšení r 0 — r 0 Bayesova 
rizika (viz (6) a (8)), způsobené redukcí parametrového prostoru, a to pomocí 
tzv. ztráty informace druhého řádu (viz (7) a odkazy [3, 4]). 

V druhé etapě (§ 2) se odhaduje za určitých předpokladů, týkajících se zejména 
váhové funkce (viz Theorem 1 a Theorem 2), dodatečné zvýšení r 0 — r'0 Bayesova 
rizika způsobené paralelní redukcí prostoru rozhodnutí. Ukazuje se, že toto poslední 
zvýšení nepřesahuje hodnotu r 0 Bayesova rizika, odpovídajícího pouhé redukci 
parametrového prostoru. 

Dr. Albert Perez, DrSc, Ústav teorie informace a automatizace ČSA V, Vyšehradská 49, Praha 2. 
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