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KYBERNETIKA ČÍSLO 1, ROČNÍK 5/1969 

On the Notion of Universality of Turing 
Machine 

A. NOZAKI 

Several definitions of universal Turing machines are formulated and compared. Following 
to a definition recommended by the author, some simple Turing machines are shown to be non-
universal. 

0. INTRODUCTION 

As it is well known, A. M. Turing proved in 1936 the existence of a universal 
computing machine which is called ^universal Turing machine today. To this pioneer­
ing work of Turing, C. Shannon added the following results: 

(51) There exist universal Turing machines (UTM's) having only two states. 

(52) There is no UTM having only one state. 

(53) There exist UTM's having only two symbols. 

(54) There is no UTM having only one symbol. 

Several years later, A. Minsky showed a simple example of UTM: 

(M5) There is a UTM having 6 states and 7 symbols. 

Recently, S. Watanabe (University of Tokyo) demonstrated an extremely simple 
machine which is also universal in a sense. 

(W6) There is a UTM having 3 states and 7 symbols.* 

It seems strange, however, that there is no general definition of the notion of 
universality: these scholars used implicitly their particular definitions which were 
quite different from each other at several points. In fact, there arise some delicate 

* To my knowledge, this machine gives the minimum value of state-symbol product among 
well-known UTM's. 



conflicts among their results (S2), (M5) and (W6) as it shall be explained later. 
Here a rigorous consideration is desirable. 

Roughly speaking, a UTM is defined to be a machine which can "simulate" the 
behavior of any Turing machine (TM), starting with any given initial state and given 
initial tape. Therefore a definition of "simultability" leads immediately to a defini­
tion of universality. 

In the next section, we shall describe a rather broad definition of simultability in 
order to give an accurate comparison among several definitions of universality. 

1. GENERAL DEFINITION 

Here we assume that we have a so-called Goedel Numbering System G as follows: 

a) By G, a positive integer (>0)/* is associated to each partially computable 
function/. We shall call the number/* the goedel number of the function f (gn. o f / ) . 

b) By G, a positive integer w* (>0) is associated to each 'total state' w of each 
T M M . * 

We call the number w* an instantaneous description of the machine M (an Id 
of M). 

By this numbering system G, we can associate to every TM M a pair 

M* = (N,f*) 

of the whole set N of Id's of the machine M and the gn. of its "next-state function" 
/ which maps N into N u {0}.** 

This pair M* is hereafter called the goedel number of the machine M (gn. of M). 

Definition 1. An abstract machine 91 is a pair of a set N of positive integers and 
a gn. of a partially computable function / whose domain contains N and whose 
image/(N) is contained in N u {0}. 

Definition 2. Let 9l\ = (Nt,f*), 9I2 = (JV2,/*) b e abstract machines. 
9I2 is called a factor machine of 911 over N2, 9I2 = 9I1/iV2 in symbol, if the fol­

lowing conditions are satisfied. 

a) N2 <= Nt, 
b) If x e N2 and y = f2(x), then there exist a finite number of elements x0,xt,...,x„ 

of Nt such that x0 = x, x„ = y and xt = / ( x ^ ) for i — 1 , . . . . n. 

* Here the word "total state" means a combination (s, a, ri) of an internal state sofa machine 
M, a sequence a of symbols on its tape and a position n of the read-write head of the machine. 

** Here, the number 0 is added to the range of / to indicate machine-stops; if the machine 
stops at a total state w, then the value of/(w*) of/at w* is defined to be 0. 



(If M is a TM and 3l1 = M*, then every node of the first sequence in the above 31 

diagram (Fig. 1) represents a total state of the machine M. However, even in this case, 

9I2 may not be represented as 2I2 = (M')* by any TM M'.) 

(/.) 

Fig. 1. 
l/l) 

Definition 3. Let 1lt = (Nuf*), 9I2 = (N2,f*) be abstract machines. 

Let A be a partially computable function which maps N2 into Nt. 

Let 

N[ = X(N2) vf(X(N2)) u/2

2(A(iV2)) u . . . = U / " • A(JV2) . 
n = 0 

Let /jbe a partially computable function which maps N[ u {0} into N2 u {0}. 

We say that r/ie machine 2IX simulates synchronously a machine 9l2 under 

initial setting by X and interpretation by p., and denote 

X,ii 

syn 

if and only if the following diagrams (Fig. 2) commute. 

Fig. 2. Лľ2 

ІV, U {0} 

•A. U {0} 

ЛГ;-

b) /' 

^ 2 

•iVi U {0} 

-ІVÎ U {0} 

Fig. 3. 

Ji-oJi . 

I" 
—•» o «» 
ŷ  /a Һ 

Consequently, we have the following commutative diagram (Fig. 3). 

In other words, if y = f2(x) (n > 1), then y = p . / " . X(x). Thus y can be obtained 

by computing X, f and /i. 



Note that in this definition, nothing is mentioned about machine-stops. We should 
at least assume that the set ^t-1(0) is recursive. In the next section, we shall assume 
rather strong condition at this point. 

Definition 4. Let Mx, M2 be TM's. 

We say that Mx simulates M2 and denote 

Mx -> M2 

if the following conditions are satisfied: 

a) There exists a recursive set N and an abstract machine 21 such that 

21 = M*JN. 

b) There exist partially computable functions k, \i such that 

k,H 
21 >M*2 . 

syn 

Definition5. A TM M 0 is called to be universal if the following conditions are 
satisfied. 

a) There exists a recursive set N and an abstract machine 21 such that 

21 = MtJN. 

b) There is a partially computable function i// which associates to each gn. of 
a TM M a pair (k*, fi*) of gn.'s of partially computable functions k, ii such that 

X,n 
21 > M* . 

syn 

Universality thus defined is general enough to cover the notions conceived by Turing 
Shannon, Minsky and Watanabe. In fact, this definition is too broad in a sense. 
We shall notice this point in the next section. 

2. COMPARISON OF DEFINITIONS 

Comparing our definition of simultability in the previous section with that of 
Shannon, we can notice that he imposed implicitly to our definition the following 
restrictions: 

(I) jx(x) = 0 if and only if x = 0. 

In other words, the "simulator" stops at the same time as the machine to be 
simulated. 



(II) The mapping 
p : N[ u {0} --> N2 u {0} 

is a bijection (1 to 1 and onto) and 

A = /T'fjV,) . 

This restriction excludes such an interpretation (simulation) illustrated below 
(Fig. 4). 

Fig. 4. 

(A): Behavior of the "simulator"; an infinite sequence of different total states. 
(B): Behaviour of the machine to be simulated (a short loop). 

(Ill) By definition, a total state of a machine contains complete description of its 
tape. So under the conditions of Definition 4, a tape of the machine M t is converted 
to (interpreted as) a tape of M 2 in the manner specified indirectly by \i. Now the 
third restriction is the following: 

The tape conversion specified by JX can be carried out by a simple "conversion 
table" of symbols, that is, independently of the internal states and of positions of the 
read-write head, a tape of M t is converted to that of M 2 block by block, one after 
another, replacing every symbol of ML by the corresponding symbols of M2 according 
to the conversion table. 

The third restriction is very important since, without this restriction, we cannot 
follow his proof of the proposition (S2): he considered there computation of one 
single irrational number assuming that the UTM should write down on its tape the 
digit numerals of the irrational number in order of the ordinary decimal (or binary) 
fraction.* 

This assumption, however, was not employed by other scholars, for example Turing 
and Minsky. Thus Shannon's notion should be considered as too rigid. On the other 
hand, following to our definitions (Definitions 4 — 5), we can show a trivial example 
of UTM having one state and two symbols as shown in Fig. 5. 

Roughly speaking, this machine M 0 simulates, the behavior of a given machine M 
starting with a total state w in the following manner: 

Let M* = (At,/*). Put m = / * and n = w* in Fig. 5. We put at first the head of 
M 0 on the block marked " S " . Then the head travels simply to the right. 

Obviously, the total state of the machine M at every step can be determined by the 
function / , the initial state w and the number of steps k of execution. More precisely 

* However, no TM having one state can produce a non-periodic sequence of symbols on its 
tape. Thus he concluded the proposition (S2). 



34 speaking, the gn. offk(w) is computed from the integers f*, w* and k. So a powerful 
T M can realise the relevant interpretation fi. 

This simple example shows definitely that the notion of universality becomes trivial 
if we do not impose any restriction to our definition described in the previous section. 
Thus the Definition 5 should be considered as too broad. 

Ařo (onc-way automaton) 

0 1 0 0 0 0 0 0 

Fig. 5. 

Disregarding some details, the relationship among the definitions by Shannon, 
Minsky and Watanabe seems to be illustrated as following Fig. 6. 

Shannon (1,11, HI) 

Watanabe(lll) 

Fig. 6. 

Minsky (I, II) 

(General - no restriction) 

Minsky removed the restriction (III) while Watanabe omitted the restriction (II) 
and weakened the restriction (I) so as to admit so-called "dynamic stops" i.e. some 
short loops which can be easily recognized, instead of the complete stops (/(w) = 0). 
In consequence the UTM's considered in their proofs of the propositions (M5) and 
(W6) can not be accepted in Shannon's theory. 

As for definitions proposed by Minsky and by Watanabe, the author prefers 
Minsky's since it seems mathematically more natural and less complicated than 
Watanabe's. Moreover, the original definition of Watanabe involves some informali­
ties which I could not re-formulate rigorously. 

In the next section, we shall discuss the universality of some simpe TM's following 
to Minsky's definition. 

3. UNIVERSALITY OF A CERTAIN TYPE O F MACHINES 

Fortunately, we could give a new proof of the statement (S2) without the third 
restriction (III). Besides, we proved the followings: 

(N7) There is no UTM having two states and two symbols. 
(N8) There is no UTM having three states and two symbols. 



In the proofs of these propositions, we utilized two approaches, i.e. considerations 35 
on the decidability of the machine-stop (the halting problem) and on the number 
of possible cyclic behaviors of a machine. 

a) Decidability of the machine-stop (the halting problem): 

Under the restriction (I), a UTM must stop if and only if the machine being 
simulated stops. Then, since the halting problem of TM's is unsolvable, it is the case 
that 

(A) the halting problem for a UTM is unsolvable. 

So the proposition (S2) follows immediately to Proposition 1 as following. 

Proposition 1. The halting problem for a TM having one state is solvable. 

b) Number of periods of cyclic behaviors. 

Under the restriction (II), a UTM should take the same total state again and again 
peirodically, if so does the machine being simulated. Consequently, it is the case that 

(B) a UTM can execute infinitely many periodic motions of different periods. 

So we have the proposition (N7) as a corollary of the following proposition. 

Proposition 2. A TM having two states and two symbols can execute cyclic beha­
viors of at most two different periods. 

The proposition (N8) was proved in the following way. 

(First step) By dint of the remark (B), the types of TM's to be considered were 
reduced to less than ten. 

(Second step) By dint of the remark (A), all TM's under consideration were shown 
to be non-universal. 

Unfortunately, it takes too much space to give a precise description of these steps. 
So we shall give only the proofs of the propositions 1 and 2 in Appendix. 

4. FURTHER PROBLEMS 

We have so far discussed only four selected definitions in order to clarify the issue. 
However, there are other different definitions also interesting e.g. Turing's original 
definition and the definition given by M. Davis, etc. ... here further consideration 
is desirable. 

As for the minimum value of the state-symbol product of UTM, the problem 
remains open: are there any UTM having two states and three symbols? What UTM 
can be the simplest? etc . . . 



36 Though these are of course very special sort of problems, their difficulty seems to 

call for new techniques which could be of general interest. 

APPENDIX I 

PROOF O F THE PROPOSITION 1 

Let us consider the halting problem of a TM S0i having one state, starting with 
a tape a as following Fig. 7. 

(initial position of the head) 

y_ 
'b\b\-- (a) 

Fig. 7. 

We assume that: 

a) the blank code "b" is written on every block outside of the finite segment A 
(which can be known by the gn. of the given initial total state), 

b) in the beginning, the head is put on a block in the segment A, 
c) when the head comes to a block containing the blank code, it moves always 

to the left. (Therefore if the head goes out of the segment A to the left, it moves left 
for ever.) 

Now, let us consider two preliminary experiments. 

(A) Put the head of the machine SCR on a tape a' as following Fig. 8. 

V 
b\b Ж Ҝ ) 

Fig. 8. 
(the "tail" of thelape) 

We assume that, with due modification of the machine 931, the head moves left 
if it arrives at the tail of the tape in the right. Since the segment A is is assumed to be 
finite, we can distinguish the case among the followings after finite steps of execution 
of the machine 9Jt. 

(Al) The head goes out of the segment A to the left after arriving k times at the 
tail of the tape a.'. 

(A2) The head eventually stops on a block in A after arriving k times at the tail 
block. 

(A3) The head eventually repeats a periodic behavior for ever on a segment con­
tained in A after arriving k times at the tail block. 



(A4) The head eventually repeats a periodic behavior on a segment containing 37 
the tail block. 

We shall call the number k the index of the tape a, which is defined to be oo in the 
case (A4). 

(B) Let us consider the behavior of the machine 2R starting with the following 
blank tape a" (Fig. 9). 

y 
M*1H*I*M • (a") 

Fig. 9. T 
(the "top" of the tape) 

We now assume that the head is initially put on the top block of the tape on which 
it moves always to the right. Then the following cases are possible. 

(Bl) The head stops after arriving h times at the top block. 

(B2) The head moves for ever but arrives at the top only a finite number h of 

times. 

(B3) The head comes to the top block infinitely many times. 

The number h is called the index of the machine SR, which is defined to be co in 
the case (B3). 

If we can distinguish the case and know the exact value of h, then we can solve the 
halting problem of the machine SJt. In fact, the machine 9JI eventually stops if and 
only if one of the following conditions is satisfied: 

a) h ^ k and (A2) is the case 

or 

b) h > k and (Bl) is the case . 

Now let us consider how we can distinguish the case among (Bl) ~ (B3). 

Since 501 has only one state, the direction of the head is determined only by the 

symbol being read. So we can assume that we have the following "direction function". 

f 1 (left) 
a: (the set of symbols) -> •; 0 (stop) 

[ -1 (right) 

By assumption, a(b) = 1. 

Let g be the "next symbol function" of 931 whose domain can also be considered as 
the set of symbols. We assume that g(x) = x if a(x) = 0. 



3 8 Let xt — gl(b), x0 = b. Since the number of symbols is finite, there are integers 

y < s such that 

a) x7 = xs, 

b) X; =i= Xj for i < j < s . 

Definition. 

<#)--£«.(*.)• 
>=o 

Lemma 1.. 

c(k) = 0 for all k o c(0);.. . , c(s) = 0 and c(s) - c(y) = 0o 

oc(0),...,c(s3) = 0 . 

Let nP(i, t) be the number of arrivals of the head at the i-th block B{ (see Fig. 10), 
until the head comes to the block BP for the f-th time. 

Bo Bx B2 Bp~\ B„ Bp+, 

F 'g - 1 0 - (the top of the tape) 

If the head can not come to the block BP t times, then the value nP(i, t) is not defined. 

Lemma 2. Suppose that the head comes to BP at least t times. 

a) If t' ^ t, then nP(i, t') is defined for all i = 0 and not greater than nP(i, t): 

nP(i, t') < nP(i, t) . 

b) If p' < p < p" and np_pl(i, t) is defined, then 

np(p"> 0 - np-p>{p" - P'> 0 • 

c) If t' = np(g, t) > 0 and p < g, then ng(i, t') is also defined and , 

np(i, t) = ng(i, f) for i > g . 

Lemma 3. Suppose that the head comes to a block Bp at least t times. 

a) 
np(p, t) > np(p + l,t) > ... > np(n, t) = 0 for some n > p . 

(Evidently, np(m, t) = 0 for m > n.) 



b) If c(k) > 0 for all k, then 

7tp(l, t) > 7tp(l, t) > ... >np(p,t), 

2np(0, t) > 7tp(l, J) . 

For p r o o f see Fig. 11. 

Fig. 11. 

The letters I, m, n,... denotes the numbers of the motions of the head indicated 
by arrows. Obviously 

7tp(0, t) = I - 1 , 

7tp(l, t) - I + m - 1 , 

?tp(2, t) - m + « - 1 , etc. 

But if c(k) = 0 for all k, we have 

I - 1 > m, m - 1 = n etc. , 

which imply 

2 . 7tp(0, t) = np(l, t) 

and 
7tp(l, () > 7tp(2, t) etc.... b). 

Now, suppose that 

0 < np(g, t) = np(g + 1, t) 

for some g = p. Put 

h = np(g + k,t). 

By supposition, 0 < t0 = ti-

If tic-i = to, then 

h = Kg+k-i{d + K tk-i) (Lemma 2c)) 

> xg+k-i(9 + fc, 'o) (Lemma 2a)) 

= ng(g + l, t0) (Lemma 2b)) 

= np(g + l,t) (Lemma 2c)) 

= ti = to • 

So ft = t0 for all fc. 



40 Let N be the number of steps of the machine until it comes to Bp for the f-th time. 
Then evidently 

JV - £ np(k, í) _ţ E <* __ Eťo = « • 
k=0 k=0 

But this is absurd. 

Corollary 1. If c(k) _: 0 and d(k) * 0 for all k, then h = oo (B3). 

Proof. By Lemma 3, we have 

2 TI-(0, f) > 7rp(l, f) > ... > np(n, f) = 0 

for some n. So, if 
7Tp(0, f) < h< oo , 

then np(2h, t) = 0 for all possible p and f and therefore the head moves only a finite 
number of times against the assumption d(k) + 0. 

Corollary 2. If c(k) >. 0 for all k and d(s) = 0, then the machine eventually stops 
at the block Bu after arriving s + 1 times at 2?. and 

h = (s + c(s))/2 
times at B0. 

Corollary3. If c(0),..., c(k — 1) __ 0 and c(fc) < 0 for some fc, then the machine 
moves for ever but comes to the top block B0 only fc/2 times. 

Proof. Obviously, c(k - 1) = 0, and d(x„) = d(xk_1) = - 1 . 

a) The head comes to B0 at least /c/2 times. Consider a machine 9K' obtained by 
modifying W. as follows: 

rffe) = 0» ff(*t) = f̂c • 

V V 
0 M hi 1 I - Hi) ET 

Fig. 12. 

ü)
 M J Ҹ i i- -v) И_Г 

ť7" 

Then 9JT moves just as 9JI until its stop and comes to B0 kj2 times and to Bt k + 1 
times by Corollary 2. 

b) The head comes to B0 no more than fc/2 times (see Fig. 12). 



In the first stage i), the head is assumed to have arrived at Bx for the (k + l)-th 41 
time (Fig. 13). 

(*) Since c(k — 1) = 0,1 — 1 = m — fc/2 and therefore the head moves fc/2 times 
from B2 to Bv 

Next the head moves to B2, rewriting the symbol on Bx from xk to xk+l (see ii)). 
Let Xj be the symbol on B2. By Lemma 3b), k + 1 > j (i.e. k = j). 

Fig. 13. Bo / - | Bl m Bj 

Now, by the remark (*), we have 

d(j) - d(j + 1) = . . . - d(k) = - 1 . 

So, the head never returns to 5X until it comes to 2J2 fc + 1 times. 
But when the head comes to B2 for the (k + l)-th time, the block B3 contains the 

symbol x} by Lemma 2. b) So the head repeats similar motions as from i) to iii), 
starting from the block Bx and so on. It returns therefore no more to B0. 

By Lemma 1, we can determine by finite procedure if the conditions appeared in 
Corrollaries 1, 2 and 3 are satisfied or not. Thus the proof of the proposition has 
been completed. 

APPENDIX II 

PROOF OF THE PROPOSITION 2 

When a machine repeats the same behavior periodically, its head of course repeats 
the same motion periodically on a finite segment of the tape. So a 1-way automaton 
can not be universal. In other words, a UTM 931 must be capable of moving both 
left and right as well as of stopping. If 2R has only two states A, B and two symbols 
0, 1, then we can assume without loss of generality that the head of 931 moves left 
only when it reads the symbol 0 at the state A. 

Fig. 14. 
0 0 0 0 0 

Now, let us consider a periodic motion of the machine. We assume that the head 
moves now periodically on a segment between two blocks H and J (Fig. 14). 

We assumes that all blocks in the right of the block J contain the symbol 0. 
(This assumption does not affect the periodic motion of the machine under consider­
ation.) 



42 Table 1. 

State Symbol New state New symbol Direction 

A 
A 
B 
B 

0 
1 
0 
1 

U 
V 
X 
Y 

u 
V 

X 

У 

left 

ì right 
j or stop 

Since the head turns to the left at the block J, J contains always the symbol 0. 
Therefore u = 0 in the Table 1. In other words, the symbol u = 0 remains in the 
block from which the head moves left. So, when the head arrives at the block H, all 
blocks in the right of H contain 0. 

Now, the head then turns to the right and the periodic motion is continued. But 
the head moves right at most in two cases (see the above table.) So there are at most 
only two periodic motions of the head. Though the symbols outside of the segment 
H — J are arbitrary, we can say that there are at most two periods of cyclic 
behaviors of the machine. This completes the proof of Proposition 2. 

(Received June 14th, 1968.) 
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O pojmu universálnosti Turingova stroje 

A. NOZAKI 

Autor podává přehled a podrobné srovnání různých pojmů či typů universálního 
Turingova stroje (u Turinga, několik typů u Shannona, u Minskyho a u Watanabeho). 
Dále předkládá vlastní pojetí universálního Turingova stroje, který „simuluje" 
práci kteréhokoliv Turingova stroje. Je dokázána řada dílčích výsledků, které ilu­
strují vztahy mezi jednotlivými pojmy. Autor na základě své definice ukazuje, že 
některé jednoduché Turingovy stroje nejsou universální. 

Akihiro Nozaki, Associate Professor, University of Tokyo, Tokyo, Japan. 
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