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KYBERNETIKA CISLO 1, ROENIK 5/1969

On Some Problems in the Theory
of Partial Automata

BoRIS SCHEIN

The paper shows how some semigroup-theory methods can be used in automata problems.

The theory of automata is closely connected with the theory of semigroups (or, to
be more exact, with the theory of representations of semigroups by transformations).
The concept of automaton without outputs is equivalent to the concept of representa-
tion of free semigroup by transformations. If we consider everywhere or not every-
where defined, one-valued or many-valued transformations, we obtain full or partial,
deterministic or nondeterministic automata. All this was discussed by the author in
his lecture at the International symposium on relay circuits and finite automata in
Moscow, September 1962 [1].

Many results in the theory of transformation semigroups may be interpreted as
results on automata (and vice versa). Unfortunately, the main concepts and results
of the theory of transformation semigroups are almost unknown among the specia-
lists in the automata theory. Quite a few recent results on automata turn out to be
well known after being translated into semigroup language.

The aim of this paper is to present some results on transformation semigroups as
results on automata. This semigroup-theoretic results have been partly published in
[4, 5]. The main ideas of these results, the underlying point of view (the so-called
“relation algebras”) were exposed in [2] and, in a much shorter form, in [3].

The output function of an automaton does not play any réle in this paper. We
consider automata without outputs.

A (finite) automaton is an ordered triple 4 = (X, S, 6) where X is a (finite) set
of input symbols, S is a (ﬁnite) set of inner states and 8 is a transition function, i.e.
a partial mapping of the set X x Sinto S. If § is everywhere defined, the automaton A
is called full. If 8(x, s) is not defined, it means that the automaton is destroyed when
the input is x while the inner state is s. One can consider multi-valued é. In this case
the automaton A, which is in the state s, goes to some state from the set d{x, s> where



3¢x, s) is the set of images of (x, s) € X x S under 4. If {x, s> = 0 it means that 4
is destroyed if x is the input while s is its inner state. If § is multivalued, the automaton
is called nondeterministic.

The function § may be easily extended to a function ¢ defined on a subset of the
set X* x § where X* is the free semigroup with identity e generated by X. We define
ole, sy = s, ox; X3 ... %, 8) = 3(x,, @(x ... X,_1,5)). Clearly, ¢ is partial or
multivalued if 6 is partial or multivalued as well.

The input word « is called applicable to the inner state s of 4 if A4 with the inner
state s is not destroyed by the input «, i.c. when ¢(e, s) is defined. If A is nondeter-
ministic, « is applicable to s if ¢(x, 5) = @, i.e. if 4 need not be necessarily destroyed
when o is its input while s is the initial state.

Let 4 be an automaton with a set of inputs X. Let us define binary relations y,
and {4 on X* by the following conditions:

(e, B) € x4 means that whenever « is applicable to some inner state, then f is
applicable to this state;

(«, B) € {4 means that if « is applicable to some state s € S, then ¢, s) = (B, 5).
(For nondeterministic automata ¢(a, s) < ¢(8, s).)

Clearly, x4 and {4 are quasiorder relations (i.e., they are reflexive and transitive)‘
These relations possess a rather simple and natural “automaton meaning”: («, f) € x4
means that if 4 is not destroyed by the input word «, it is not destroyed by the input
word f; (%, B) € {, means that if the input word « does not destroy the automaton,
then @ and f lead to the same transformation of the inner state. We write a B and
a <4 B instead of (o, f) € x4 and (a, f) € {4 respectively.

Our aim is to find an abstract characterization of these binary relations, that is to
find conditions characteristical for r , and < , among all quasiorder relations on X*.

If £ is a quasiorder relation then its symmetric part is the following relation & :
(«, B) e ¢ means that («, B) € & and (B, o) € & The index of & is the number of dif-
ferent equivalence classes modulo ;.

Main Theorem. Let — and < be two quasiorder relations on a semigroup X*.
There exists a (finite) nondeterministic automaton A with the set of input symbols X
such that = = y,and < = {4 if and only if ™ is left regular, i.e.

(1) 2 By 1B,
right negative, i.e.

@ af o«

< is stable, i.e. .

(3) Cay < Bty < By o w0y < Bif,
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< is stronger than —, i.e.
(4) e foarf

(and < has finite index).

There exists a (finite) deterministic automaton A with the set of input symbols X
and such that = = y, and < = {4 if and only if conditions (1)—(4) are satisfied,
(< has finite index) and

5) <y, p<par foa<p,
(6) yrayr fSa<f-oyras.

Outline of the proof. The necessity of these conditionsis verified straighfor-
wardly. Each of these conditions has a simple “automatic meaning”, e.g. (2) means
that if an input does not destroy the automaton, then any beginning of this input
also does not destroy the automaton.

Sufficiency. Let the conditions (1) —(4) be satisfied. Let us consider an automaton A
with the input set X and with inner states (o‘c, ﬁ’) where & is the equivalence class modulo
£ containing a; § is the equivalence class modulo ¢_ containing  and fr a.
The condition (4) implies that if < has finite index then r also has finite index and
the set of inner states of A4 is finite. Therefore, A4 is finite if < has finite index.

By definition, the input symbol x is applicable to the inner state (%, f) if and only
if f — ox. The applicability of x does not depend on the choice of representatives «
and B in the classes & and B. If x is applicable to (&, f) then x sends this inner state to
one of the states (7, f) where y < ax. Clearly, 4 is nondeterministic. The reader may
easily verify that =~ = y, and < = {4, Q.E.D.

Now let the conditions (1)—(6) be satisfied. Let T be the set of ordered pairs
(&, B) as defined above. Let ¢ be an equivalence relation on T defined as follows:
(%1, B2) = (&,, B>) (mod &) means that either (&,, f;) = (&, B») or f; = B, and there
exists y € X* such that y < a, y < «, and § = fi;. The reflexivity and the symmetry
of & are self-evident, the transitivity follows from (5). Let S denote the quotient set
T/e. Let us consider an automaton A4 with input symbols X and inner states S transi-
tion function 6 of which is defined as follows: 5(x, s) is defined if an only if § — ax
for some « and f§ such that (&, ﬁ) e s. It was mentioned above that this condition does
not depend on the choice of a and f in the equivalence classes & and B It does not
depend on the choice of (&, f) in s. In effect, let (&;, §;) = (&, f) (mod &). Then there
exists y € X* such that y < &, y < «, and § = § = B,. But p r~ ax, hence, by condi-
tion (6), B r px. We have f; — B and yx < «,x, therefore yx r ayx, i.e. f; — o;x.

If x is applicable to s, then, by definition, 6(x, s) = ¢ where (&, f) e sand (ax, f) e ¢
for some o and . It is easy to verify that the function ¢ is one-valued, i.e. the automa-
ton A is deterministic. If < has finite index, then, evidently, A is finite. We omit the
straightforward verification of the equalities = = x, and < = {,.

The theorem is proved.



If a stable quasiorder relation £ on X has finite index, then, by the well-known
result of S. C. Kleene, the equivalence classes modulo g, are regular events over the
alphabeth X. Let o € X*. Then the set of all § such that (o, f) € £ is a regular event
as well. It would be interesting to consider these events and their interconnection
with the automaton when & = {, or & = g (in the latter case these events are also
regular).

Corollary 1. Let — be a quasiorder relation on a semigroup X*. There exists
(finite) automaton A with the set of input symbols X and such that y, = — if and
only if — is left regular and right negative quasiorder velation (of finite index).
These conditions are necessary and sufficient for both deterministic and non-
deterministic cases. \

Proof. The necessity follows from the main theorem. Now let — satisfy the condi-
tions (1) and (2). Let us consider the identical order relation < (ie., « <  means
that o = f). Clearly, r~ and < satisfy the conditions (1)—(6), hence, by the main
theorem, there exists a deterministic automaton A such that = = y, and < = {,.
This automaton is infinite.

Now let ™ be of finite index and S be the set of inner states of 4. Let us define
an equivalence relation 5 on S by the following condition: s = #(mod #) means that
for every o € X* a is applicable to s if and only if it is applicable to ¢. This relation
7 defines the state-homomorphism of A onto some automaton Afy with the input
set X and the set of states S/y. Using the definition of #, one can easily deduce that

= = Xap

Let «;, ..., o, be representatives of all equivalence classes modulo ¢_. Then s = ¢
(mod n) if and only if «; is applicable to s exactly when «; is applicable to ¢ for
i=1,...,n Itis evident now that 5 has finite index, i.e., S/n is finite. Hence, 4 is
a finite automaton.

Corollary 2. Let < be a quasiorder relation on a semigroup X. There exists
a (finite) nondeterministic automaton A with the set X of input symbols and such
that {, = < if and only if < is stable (and of finite index). There exists a (finite)
deterministic automaton A with the set of input symbols X and such that {, = <
if and only if < is stable and weakly steady, i.e.

Y] @< B, u <3, f< 8- a< pn
and is a quasiorder relation (of finite index).

Proof. The necessity of these conditions is verifiable straightforwardly. If < is
stable (and of finite index), then let us define « = f for all &, f € X*. Clearly < and r
satisfy the conditions (1)—(4) and, by the main theorem, there exists a nondetermin-
istic (finite) automaton 4 such that {, = <.
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Now let < be stable and weakly steady. We shall construct a deterministic auto-
maton A with the input set X and with the set of inner states consisting of all non-~
empty subsets of X* saturated for < (a subset H < X* is called saturated for < if
ceH,a<f— Be H). Clearly, if < has finite index, then the set of all saturated
subsets is finite and A turns out to be a finite automaton. The input x is applicable
to the inner state H if and only if H contains a word the last letter of which is x.
In this case 6(x, H) = H, where a € H, <> a xe H. It is easy to verify that H, is an
inner state and that {, = <.

‘We have considered several semigroup-theoretical problems discussed in such a way
that they appear to be automata problems. The choice of these (and not some other)
problems was purely by chance. Our aim was to show some possible applications of
the theory of representations of semigroups by transformations to the automata
theory and to draw attention of specialists in the automata field to possibilities of the
semigroup theory.

(Received June 14th, 1968.)
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VYTAH

O nékterych problémech v teorii ¢asteénych automati

BORIS SCHEIN

Automatem se rozumi trojice (X , S, (3), kde X jsou vstupy, S stavy a  pfechodovd
funkce definovand ne nutn& viude (proto EdsteSné automaty); pfitom se pFipousti
deterministicky i nedeterministicky pfipad. Definuji se dv& kvasiuspofdddni — a <
na X* a fe$i se ndsledujici problém: Jsou-li na volné pologrupé X* definovdny dvé
bindrni relace kvasiuspofdddni, pak se maji uréit nutné a postacujici podminky pro to,
aby existoval automat v uvedeném slova smyslu, ktery pfedepsané bindrni relace
urluje jako své relace = a <, a to jak v pfipad€ deterministickém tak i nedetermi-
nistickém.

Cilem &dnku je ukdzat, jak se daji pouZit metody teorie pologrup na problematiku
Z teorie automati.

Boris Schein, Mihailovskaia Str. 2— 111, Saratov, U.S.S.R.
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