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K Y B E R N E T I K A — V O L U M E 31 ( 1 9 9 5 ) , N U M B E R 6, P A G E S 6 5 7 - 6 6 8 

NUMERICALLY GENERATED PATH STABILIZING 
CONTROLLERS: USE OF PRELIMINARY FEEDBACK 

D. VON WlSSEL, R. NlKOUKHAH, F . DELEBECQUE AND S. L. CAMPBELL1 

A hybrid open-loop closed-loop control strategy for path following control problems is 
introduced. It is based on a strategy due to Jankowski et al., but modified by a preliminary 
feedback. An analysis is done in the linear case showing when the preliminary feedback 
is needed and how to compute it. The extension to nonlinear systems is discussed. A 
nonlinear example is presented showing the necessity of preliminary feedback. The approach 
is especially useful for complex nonlinear systems with high relative degrees. 

1. INTRODUCTION 

Given a physical system 
F(x',x,t,u) = 0 (1.1a) 

with control u and state x there has been an extensive amount of research on deter­
mining u so that x satisfies a path-constraint 

h(x)-C(t) = 0, (Lib) 

where £(t) is a desired trajectory. The most commonly studied situation is when 
(1.1a) is an ODE 

x' = f(x,t)+g(x,t)u. (1.2) 

However, many physical systems, such as constrained mechanical systems, are most 
naturally initially modeled in the form of (1.1a) where Fxi is identically singular. 
Tha t is, (1.1a) is a system of Differential Algebraic Equations (DAEs) or a Descriptor 
System. 

For the system consisting of (1.1b) and (1.2), a variety of control algorithms based 
on system inversion have been discussed in the literature. See [13] and the references 
therein for an overview and conditions of existence of such a control. 

In this paper we are looking at nonlinear systems which have as many inputs as 
outputs . In this particular case a tracking control exists if (1.2) with the output 

1 Research supported in part by the National Science Foundation under DMS-9122745 and INT-
9220802. 
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defined by (1.1b) is invertible; for square systems left and right invertibility as de­
fined in [6, 7] are identical conditions. However, assume system (1.1) is invertible; 
if system (1.1) has high relative degree and if the equations are mildly complex, 
the usual nonlinear approaches can become unwieldy due to computational com­
plexity. Such problems arise, for example, in constrained mechanical systems when 
actuator dynamics or joint flexibility are included and the number of bodies or links 
exceeds three. In order to overcome these difficulties Jankowski and Van Brussel 
proposed a predictive type open-loop closed-loop controller in [10] for the control of 
a flexible-joint robot. Simulations show that this approach which is a numerical im­
plementation of system inversion, gives promising results. Careful analysis (started 
in [4]) however shows that this control strategy does not necessarily stabilize the sys­
tem, a problem which can be remedied with the use of preliminary linear feedback. 
In this paper we present an analysis of the linear case and propose a construction 
method for the preliminary feedback, if needed. To show the applicability of this 
approach to nonlinear systems we present the simulation results of the control of a 
particular mechanical system with this method. Details related to this example and 
further analysis of it are presented in [14]. 

In Section 2 we summarize the approach of [8, 9], explain some of its potential 
advantages, and delineate the questions to be examined in this paper. In Section 3 
we give an analysis of the linear case. Section 4 is devoted to a linear example and 
in Section 5 we give simulation results of the application of this control strategy to 
a nonlinear example. 

We assume that the reader is familiar with such concepts as the relative degree 
[5] of a prescribed path control problem and the terminology used when discussing 
DAEs such as the index [1, 2]. 

2. THE GENERAL APPROACH 

We begin by giving a general description of the method presented in this paper. 
Intuitively, the system (1.1) can be converted to an ODE if sufficient differen­

tiation of (1.1b), and sometimes (1.1a), is done. While the index of a nonlinear 
DAE is a somewhat subtle concept [2], in this paper we can consider the index of a 
DAE to be the number of times some subset of the DAEs must be differentiated in 
order to convert the DAE to an ODE. Let v denote the index of System (1.1) in x 
and u. Similarly, the control u from the inverse problem (1.1) can often be found 
by sufficient differentiation of (Lib) and (1.1a). In this case, the index of (1.1) as a 
system in x, u is closely related to, but not equivalent to the relative degree of (1.1) 
[3]. If (1.1a) is in the form of (1.2), then the relative degree is P — 1. In the linear 
case, the Silverman algorithm [11] yields v and an expression for u in terms of x, 
£(t) and derivatives of £(£). See [6] for its nonlinear extension which will be refered 
to as the Hirschorn algorithm. 

For many real applications the complexity of the equations involved increases 
rapidly with increased differentiation. Symbolic elimination and reduction of state 
dimension can also lead to rapid expansion of expression complexity. The idea 
behind the approach we are examining is to introduce just enough differentiation so 
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that v is reduced to the point that the DAE can be safely integrated numerically. 
While the DAE still possibly has index larger than one, the equations are simpler 
and quicker to integrate than they would be if they were reduced all the way to 
index one or zero. 

As it is s tandard practice in control we begin by stabilizing the tracking error term 
(1.1b), if necessary, in order to have at most an index 3 system (for higher index 
systems numerical integrations of (1.1) may not converge). This can be done by 
applying a few steps of the Hirschorn algorithm replacing the differential operator 
4- by the stable polynomial a + 4r. If we refer to the Silverman or Hirschorn 
algorithms we always suppose that this has been done. We shall refer to this system 
as the partially stabilized system. More specifically, let W(s) be a stable polynomial 
matrix. Then the partially stabilized system (3.1) is 

F(x',x,t,u) = 0 (2.1a) 

h(x, u, t) - ^(t) =f w(J^\ (h(x) - e(<)) = 0. (2.1b) 

The effects of the partial stabilization were examined in [4]. In the sequel we shall 
drop the hat and suppose that (2.1) is initially stabilized. In the approach considered 
here, the numerical solution u of (2.1) is used as an open-loop control in (1.1a). In 
order to make this control act as a feedback control, the state x in (1.1a) is regularly 
measured and the integration of (2.1) is restarted with the true value of x after each 
measurement; for details of the control implementation see [4, 8, 9, 10, 14, 15]. The 
effectiveness of this method in solving large complex problems relies in large part on 
efficient implementations of the numerical integrator. 

Since this control strategy uses the theory of DAEs or Descriptor Systems and 
since it is predictive in its implementation, we will call it Descriptor Predictive 
Control (DPC) throughout the remainder of this paper. 

3. DPC FOR LINEAR SYSTEMS 

In this section, we consider DPC for linear systems of the form 

x' = Ax + Bu (3.1a) 

y = Cx + Du. (3.1b) 

The dimension of the state x is n, the dimensions of y and u are are both m. The 
goal is to find a stabilizing control u = F(x,£(t),£'(t),... ,^\t)), such that y(t) 
converges exponentially to £(i) , the reference trajectory. The path £(t) is assumed 
to be sufficiently smooth. To analyze the properties of DPC applied to system (3.1), 
we are going to make a few simplifying assumptions. The first assumption is that 
the solution of the DAE obtained by replacing y by £ in (3.1) can be constructed 
without any error. The second assumption is that we consider the case where the 
time h between two measurements of the state is very small so that we can consider 
the limiting behavior as h goes to zero. Finally we restrict ourselves in the following 
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linear analysis to the class of invertible linear systems. For the sake of simplicity we 
shall assume that (3.1) represents the partially stabilized system. 

A key result which is needed in our analysis is how to construct the solution of a 
linear DAE. We use uppercase letters for the solutions of the (partially stabilized) 
system being numerically integrated as opposed to the original system. 

Solution of a linear DAE. Consider the linear DAE 

X' = AX + BU 

i(t) = CX + DU 

X(tt .(*; 

(3.2a) 

(3.2b) 

(3.2c) 

where x(tp) is known and £(/) is a given time function. Clearly (3.2) is the linear 
version of (2.1). The solution U(t) of (3.2) can be constructed by noting that (3.2) 
can be expressed as 

-sI + A 
C 

B 
D 

X 
U 

vl 
Vз 

Let the matrix V 

cation by V changes the system pencil in (3.3) to 

-sVi + ViĄ + V2C VXB + V2D 
-sVз + VзA + V4C VзB + V4D 

so that (3.3) becomes 

-Es + F 
-Hs + J 

X 

u 

0 

ffl. 
(3.3 

гession of в 
D 

. Left multipli-

'-Es + F 0 
-Hs + J I 

V*ffl 
Ъffl 

1 
(3.4; 

The pencil {E, F} is regular due to the invertibility assumption on (3.2). Thus there 
exist two matrices M and Q such that 

M(-Es + F)Q = diag{-7s + Ax, -sN + 1} (3.5) 

is in Kronecker normal form, with N a nilpotent matrix. Left multiplication by 
Q implies a change of variable Z = Q~lX. Obviously, the transformation into 
Kronecker normal form separates the new state Z into a continuous part Z\ and a 
discontinuous or impulsive part Z2. In the sequel we note Z\ = P_*Z and Z2 = P_TZ, 
where P^f = [7 0] and P_T = [0 I]. P^ determines the projection of X which is 
continuous at 0, and more importantly the projection of x(tp) which contributes to 
the solution of (3.2)1. Now (3.4) can be rewritten as 

M 
0 

-Es + F 
•Hs + J 

Q 
0 

Q-1 

0 
X 
U 

MV2ffl 

Vќ(t) 

*It is exactly this projection that DPC uses to generate the control. Thus, in some sense, the 
DPC can be thought of as an output feedback controller, the output being P«r «r. This projection 
may be empty, but each step of the stabilized Hirschorn algorithm applied to the original system 
prior to the application of the numerical method increases the size of this projection. If the 
Hirschorn algorithm is carried through completely, then P^ = / and (3.2) can be solved exactly 
by noting that in this case D is invertible. 
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or equivalently 

-SІ + AI 

0 
0 

-sN + 1 
[ (-HQs + JQ^Pг (-HQs + JQ)P2 I } [ U ] 

Zy 

z2 

7i 
72 (3.6) 

where 71 = P\ MV2£(t) and j 2 = P2 MV2£(t). From (3.6) we obtain an expression 
for the control at t+ 

U(t+) = HQPiZ[(t+)-JQP1Z1(t+) + HQP2Z'2(t+)-JQP2Z2(t+) + V^(tp). (3.7) 

We are only interested in the solution of U at t+. DPC actually uses a numerical 
estimate for U(t+) but here we are studying the limiting case. Expression (3.7) does 
not specify U(t+) yet because even though Z\(t+) is known to be Z\(t+) = Z\(t~) = 
Pfx(tp) the quantities Z[(t+),Z2(t

+), and Z'2(t
+) are not known. The first two 

block-rows of (3.6) can be used to compute them. The first row gives Z[(t+) since 
sZ\ = A\Z\ — 71. Now N is nilpotent of index v so that (—sN + I) Z2 = j 2 implies 
that Z2 = Y^=o(s^)%7^ and sZ2 = 5_;=o s(«N)I72 Substituting these expressions 
into (3.7) yields an equation depending exclusively on Z\(t+) = P\Q~lx(t+), ^(t), 
and the derivatives of £(t). 

U(t+) = (HQP1Al-JQPx)Z1(tpyrRi (J^j m\t=tp=KjX(tp}+R<; ( 

where Kj = (HQP1A1P? - JQPiH1
T)Q-1 ^nd 

Ф)\t=tp . 

(3.8) 

v+l 
Rt(8) = 74-1 HQPiP? - (sH - J) QP2 J2(sN)ip2 )MV2 = J2 Ris'- (3-9) 

V i=0 / j=0 

Thus, in the h —> 0 limiting case, DPC gives the state-feedback control 

i(t) = Kjx(t) + Rç(^)t(t). (3.10) 

3 .1 . Stability analysis 

DPC (3.10) is stable if and only if the closed-loop system 

x' = (A + BKj)x (3-11) 

is stable, which means that the eigenvalues of A + B Kj have negative real parts. 
The stability property clearly is independent of the choice of coordinate system. The 
control (3.10) is computed from the system with stabilized tracking error but is to 
be applied to the original system. However, the A, B matrices are the same for both 
systems. Thus in order to determine the stability properties of A + BKj it suffices 
to see what happens if (3.10) is fed back into system (3.1). Accordingly, we analyze 
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the stability of (3.11) in the coordinate system z = Q lx where Q is defined in the 
previous section. In z coordinates, (3.1) can be expressed as 

,' 1 

'2 J A3 A4 

C\ C2 

Z\ 

. Z 2 
+ 

' B\ ' 

. B2 . 

] 
Z\ 

. Z 2 
+ Ђ~u. 

(3.12a) 

(3.12b) 

Theorem 3.1. Let Kj and Q be as defined in the previous section and let Kj • 
KjQ. Then 

a) Kj = [ K\ 0 ] and the application of u = Kjz sets C\ and A3 to zero, i.e., 

A\ A2 

A3 A4 + 
B\ 
B2 

K 
A\ A2 

0 A4 

C\ C2]+ DK. 0 C, 

(3.13a) 

(3.13b) 

b) The eigenvalues of A\ are the transmission zeros of (3.1). 

c) The decomposition (z\,z2) isolates the largest output-nulling (A, H)-invariant 

subspace V* of (3.1). 

For the proof of the theorem see [12]. For a) and b) see Section III. B. eq. (50), 
eq. (51) and the following comments. For c) see Section III. A p. 349 and again 
Section III. B. p. 353. 

This Theorem allows us to state the main result of this paper: 

Theorem 3.2. Suppose System (3.1) is minimum phase, then the closed-loop sys­
tem is stable iff A4 is a stable matrix. Eigenvalues of the system zeros are unaffected 
by DPC feedback. 

Lemma 3.1. If (A, B) is a controllable pair, thus, so is (A4, B2) and so there exists 
a matrix K2 such that A4 + B2K2 is stable. 

def — 

If the preliminary feedback u = K2z2 + v = Knz + v is applied before DPC , 
then System (3.12) becomes 

A\ A2 

Ã3 Ã4 

z\ 
Z2 + 

B\ 
B2 

v, y = | C\ C2 \ z
l
2 +Dv, 

(3-14) 

where A4 = A4 + B2K2 is stable. If we now apply DPC to (3.1), we obtain a stable 
closed-loop system. 
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To summarize the preliminary feedback procedure, we first have to find the coor­
dinate transformation matrix Q as explained in Section 3 and the new representa­
tion (3.12). Then test the stability of A4, and construct K2 if necessary such that 
A4 + B2K2 is stable. Then let Kn = [ 0 K2 ] Q_1 and apply the preliminary 
feedback u = Knx + v to the original system (3.1). DPC can now be applied to the 
new system {x' = (A + B Kn) x + Bv,y = (C + D Kn) x + Dv) with guaranteed 
success. 

Of course, the preliminary feedback and more generally DPC is not needed for 
linear systems since in the linear case the Silverman algorithm can be applied. The 
above analysis is only presented to illustrate the idea. To apply the preliminary 
feedback idea in the nonlinear case, a simple approach would be to construct the 
preliminary feedback based on a linearized model of the system around some nominal 
operation point x°. There is no guarantee that such a preliminary feedback does the 
job if the actual trajectory x(t) of the system does not remain close to the nominal 
operating point x°. But if DPC does not work or has poor performance such a 
preliminary feedback may improve the situation as we shall see later in an example. 

In the nonlinear case, there may be other ways of constructing a preliminary 
feedback by taking into account the nonlinearities of the system. This problem is 
currently under investigation. 

3.2. Tracking properties 

Just as with the stability analysis, we can study tracking properties in any coordi­
nate system. Let us consider the representation (3.13). It is clear that, after the 
application of the preliminary feedback if needed, DPC yields the following output 
y = (C%(s I - %)~1B2 + D) Rz(s) £ + C%(s / - %)-lz2(0). 

Theorem 3.3. (C2(s I—A4)~
1B2 + D) R$(s) = I and by construction A4 is stable. 

Thus e(t) = y(t) — £(t) converges exponentially to zero. 

P r o o f . The system-representation (3.6) in Kronecker normal form is clearly 
nothing but another representation of (3.1). To compute U we just replaced y(t) 
by £(0- The transfer-matrix of the closed loop system-representations (3.6) and 
(3.1) is Hfc(s), as defined before. Since equation (3.8) is computed using (3.6), the 
polynomial matrix R$(s) is by construction the polynomial part P(s) of the inverse 
of the transfer-matrix Hb(s)~1 = P(s) + R(s), where R(s) is the proper part of H(s). 
In fact, the decomposition (R(s), P(s)) corresponds to the decomposition (zi,z2). 
Since after application of the feedback-matrix Kj to (3.1), Z\ becomes unobservable, 
the inverse of Hb(s) is polynomial and we have Hb(s)~1 = R$(s). D 

Note that e(t) represents the tracking error for the system which is not the original 
system that we had considered, but the system obtained from possible applications 
of a few steps of the Hirschorn algorithm to the original system. But, clearly, if this 
tracking error converges to zero, then so does that of the original system. 
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4. LINEAR EXAMPLE 

In this section we consider the linearized model of a wheel rolling on a plane. A 
detailed analysis of this example can be found in [14] (see the Appendix for the 
full nonlinear model) . The model can be expressed in terms of the Euler angles 
x = [6,ip,(j)',0', ip']T. To compute the linear model we linearize the nonlinear system 

around the nominal trajectory xo(t) = [?•. —6t, 0,0, —6] for t > 0 to get 

x = 

0 0 0 1 
0 0 0 0 
0 0 0 —[ 

6.54 0 5 0 
0 0 0 0 

0 " " 0 0 " 
1 0 0 
0 X + 1 0 
0 0 0 
0 0 1 

The transfer matr ix of (4.1) is H(s) 8.46s + s 

0 

(4.1) 

Note that (4.1) has no 

transmission zeros, and that the linearized model is completely decoupled (the non­
linear model is not completely decoupled). We shall consider two controllers for this 
system. Both use one step of the Hirschorn algorithm and are applied first without 
and then with preliminary feedback. The complete solution based on the Hirschorn 
algorithm would require three steps (the index is four). 

Fig . 5 .1 . Parametrization of a wheel rolling on a plane. 

To apply the first step of the Hirschorn algorithm, we let W(s) = 5+s 
0 

0 
5+s 

obtain the output y = o 5 o o l X- Clearly the transfer function of the 

new (partially stabilized) system is H(s) = W(s)H(s) and the system has two 
transmission zeros at —5. The trajectories to be followed by this new system are 
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£(t) = W(^)y(t). Matrix V just reorders the rows of the system pencil. We obtain 
then 

-0.4739 0 0 0 0 
0 -0.5266 0 0 0 

Q= -1.7498 0 1.0903 0 -0.4108 
2.3698 0 -0.6619 0 -0.6767 

0 2.6332 0 - 1 0 

For the system in z coordinates we find that A4 = 
2.0972 0 5.2474 

0 5 0 
-5 .2162 0 2.9027 

is unstable 

since its eigenvalues are {5, 2.5 ±5.2163 i}. To stabilize A4 we apply the preliminary 
feedback v = Knz, where 

Kn = 
0 0 -7.5455 0 15.16919 
0 0 0 -10 0 

and start over. We compute A\ - 5 0 
0 - 5 , R^(s) = diag{5 + 2s + 0.2s2, 5 + s} 

N 
-0.0887 0 -0.0907 

0 0 0 
0.0867 0 0.0887 

J = 
•11.16 0 -15 -16.308 0 

0 -50 0 0 -10 

II 
0 0 1 0 0 
0 0 0 0 1 

K. 15.858 0 0 0 0 
0 -13.166 0 0 0 

The inverse transfer-matrix of the system after preliminary feedback is 

1 
H*(s)~L = 

5 + 2s + 0.2s2 0 
0 5 + s + 25 + Юs + s2 

-33.46s-167.3 0 
0 25s+125 

The application of Kj on the transformed system sets the sub-matrix A3 to zero 
and since sub-matrix C\ = 0, the continuous part z\ is rendered unobservable. 
The transfer-function IIi(s) of the closed-loop system with preliminary feedback 

and it is easy to verify that H*(s)-1 is just the is Щ(s) = 5 + 2s+0.2s 

0 

polynomial part of H*(s)_1 and that R^(s) = H*(s)-1. Here the application of 
either u = Kjz or u = Knz to system (4.1) results in an unstable system. Only the 
application of u = (Kj + Kn)z on (4.1) results in a system with all poles stable. 

5. NONLINEAR EXAMPLE 

In this Section we give some numerical results of the simulation of DPC applied to 
the nonlinear example of Section 4. The complete nonlinear model is given in the 
Appendix. 
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T r i d ^ B T w ; i l H h _ r t f DШяmмнtшaЩщtt 

0.00 0.35 0.70 1.05 1.40 1.75 2.10 2.45 2.80 3.15 3.51 

tlnJijef, [ l O i B t 10.2,0.2], |k,mH6,4] h=0.01 Witlmut linear preliminary feedback 

Л. |а11,а12]: 10.2,0.2], |к,тН6.41 Ь=0.01 OVUi.reí, |ill.al2]: 1020.21, |k.mH6,4] lr f .01 

Trackìng cяw: ps-psjef Discrđe cmWot: stetting-lnrque 

- ps-psjef, | i l l j í2] : 10.20.2], |k,mH6.4] 

1 2 3 4 5 

- ni . |all,il2]: 10.20.2], I t m H M ] " O l 

F i g . 5 .2 . T o p : Simulation of the controlled system with discrete controller using D P C 
without linear prel iminary feedback and one step of the Hirschorn algorithm on 6 and cj>. 

Left: 0(—) , 0rei(- • •) ; right: steering torque u\. 

M i d d l e a n d b o t t o m : D P C with preliminary feedback; middle left 9(—), 0 r ef(- • •); 
middle right: ee; b o t t o m left: e,/,; b o t t o m right: control (steering torque) . 
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We apply nonlinear D P C with the linear preliminary feedback computed in the 

previous section (for the linear system). The objective is to track the lean angle 9 

and the roll angle ip. The control is taken constant on intervals of length h. 

The control inputs are two torques: the steering torque normal to the direction 

of ip' and normal to <f)' and the pedalling torque in the direction of if;'. As reference 

trajectory we have chosen for 8{t) to follow a sine-function and ip{t) is to track the 

integral of atan(/) . Figure 5.2 shows a simulation of the D P C on the top, without, 

and in the middle and bot tom, with, preliminary linear feedback. The first plot of 

Figure 5.2 shows the lean angle 9 as a solid line and the reference function 9ref{t) as a 

dashed line. Next to it we have one of the controls, the steering torque U\{t). Clearly 

eg{t) does not converge to zero. Thus D P C without preliminary feedback does not 

work. The plots in the middle and on the bot tom show D P C with preliminary 

feedback. We start in the first plot with 9 as a solid line and ljref as a dashed line. 

Next to it we have the error eg{t) = 9{t) — 9ref{t) On the bot tom we show on the 

left side, the tracking error e^{t) = ij){t) — ipref{t) and on the right side, one of the 

control inputs, again the steering torque. With preliminary feedback eg{t) and e^{t) 

converge to zero. For h > 0.2 the error eg{t) starts to diverge. We see for this 

example that D P C with preliminary feedback works when applied on a nonlinear 

system. If we drop the preliminary feedback, D P C destabilizes the system. 

6. CONCLUSION 

In this paper, we have presented a predictive type, hybrid open-loop closed-loop 

strategy based on a control strategy introduced in [10]. In particular, we have 

shown that the controller in [10] can be applied to a much broader class of systems 

if it is modified by a preliminary feedback. We have done an analysis in the linear 

case and shown how such a preliminary feedback can be designed and how it can be 

applied to nonlinear systems. 

We have only considered preliminary feedbacks t h a t are static state feedback. 

If the state is only partially observable, it should be possible to design adequate 

dynamic preliminary feedbacks. It may also be interesting to study nonlinear pre­

liminary feedbacks. 

The results of this paper can trivially be generalized to the case where system 

dynamics is perturbed by a known disturbance function. 

A P P E N D I X 

We use the following constant parameters to model the wheel: m mass of the wheel 

( = 1 kg), r radius of the wheel ( = 1 m), Ir radial moment of inertia ( = 0 . 5 k g m 2 ) , In 

normal moment of inertia ( = 0.25 kg m 2 ) which give rise to the following expressions: 

Ai = In + mr2, A2 = Ir + mr2, A3 = mr2 + In - Ir, A4 = 2mr2 + In. The 

nonlinear wheel model is: 

Iгs
 2 + Aгc

 2 0 Aгc " Ф 
0 A2 0 0 

AicO 0 In + m r2 

. Ф 
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In0 ipsO + 2 AZ(f> 0 cOsO 1 [ msO 

-Ai<f>ij>s9 - A3<j)2cQsO - mgrcO + 0 

A4(j)0s0 J L U 2 

w h e r e sO = sin(fj), cO = cos(tj) a n d s<j> = sin(</>), c<j> = c o s ( 0 ) . If n e e d e d t h e p o s i t i o n 

of t h e c e n t e r of m a s s of t h e wheel (x, y) c a n b e o b t a i n e d by i n t e g r a t i n g n u m e r i c a l l y 

t h e fol lowing e q u a t i o n . 

—r(ф c sф — 0 sфsO + ф sф) 

—r(ф c sф + 0 sфs + ф sф) 

(Received January 31, 1995.) 

REFERENCES 

[1 

[2; 

[3 

[4 

[5 
[6 

[7 

[8 

[9 

[10 

[ П 

[12 

[13 

[14 

[15 

[16 

K. E. Brenan, S. L. Campbel l and L. R. Petzold: Numerical Solution of Initial-Value 

Problems in Differential-Algebraic Equations, Elsevier 1989. 

S. L. Campbel l and C . W . Gear: T h e index of general nonlinear DAEs. Numer. Math. , 

to appear. 
S. L. Campbel l : High index differential algebraic equations. J. Mech. Structures and 
Machines 23 (1993), 199-222. 
S. L. Campbel l , R. Nikoukhah and D. von Wissel: Numerically generated p a t h stabil­
izing controllers I: Theoretical concerns. In: Proc. of A C C , 1994, pp. 1918-1920. 
A. Isidori: Nonlinear Control Systems: An Introduct ion. Springer, Berlin 1989. 
R. M. Hirschorn: Invertibility of multivariable nonlinear control systems. I E E E Trans . 
A u t o m a t . Contro l AC-24 (1979), 6, 855-865. 
R. M. Hirschorn: O u t p u t tracking in multivariable nonlinear systems. I E E E Trans . 
A u t o m a t . Control AC-26 (1981), 2, 593-595. 
K. P. Jankowski and II. ElMaraghy: Inverse dynamics and feedforward controllers for 
constrained flexible joint robots . In: Proc. 31 Conf. Dec. Contr., 1992, p p . 317-322. 
K. P. Jankowski and H. Van Brussel: Discrete-t ime inverse dynamics control of flexible 
joint robots . J. Dynamic Systems, Measurement and Control 114 (1992), 229-233. 
K. P. Jankowski and II. Van Brussel: An approach to discrete inverse dynamics control 
of flexible-joint robots . I E E E Trans. Robotics Automat ion 8 (1992), 651-658. 
L . M . Silverman: Inversion of Multivariable Linear Systems. I E E E Trans . A u t o m a t . 
Control AC-14 (1969), 3, 270-276. 
L. M. Silverman: Discrete Riccati equations: Alternative algorithms, asymptot ic prop­
erties, and system theory interpretat ions . Control and Dynamic Systems, Advances in 
Theory and Appl. 12 (1976), 313-386. 

W. Respondek and H. Nijmeijer: On local right-inveritibility of nonlinear control 
systems. Contro l-Theory and Advanced Technology 4 (1988), 3, 325-348. 
D. von Wissel and R. Nikoukhah: Hybrid O p e n - L o o p Closed-Loop Path-following 
Control with Prel iminary Feedback. Research Report No. 2173, INRIA, January, 1994. 
D. von Wissel, R. Nikoukhah and S. L. Campbel l : On a new predictive control s trategy: 
Application to a flexible-joint robot. In: C D C , Florida 1994, pp. 3025-3026. 
M. Wonham: Linear Multivariable Control. Springer-Verlag, New York 1972. 

D. von Wissel, Dr. R. Nikoukhah and Dr. F. Delebecque, INRIA, Rocquencourt BP 105, 

78513 Le Chesnay Cedex. France. 

Dr. S. L. Campbell, Department of Mathematics, North Carolina State University, 

Raleigh, NC 27695-8205. U.S.A. 


		webmaster@dml.cz
	2012-06-06T06:03:28+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




