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K Y B E R N E T I K A — VOLUME 32 (1996) , NUMBER 6, P A G E S 6 1 5 - 6 2 4 

THE INVARIANT POLYNOMIAL ASSIGNMENT 
PROBLEM FOR LINEAR PERIODIC 
DISCRETE-TIME SYSTEMS1 

LEOPOLDO JETTO AND SAURO LONGHI 

This paper considers the problem of assigning the closed loop invariant polynomials of 
a feedback control system, where the plant is a linear, discrete-time, periodic system. By 
a matrix algebraic approach, necessary and sufficient conditions for problem solvability are 
established and a parameterization of all periodic output controllers assigning the desired 
invariant polynomials is given. 

1. INTRODUCTION 

Various classes of processes, such as periodically time-varying networks and filters 
(for example switched-capacitors circuits and multirate digital filters), chemical pro­
cesses, mult irate sampled-data systems, can be modeled through a linear periodic 
system (see, e.g., [2, 13] and references therein). Moreover, the study of linear peri­
odic systems can be helpful even for the stabilization and control of time-invariant 
linear systems through a periodic controller [1, 8, 18, 19, 21, 27], and for the stabi­
lization and control of a class of bilinear systems [10, 11, 12]. 

In the discrete-time case, a control theory is developing with the help of algebraic 
and geometric techniques and contributions on several control problem have been 
given, including eigenvalue assignment, state and output dead-beat control, distur­
bance decoupling, model matching, adaptive control, robust control and optimal 
H2/H00 control (see, e.g., [3, 5, 7, 13, 15, 17, 22, 25, 26]). 

The aim of this paper is to analyze the invariant polynomial assignment problem 
for the class of discrete-time linear periodic systems. This problem generalizes the 
characteristic polynomial assignment, which, for the same class of systems, was 
solved by a geometric approach in [5, 15, 17, 22]. For time-invariant plants, the 
invariant polynomial assignment was considered in [19, 20, 23, 27]. 

The paper is organized in the following way. In Section 2 preliminary definitions 
and results are given. The problem considered in this paper is formally stated in 
Section 3, and conditions for its solvability are constructively established in Section 4. 

1 Work supported by the Ministero dell'Universita e della Ricerca Scientifica. 
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2. PRELIMINARY RESULTS 

Consider the w-periodic discrete-time system E described by 

x(k + l) = A(k)x(k) + B(k)u(k), (2.1) 

y(k) = C(k)x(t), (2.2) 

where k G 7L, x(k) G Mn is the state, u(k) G Mp is the input, y(k) G M? is the output 
and A(-),B(-),C(-) are periodic matrices of period u> (briefly, a;-periodic). Denote 
also by <&(k, ko), k > ko, the transition matr ix associated with A(-). 

It is well-known that , for any initial time ko G 7L, the output response of system 
E for k > ko, to given initial state x(ko) and control function u(-), can be obtained 
through the time-invariant associated system of E at time ko, denoted by Ea(&o) 
[24]. Ea(fc) is represented by 

xk(h+l) = Ekxk(h) + Jkuk(h) (2.3) 

yk(h) = Lkxk(h) + Mkuk(h) (2.4) 

where Ek := <5>(u + k, k), Jk :=[(Jk)i ••• (Jk)u], (IJfc). := $(w + k,i + k) B(i-l + k), 
i = l,---,u, Lk := [(Lk)[ ••• (Lk)'J, (Lk)i := C(i - 1 + k)*(i - 1 + k,k), 
i = l,---,u, Mk := [(Mk)ij G M ? x p , i,j = 1,••-,"], with (Mk)ij := C(i - 1 + 
k) $(i - l + k,j + k) B(j - 1 + k), if z > j , and (Mk)ij := 0, if i < j . 

In fact, if xk(0) = x(k) and uk(h) := [u'(hu> + k) u'(hu> + k + 1) • • • u'(hui + k + 
u>-l)]' for all h G 7L+, then xk(h) = x(k + hu) and yk(h) = [y'(hu + k) y'(hu> + k + l) 
• • • y'(hu>+k+u> — 1)]' for all h G Z + . The notion of associated system at time k allows 
one to analyze structural and stability properties and pole-zero-structures of periodic 
systems [2, 4, 14]. For example, the subspace of reachable (unobservable) states of 
system E at t ime k is readily seen to coincide with that of system Ea(fc) if it is 
expressed in terms of matrices Ek, Jk,Lk and Mk [14]. Obviously, £ a (&+u;) = £ a(&) 
for all integer k. A simple test for the reachability (observability) of system E at t ime 
k was also introduced in [16] making use of the following block-diagonal matrices: 

Лk := \ эlockdiag{Л(Å;), A(k + 1), • • •,A(u>- -i + Щ, (2.5) 

Bk := \ >lockdiag{H(&), B(k + 1),- •,B(u>--1 + *)}. (2.6) 

Ck := \ )lockdiag{C(fc), C(k+1),- •,C(ш- -1 + ^)}, (2.7) 

(X) := 0 J(w-l)n 
XIn 0 

, ЛGC, (2.8) 

where In denotes the identity matr ix of dimension n. 

L e m m a 2 . 1 . [16] System E is reachable (observable) at t ime k if and only if the 

following matr ix 

[Ak-nk(X) Bk] ([A'k-Tl'k(X) B'J) 

has full row-rank (column-rank) for all A G C, or equivalently for all the eigenvalues 

ofEk. 
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The notions of invariant zero, transmission zero and pole of the u>-periodic system 
£ at time k are defined with reference to the following uq x u>p matrix 

Wk(d) = Lkd(In - dEky
lJk+Mk.. (2.9) 

where d := z"1 is the backward shift operator. The rational matrix Wk(d) is the 
transfer matrix of the associated system of £ at time k and is called the associated 
transfer matrix of £ at time k. A complete analysis of pole-zero structure of system £ 
is reported in [14] and [16] making use of the associated transfer matrix characterized 
with the forward shift operator z. The following result, that follows from Lemma 2.1 
in [14], shows the dependence of Wk(d) with respect to the initial time k. 

Lemma 2.2, For any integer k it holds that: 

Wk+1(d) 0 
d-Чв 

Iq(ш-Ì) 

0 
Wk(d) 

0 dlp 

1p(w-l) 0 
(2.10) 

As a consequence of this result the rank m of Wk (d) is independent of time k 
(see, e.g., [14] for a similar result with the forward shift operator z). 

The transfer matrix Wk(d) can be factored as 

Wk(d) = All(d)Bk(d) = Bk(d)Ak(d) (2.11) 

where Ak(d) and Bk(d) are relatively left prime (rip) polynomial matrices and Ak(d) 
and Bk(d) are relatively right prime (rrp) polynomial matrices. 

Analogously to the time-invariant case [23], the invariant polynomials of In —dEk 

are called the invariant polynomials ofT, at time k. As shown in [14, 16], the product 
of these polynomials characterizes the stability properties of E. 

Under the hypothesis of reachability and observability of £ at time k, the invariant 
polynomials of E at time k are associate of the invariant polynomials of the Smith 
forms of Ak(d) and Ak(d) [23]. 

Denote by x(tj',p,^) the class of uq x up rational matrices 

W(d) = 

[Wn(d) W12(d) ••• Wlш(d) 
W21(d) W22(d) ••• W2ш(d) 

lWшl(d) Wш2(d) ••• Wшш(d) 

, W ł i ( d ) € C - x ' ł i,j = l,---,u, (2.12) 

with Wij(Q) = 0, i < j , i,j = 1,... ,u. The class x(g,p,cu) characterizes the transfer 
matrices of u;-periodic systems. In fact, the causality of cj-periodic system £ implies 
that the associated transfer matrix of £ at time k belongs to the class x(<?,I>, w) 
for all k E Z [6]. Then, the causality of £ implies that the roots of the invariant 
polynomials of E at time k are different from zero for all integers k. This in turn 
implies that matrices ^4^(0) and Ak(0) are nonsingular. Foregoing considerations 
and Lemma 2.2 allow us to prove the following result. 

L e m m a 2.3. The invariant polynomials of £ at time k are independent of k. 
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R e m a r k 2 . 1 . The choice of the backward shift operator d = z~l allowed us to 
prove the independence of pole structure of £ of time k. The same result does not 
hold if the forward operator z is used [16]. In particular in [14] it is shown that the 
structure of null poles may depend on k. 

Moreover, X(Q,P,UJ) characterizes also the class of rational matrices that can 
be realized by an w-periodic system of the form (2.1), (2.2). The solution of the 
minimal realization problem for the periodic case is described by a system reachable 
and observable at any time whose matrices have generally time-varying dimensions. 
In general, the subspaces of reachable states and/or observable states may have 
time-varying dimensions. Therefore, it is natural , in order to consistently solve 
the minimal realization problem, to allow for state-space description having time-
varying dimensions. The possibility of computing a "quasi" minimal (reachable and 
observable at lest in one time) uniform (fixed-dimension) realization is also available. 
Efficient algorithms for the computation of minimal or quasi minimal realization of 
a given transfer matr ix are introduced in [6] and [9]. 

R e m a r k 2 .2 Note that , given a transfer matr ix H(d) = D~l(d) N(d) = 7~(d)D~1(d) 
G CqwXpw with D(d) and N(d) rip polynomial matrices and D(d) and N(d) rrp poly­
nomial matrices and both D(0) and D(0) non singular, then a sufficient condition 
for H(d) belong to the class x(l,P,u) is that N(0) = 0 and N(0) = 0. 

3. CONTROL SYSTEM STRUCTURE AND PROBLEM STATEMENT 

Assume tha t system E is minimal (reachable and observable at all times), and con­
sider an o;-periodic minimal controller E G for system E acting in the feedback control 
s tructure of Figure 1 and described by 

xG(k + \) = AG(k)xG(k) + BG(k)e2(k), (3.1) 

V2(k) = CG(k)xG(k) + DG(k)e2(k), (3.2) 

where xG(k) G Mno(fc) is the state, with nG(k + u) = nG(k), and 

ei(k) : = Ul(k)-y2(k), (3.3) 
e2(k) := u2(k) + yi(k), (3.4) 

with yi(&) = y(k) (the output of E) , e1(k) = u(k) (the input of E) and ui(&) and 
u2(k) external inputs. 

The up x uq associated transfer matr ix of E ^ at time k is expressed by 

Wk
G(d) = LGd(InG(k) - dEG)~lJG + MG, (3.5) 

where matrices LG G m?pxna(.k)) EG g l "o (* )xn Q ( i ) ] jG G Rna(k)x^q a n d MG £ 

•^Lopxwq a r e defined as matrices Lk, Ek, Jk and Mk with matrices A(-), B(-) and 

C(-) substi tuted by matrices AG(-), BG(-), CG(-) respectively and with (MG)u = 

Da\i- l + k), i=l,...,u. 
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u/k) e,(k) 

— ғ Q — 

Уík) 

УІЮ 

f2(k) +L+u2(k) 

Fig. 1. The feedback control structure. 

Causality of system E G implies that Wk(d) belongs to the class X(PJQJUJ)-
Let Wk(d) be factored as 

W?(d) = Pk\d)Qk(d) = Qk(d)p-k\d) (3.6) 

where Pk(d) and Qk(d) are rip polynomial matrices and Pk(d) and Qk(d) are rrp 
polynomial matrices. The problem considered in this paper is formally stated as 
follows. 

Problem 3.1. Given an cu-periodic system E reachable and observable at all times, 
and m causal polynomials si(d), s2(d), ..., sm(d) such that Si+i(d) divides Si(d), find 
a minimally realized cu-periodic controller E G described by (3.1), (3.2) and acting in 
the feedback system of Figure 1, such that the closed loop system E/j be minimally 
realized and its invariant polynomials be associated of S{(d), i = 1, 2, . . . , m. 

4. PROBLEM SOLUTION 

Denote by E/& the cj-periodic system reported in Figure 1 and described by (2.1), 
(2.2), (3.1), (3.2), (3.3) and (3.4) with input u(k) and output y(k) of £ equal to 
e\(k) and yi(k), respectively. 

Define: 

v(k):=[u'1(k) u'2(k)]',w1(k):=[y'1(k) e[(k)}', w2(k) :=[y'2(k) e2(k)}', (4.1) 

the ^-periodic feedback system £/& is described by the following equations: 

x(k+l) 
xG(к + l)_ 

+ 

A(k) - B(k)DG(k)C(к) 
BG(к)C(к) 

B(к) -B(k)DG(к) 
0 BG(к) 

-B(к)CG(k) 
AG(k) J [xG(k)\ 

ik) 

v(k), 

wi(k) 

w2(k) 

C(k) 
-DG(k)C(k) 

0 
-CG(k) 

x(k) 
xG(k) + 

0 
•DG(k) 

DG(k)C(k) CG(k) 
C(k) 0 

x(k) 
xG(k) + 

0 DG(k) 
0 I 

v(k) 

(4.2) 

v(k), (4.3) 

(4.4) 
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Denote with Wk(d) and Wk(d) the associated transfer matrices at time k of the 
w-periodic feedback system E/j relating input v(-) with outputs w\(-) and W2(-), 
respectively. 

Introducing the lifted representations of inputs and outputs of E/&: 

t-ł(Л) 
tiJ(Л) 
Vk(Һ) 

УІ(Һ) 
el(h) 
ҷl(h) 
УІ(Һ) 
el(h) 
wî(h) 

[u[(к + hш)u'1(k + l + hш)•••u'1(k + ш- l + hш)]' , (4.5) 

[и'2(к + hш) и'2(к + l + hш)••• и'2(к + ш - 1 + hu)]' , (4.6) 

[v'(k + hu) v'(k + l + hш)•••v'(k+ш-l + hu)]', (4.7) 

[y[(k + hu) у[(к+1 + Ьш)---у[(к + ш-1 + }гш)]', (4.8) 

[e[(k + hш) e[(k + 1 + hш) • • • e[(k + ш - 1 + hu)]', (4.9) 

[w[(k + hш) w[(k + 1 + hш) • • • w[(k + ш - l + hw)]', (4.10) 

[y'2(k + hш)y'2(k + l + hш)•••y'2(k + ш-l + hu)]', (4.11) 

[e'2(k + hш) e'2(k + 1 + hш) • • • e'2(k + ш - 1 + hu)]', (4.12) 

[w'2(k + hu) w'2(k + l + hu)--- w'2(k + CJ - 1 + hu)]' (4.13) 

it can be verified the existence of appropriate unimodular matrices Ua and Ub such 
that the following relations are satisfied: 

u\(h) 

L«íWJ 
yl(h)' 

I4(h). 
yl(h) 
el(h) 

Uavk(h), 

Uъw\(h), 

Uaw\(h). 

(4.14) 

(4.15) 

(4.16) 

Then, the associated transfer matrices Wk(d) and Wk(d) of T,jb at time k satisfy 
the following relations: 

Wì(d) = i/-- i 

Wî(d) = ua 

WyiUl(d) 

wr>(d) 
WУ2Ul(d) 

WГ'(d) 

WyiU2(d) 
wr2 

(d) 

WУ2U2(d) 
WÍ2U2(d) 

Ua, 

ua, 

(4.17) 

(4.18) 

where Wk'
Uj(d) and Wk

lU3(d) denote the associated transfer matrices at time k of 
the u;-periodic feedback system Y,jb relating input Uj(-), j = 1,2 with output yi(-), 
ei(-) i = 1,2, respectively. 

Denoting as 

Fl(d) = Pk(d)Ak(d) + Qk(d)Th(d), (4.19) 

Fi(d) = Ak(d)Pk(d) + Bk(d)Qk(d), (4.20) 

and arguing as in [23] it can be shown that 

Wk
l(d) = щ Bk(d) 

Aк(d) 
(FÌ(d))-ҢPк(d) -Qк(d)]Ua, (4.21) 
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Wk\d) = u-- 1 -Qk(d) 
Pk(d) 

(Fк*(d)Гl[Bк(d) Aк(d)]Uа. (4.22) 

We are now in a position to prove the following main theorem. 

T h e o r e m 4.1 Problem 3.1 admits a solution if and only if m < min(ujp,ujq). 

P r o o f . Necessity. Under the hypothesis on reachability and observability at 
all times of the c<;-periodic systems S and E G , by Lemma 2.1 applied to E/j it can 
be shown that the cj-periodic system E/& is reachable at all times and observable 
through the outputs w\(-) and u>2(0 at all times. Then (4.2) and (4.3) constitute 
a minimal realization of transfer matrix Wk(d) and (4.2) and (4.4) constitute a 
minimal realization of transfer matrix Wk(d). Moreover, for each time k, the nonunit 
invariant polynomials of the (uipxuip) polynomial matrix Fk(d) are associated of the 
nonunit invariant polynomials of the (ujq xuiq) polynomial matrix Fk(d) and both are 
associated of the nonunit invariant polynomials at time k of the cj-periodic feedback 
system E/& [23]. This implies that the number m of the invariant polynomials at time 
k of the cj-periodic feedback system E/& can not be larger than m < min(cjp,u;a;). 

Sufficiency. As Ak(d) and Bk(d) are rip and Ak(d) and Bk(d) are rrp, equa­
tions (4.19) and (4.20) can be solved for arbitrary Fk(d) and Fk(d). Hence, if 
m < min(ujp,ujq), the Si(d), i = 1,. . . , m can be assigned to E/& as invariant poly­
nomials choosing Fk(d) and Fk(d) as polynomial matrices whose nonunit invariant 
polynomial are associate (two polynomials are called associate if their ratio is a 
scalar [23]) of the Si(d), i = 1,. . . , m and then to solve (4.19) or (4.20) with respect 
to the pairs (Pk(d), Qk(d)) or (Pk(d), Qk(d)) respectively. Moreover, as the invariant 
polynomials of E/j, are independent of k, the solutions of (4.19) and (4.20) can be 
found for arbitrary k. 

For an arbitrary integer k, all the solutions Pk(d) and Qk(d) of (4.19) are given 

b y [Pk(d) Qk(d)] = [Fk\d) Tk(d)]Uk(d) (4.23) 

where Uk(d) is the unimodular matrix given by 

Uk(d) 
Gk(d) Hk(d) 
-Bk(d) Ak(d) J ' 

Gk(d) and Hk(d) are polynomial matrices such that 

Gk(d)Ak(d) + Hk(d)Bk(d) = I„p, 

and Tk(d) is an arbitrary polynomial matrix. For the solution (4.23) be adequate 
for Problem 3.1, Tk(d) must be such that 

4a) Pk(d) and Qk(d) are rip, 4b) Pk
l(d)Qk(d)£X(p,q,u)-

Analogously, for an arbitrary integer k, all the solutions of (4.20) are given by 

Pk(d) 
QM J = Uк(d) 

П(d) 
L тк(d) (4.24) 
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where Uk(d) is the unimodular matrix given by 

Uk(d) 
Gk(d) -Bk(d) 

[ Hk(d) Ak(d) 

Gk(d) and Hk(d) are polynomial matrices such that 

Ak(d)Gk(d) + Bk(d)Hk(d) = Iuq, 

and Tk(d) is an arbitrary polynomial matrix. For the solution (4.24) be adequate 
to Problem 3.1, Tk(d) must be such that: 

4a) Pk(d) and Qk(d) are rrp, 4b) QMP^d^ЄxІPЉu). 

It remains to show that matrices and Tk(d) and Tk(d) such that the pairs (Pk(d), 
Qk(d)) and (Pk(d),Qk(d)) satisfy properties 4a,4b and 4a, 4b respectively, can al­
ways be found. 

With reference to solutions (4.24), matrix Tk(d) can be found as follows. By 
the causality of S, Ak(0) is non singular, so that left primeness of Ak(d) and Bk(d) 
implies left primeness of Ak(d) and dBk(d). This in turn implies that the equation 

Ak(d)Pa

k(d) + dBk(d)QІ(d) = F2

k(d), (4.25) 

can be solved with respect to Pk(d) and Qk(d) for any Fk(d). For an arbitrary 
integer k the general solution of (4.25) is 

K(d) 

Ql(d) 
= ua

k(d) 
ғj(d) 
тa

k(d) 
(4.26) 

where Uk (d) is a unimodular matrix given by 

Tr<d\-\G°M -dBk(d) 

Gk(d) and Hk(d) are polynomial matrices satisfying 

Ak(d)Ga

k(d) + dBk(d)Ha

k(d) = Iu (4.27) 

and Tk(d) is an arbitrary polynomial matrix. The unimodularity of Uk(d) implies 
that if Tk(d) is chosen right coprime with Fk(d), also Pk(d) and Qk(d) are right 
coprime. Taking into account that by the causality of £/& and (4.25), Pk(0) is 
nonsingular, one has that also Pk(d) and dQk(d) are right coprime, so that by 
putting Gk(d) = Ga

k(d),Hk(d) = d~Ha
k(d),Tk(d) = dTa

k(d) one has that the pair 
(Pk(d),Qk(d)) given by 

Tk(d) = Pl(d) = Gk(d)Fk
2(d)-Bk(d)Tk(d), (4.28) 

Qk(d) = dQa
k(d) = Hk(d)Fl(d) + Ak(d)Tk(d), (4.29) 

defines a class of solutions (4.24) satisfying 4a and 4b (see Remark 2.2). 
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By arguing in a similar way, one has tha t the pair 

Pk(d) = Fl
k(d)Gk(d)-Tk(d)Bk(d), (4.30) 

Qk(d) = Fl(d)Hk(d) + Tk(d)Ak(d), (4.31) 

where Gk(d) = Ga
k(d), Hk(d) = dH%(d) with Ga

k(d) and H%(d) such that 

Ga
k(d)Ak(d) + Ha

k(d)dBk(d) = Iupi 

and where Tk(d) = dTk(d), Tk(d) being any polynomial matr ix left prime with 
Fk(d), defines a class of solutions of (4.19) satisfying 4a and 4b (see Remark 2.2). 
Hence, under the assumption m < m'm(iop,uq), the existence of solutions of Problem 
3.1 has been constructively established. • 

5. CONCLUSIONS 

In this paper the pole placement problem for linear discrete-time periodic systems 
has been considered. This problem has been formulated in the more general context 
of the invariant polynomial assignment, whence pole placement follows as a par­
ticular case. Necessary and sufficient conditions for problem solvability have been 
given in Theorem 3.1. The sufficiency proof of this theorem gives a parameterization 
of all controllers solving the problem in terms of causal transfer matrices that are 
minimally realizable with a periodic state-space representation. The proof has been 
performed in two steps. First, the set of all admissible solutions has been formally 
defined, then a procedure to effectively construct an admissible solution has been 
provided. 

(Received February 14, 1996.) 
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