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K Y B E R N E T I K A — V O L U M E 32 ( 1 9 9 6 ) , N U M B E R 6, P A G E S 5 7 5 - 5 9 0 

BALANCING OF SYSTEMS WITH PERIODIC JUMPS1 

R A V I A R I P I R A L A AND VASSILIS L. S Y R M O S 

In this paper we study the balancing and model-reduction of linear systems with discrete 
jumps at periodic time instants. These systems arise in the study of linear systems with 
sampled data control and filtering problems. We study the balancing for the case of fixed 
and infinite intervals. We show that the system balancing can be used to obtain a reduced 
order-model of the system with the properties of the original system. An example is 
provided to illustrate the procedure. 

1. INTRODUCTION 

In the recent past considerable interest has been shown in the design of controllers for 
continuous systems with sampled da ta measurements. This is largely due to the ease 
of implementation of the controller with the use of a digital computer. The emphasis 
has been on direct design of the digital controllers without resorting to discretization 
of the plant or the controller to take into consideration the intersample behavior of 
the system [1, 2, 14]. The study of these problems has given rise to linear systems 
with finite discrete jumps at periodic instants [14]. The systems with jumps arise 
naturally in H2 and Hoo optimization problems. These systems have the properties 
of both continuous and discrete systems and in fact both the continuous time and 
discrete t ime systems can be derived as special cases [14]. 

On the other hand the notion of balanced realizations of systems was introduced 
by Moore in [6] and studied extensively in [6, 15]. The balanced systems were used 
to study the concept of model reduction by [6] and connections to the Hankel-norm 
approximations were drawn in [3]. It was shown tha t the internal realization of the 
system in certain co-ordinates has minimum sensitivity with regard to parameter 
variations in [7, 16]. Applications to filter design with minimum sensitivity were 
also explored. The concept was extended to time varying systems in [9] and [17]. In 
fact [17] explores the possibility of input-output balancing for various gramians and 
gives necessary and sufficient conditions for the balancing transformations to exist in 
terms of the parameters of the system. While [9] explored the balanced realizations 
for uniform realizations, [17] considered balancing over a general class of intervals. 

aThis research was supported by the National Science Foundation under grant NCR-9210408 
and by the Advanced Research Projects Agency under contract MDA-972-93-1-0032 and MDA-
972-95-3-0016. 
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These include the Fixed Interval Balancing (FIB) and Infinite Interval Balancing 
(IIB). The main idea of balancing is that the "degree" of reachability (or control­
lability) and observability (or constructability) of states of the system is quantified 
in some manner. Thus the effect of the individual states on the input-output map 
is quantified. By eliminating the least effective states a "good" approximation of a 
lower order is obtained. Therefore, this leads to a method of model reduction based 
on truncating the least reachable and observable states of the system which describe 
the dynamics. The balanced co-ordinates are chosen to make the reachability and 
observability gramians equal and diagonal. When the system is time varying these 
transformations are also time varying [9]. 

In this paper we extend the notion of balancing to linear continuous systems with 
periodic discrete jumps and study the notion of model reduction for these systems. In 
Section 2 we present some preliminary results on linear systems with periodic finite 
discrete jumps. In Section 3 we present the conditions under which the balancing 
co-ordinates for the system exist and study their properties. In Section 4 we provide 
an example to illustrate the procedure. Finally, Section 5 concludes the paper. 

2. PRELIMINARIES AND BACKGROUND 

In this section we introduce the linear system with discrete jumps and present some 
preliminary results related to these systems. The linear system with discrete jumps, 
represented by E, is described by the following equations: 

x(t) = A(t)x(t) + B(t)u(t), t^kh (2.1a) 

x(kh) = Ad[k]x(kh-) + Bd[k]u(kh), (2.1b) 

y(t) = C(t)x(t), t^kh (2.1c) 

y(kh) = Cd[k]x(kh~) (2.Id) 

where the matrices ^4(-), B(-), C(-) are of compatible dimensions with the state and 
the input vectors are piecewise continuous and bounded. The matrices Ad[-], Bd[-], 
Cd[-] are assumed to be bounded. The discrete jumps occur at periodic intervals of 
period h. The solution x(t) is unique and piecewise right continuous. That is, the 
solution is such that lim<_+fc/l+ x(t) = x(kh) and x(t) may be left discontinuous. The 
unique solution x(t) to the unforced system, i.e., when the input u(t) = 0, Vt is 
given by 

x(t) = <f>(t,s)x(s), t>s (2.2) 

where $(t,s) is the state-transition matrix which is piecewise continuous with pos­
sible discontinuities at t = kh. The state-transition matrix satisfies the following 
conditions [14]: 

— <&(t,s) = A(t)$(t,s), t>s, t^kh, (2.3a) 

$>(kh,s) = Ad[k]^(kh~,s), kh > s (2.3b) 

$(s,s) = I. (2.3c) 
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The internal stability of the system is expressed in terms of the exponential 
stability of the state-transition matrix and is defined as follows: 

Definition 2 .1 . The system E described by equations (2.1a)-(2.Id) is said to be 
exponentially uniformly stable if there are positive constants c\, c2 such that 

\mt,s)\\<Cle-c^-s\ t>s. (2.4) 

The notions of reachability and observability for these systems are standard. That 
is, the reachable subspace in the time interval [to,^/] is the subspace of all reach­
able states with a finite energy input u(t),t G [*o> /̂] and a finite energy sequence 
u(kh), kh £ [to,tf]. In other words, the reachability subspace at time tf, denoted by 
Xr(tf) is given by 

Xr(tf) = {x(tf) : x(t0) = 0, u(-) G C2[t0,tf], u(kh) G /2} (2.5) 

where C2 denotes the space of all square integrable functions and l2 denotes the 
space of all square summable sequences. The unobservable subspace at time to for 
an observation in the time interval [<o,^/] is the subspace of all states such that the 
output is identically zero in [to, tf] when the initial state belongs to the unobservable 
subspace with u(t) = 0. Let xo(*o) denote the unobservable subspace. Then, 

xo(*o) = {x(t0) : y(t) = 0, u(t) = 0,t£ [t0,tf]} . (2.6) 

We now define the reachability and observability gramians which characterize the 
reachable and observable subspaces for these systems. The reachability gramian in 
the interval [to,t] is given by the positive-semidefinite matrix Q(to,t) which satisfies 
the following differential Lyapunov equation with jumps. 

r\ 

—Q(to,t) = A(t)Q(to,t) + Q(to,t)AT(t) + B(t)BT(t), tjzkh, (2.7) 

Q(t0,kh) = Ad[k]Q(to,kh-)AT
d[k] + Bd[k]BT

d[k]. (2.8) 

The observability gramian in the interval [t,tf] is a positive-semidefinite matrix 
P(t,tf) satisfying the following equations 

-§;P(t,tj) = AT(t)B(t,tf) + P(t,tf)A(t) + CT(t)C(t), t^kh, (2.9) 

P(kh~,tf) = AT
d[k]P(kh,tf)Ad[k] + Cj[k]Cd[k]. (2.10) 

The "balancing" co-ordinates of the realization are the co-ordinates for which 
the reachability and observability gramians are equal and diagonal over some time 
interval. We will elaborate on the nature of the time interval later in the paper. 

The balancing of a system is achieved by a transformation of the state vector. 
In the case of time-varying systems, the transformation is also time-varying. Now, 
consider the transformation of the state vector. Let T(t) be a non-singular, piecewise 
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right continuous matrix with bounded jumps at periodic instants. Then, under the 
transformation 

x(t) = T(t)x(t), (2.11) 

the state equations of (2.1a)-(2.Id) are transformed as follows: We will represent 
the transformed system by X). 

x(t) = A(t) x(t) + B(t) u(t), t ^ kh 

x(kh) = Ad[k]x(kh~) + Bd[k]u(kh), 

y(t) = C(t)x(t), t^kh 

y(kh) = Cd[k]x(kh~), 

where the transformed system matrices are given as 

A(t) = r - 1 ( ť ) A ( ť ) T ( ť ) - r ( ť ) 

B(t) = T~l(t)B(t), 

C(t) = C(t)T(t), t^kh; 

Ad[k] = T-l(kh)Ad[k]T(kh~), 

Bd[k] = T~l(kh)Bd[k], 

Cd[k] = Cd[k]T(kh~). 

(2.12a) 

(2.12b) 

(2.12c) 

(2.12d) 

(2.13a) 

(2.13b) 

(2.13c) 

(2.13d) 

(2.13e) 

(2.13f) 

Note that the transformation in the continuous part of the system is identical to the 
transformation for continuous systems and the discrete part to the discrete systems. 
The state-transition matrix is transformed to 

Ф(ť,s)=Г-Ҷ«í)Ф(ť )s)Г(s) ) Ví, s. (2.14) 

Transformations that preserve internal stability of the systems are called Lya-
punov transformations. Clearly, the requirements on the transformations are that 
the inverse and the derivative at all times except kh be well defined, continuous and 
bounded. This leads to the definition of equivalence of systems. We formalize the 
notion in the following definition. 

Definition 2.2. The systems £ and £ defined by equations (2.la)-(2.Id) and 
(2.12a)-(2.12d) respectively are topologically equivalent if they can be transformed 
into the other by the transformation T(t), where T(t) is Lyapunov. That is, T(t), 
T _ 1 ( t ) and T(t), when it exists, are bounded. 

We note that the derivative of T(t) is not defined at t — kh. However, it is well 
defined in the neighborhood of kh. This ensures that the matrices A(t), B(t), C(t) 
are well defined in the neighborhood of kh. Further, the boundedness of the trans­
formed matrices follows from the boundedness ofT(kh~) and T(kh ) . It is easy 
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to see that the exponential stability remains invariant under Lyapunov transforma­
tions. Further, it is easy to verify that the reachability and observability gramians 
are transformed to (see Appendix A.l.) 

Q(t0,tf) = T-l(tf)Q(to,tf)T~T(tf), (2.15) 

P(to,tf) = TT(to)P(to,tf)T(t0). (2.16) 

Clearly, the input-output gramian P(t,tf)Q(to,t) with t 6 [to,tf], undergoes a 
similarity transformation given by 

P(t,tf)Q(t0,t) = TT(t)B(t,tf)Q(t0,t)T-T(t). (2.17) 

We now proceed to study the conditions under which the reachability and observ­
ability gramians can be diagonalized by Lyapunov transformations. We say that the 
system E is in balanced co-ordinates if Q(t0,t) and P(t,tf) are diagonal and equal. 

3. BALANCING AND MODEL REDUCTION 

In this section we establish the conditions for the existence of a balancing Lyapunov 
transformation. Further, we show how the system can be reduced to obtain a lower 
order model for the input-output description of the system. In particular, we will 
explore the stability properties of the reduced order model. 

3 .1 . Finite interval balancing 

We will consider the input-output balancing with respect to the reachability and 
observability gramians defined over specific time intervals. We first consider the 
fixed interval balancing (FIB) [17]. Here, no assumptions need to be made with 
regard to the internally stability of the system. Consider the time intervals for the 
reachability and observability gramians with fixed initial and final time periods i.e., 
t0 and tf are fixed and given. We want to find a Lyapunov transformation so that 
Q(t0,t) and P(t,tf) are equal and diagonal for t £ [t0,tf]. To simplify the notation 
we will denote Q(t0,t) and P(t,tf) as Q(t), P(t) respectively. We assume that the 
system is "totally" reachable and observable in the time intervals of definition [12]. 
Therefore, Q(t) and P(t) are positive-definite in t £ [to,*/]- We now characterize 
the nature of balancing in terms of the gramians. 

Theorem 3.1. The realization of the system £ described by equations (2.1a)-
(2.Id) is FIB over [to, t/] iff the following equations are satisfied: 

Q(t) = P(t) = A(t), (3.1) 

A(t0) = A(t/) = 0. (3.2) 

Further, the matrix A(t) is diagonal and satisfies 

A(t) = A(t)A(t)+A(t)AT(t) + B(t)BT(t), t^kh, (3.3a) 
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A(kh) = Ad[k]A(kh')AT[k] + Bd[k]BT[k]i (3.3b) 

-A(t ) = AT(t) A(t) + A(t) A(t) + CT(t) C(t), t # kh, (3.3c) 

A(kh~) = AT[k]A(kh)Ad[k) + Cj[k]Cd[k]. (3.3d) 

P r o o f . Necessity: Let the system E be FIB over [*o,^/]- Then, Q(t) and P(t) 
are diagonal and equal. Furthermore, Q(to) = 0 and P(tf) = 0. 

Sufficiency: Since the solution to (2.1a)- (2.1b) is unique, the gramians are unique 
and hence, the system is FIB in [2o,2/]- C 

We now give the balancing transformation that can be constructed from the 
system. The existential conditions of the transformation are derived from the con­
struction of the balancing transformation. This approach is on the lines of [9]. The 
drawback of this approach is that the conditions are obtained in terms of the gra­
mians and not in terms of the system parameters. While [17] gives conditions in 
terms of the system parameters, the assumptions on the system matrices are also 
very strong. However, we do not assume analyticity of the system matrices here. 
We first note the following. 

Lemma 3.1. Let E described by (2.1a) - (2.Id) be totally reachable and observable 
in t G [to,tf]- Then, Q(t) and P(t) are Lyapunov. 

P r o o f . We prove that Q(t) is Lyapunov in t G [to,if]- The proof for P(t) follows 
similarly. Consider the equations (2.7) and (2.8) with jumps. A closed form solution 
for Q(t) is given by 

Q(t) = $(t,kh)Q(kh)<!>T(t,kh)+ I $(t,T)B(T)BT(T)<!>(t,T)dT, (3.4) 
Jkh 

Q(kh) = Ad[k)Q(kh-)AT[k] + Bd[k]BT[k], (3.5) 

with Q(to) = 0. Clearly, the matrix Q(t) is bounded in the finite interval with finite 
jumps at time periods t = kh. Further, since the system is assumed to be totally 
reachable in [to,^/], the inverse exists and is also bounded. The derivative of Q(t) 
for t ^ kh is given by (2.7) and is bounded whenever Q(t) is bounded. Therefore, 
Q(t) is Lyapunov. d 

Now, consider the transformation T(t) = Q*(t). Then, 

Q(t) = I, (3.6a) 

P(t) = S(t) (3.6b) 

where S(t) is given by 
S(t) = Q$(t)B(t)Q1*(t). (3.7) 

This transformation is referred to as the "preinput normalizing transformation" [17]. 
Note that S(t) is symmetric and positive definite on the interval [<o,*/]-
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Clearly, S(t) is Lyapunov. It is well known that there may not be a eigenvalue 
decomposition of S(t) with the unitary matr ix being Lyapunov [9]. Moreover, if 
there are no conditions on the system matrices (Analyticity), then the conditions 
for the existence of such decomposition are obtained in terms of the gramians of 
the system and not in terms of the parameters of the system [17, 9]. We therefore, 
provide the conditions for the existence of a decomposition with Lyapunov factors. 
Let S(t) satisfy the following properties: 

P r o p e r t y I . The eigenvalues of S(t), crf(t),a^(t), i ^ j cross only at isolated 
points on the interval. Furthermore, the set of points, denoted by Cl, does not 
contain the points kh £ [<o,^/]-

P r o p e r t y II . The eigenvalues crf(t), <r?(t), i zfz j do not have common derivatives 
on the set Q. 

P r o p e r t y III . S(t) has continuous second derivatives on the neighborhood of all 

t en. 

R e m a r k . The conditions on S(t) are sufficient only. We note that the continuity 
of U(t) and U(t) is essential only for t ^ kh and discontinuities are allowed at t = kh. 
Therefore, the set Q is modified to accommodate for the discontinuities at t = kh. 

If S(t) satisfies the above conditions, then by Lemma A.2.2, there is a unitary 
and U(t) and a A(t) so that , 

S(t) = U(t)A2(t)UT(t) (3.8) 

where U(t) and A(t) are Lyapunov. Then, we use the transformation T(t) = 

U(t)A~i. Clearly, T(t) is Lyapunov as it is the product of two Lyapunov matrices 
by Lemma A.2.1. Therefore, 

Q(t) = A*(t)UT(t)IU(t)A*(t), (3.9) 

P(t) = A~^(t)UT(t)U(t)A2(t)UT(t)U(t)A-i(t), 

which gives 
Q(t) = P(t) = A(t). (3.10) 

The overall transformation to transform the system £ to balanced co-ordinates is 
given by 

T(t) = U(t)A^(t)Q^(t). (3.11) 

We now study some of the properties of the FIB realizations. We shall henceforth 
assume tha t the system is in balanced co-ordinates. Since the system is essentially a 
continuous system with discrete behavior at periodic times, we expect the balanced 
realization to exhibit properties of both continuous and discrete systems. This is 
indeed the case as we show in our next result. It is well known that in the case of 
continuous systems, the matr ix A(t) is negative-definite in the interval [to,tf] [17]. 
We see that this property extends to the continuous part of the system. Furthermore, 
the discrete part of the system also satisfies the contractive property [15]. 
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Lemma 3.2 . Let the system £ be FIB in [to,tj]. Then, A(t) is non-positive 
definite in the interval [*-»,-/], * ¥" kh. Furthermore, Ad[k] is contractive, i.e., 

\\Ad[k]\\ < 1. (3.12) 

P r o o f . Consider equations (3.3a)-(3.3b). Adding (3.3a) and (3.3b) we have 

A,(t) A(t) + A(t) A.(t) = -(CTC + BBT) (t) (3.13) 

where As(t) = A(t) + AT(t) with A(t) > 0 for all t <E [to,-/]- Therefore, 

/•OO 

A,(<) = - / e - A ( < ) r (C T C+HH T ) (Oe- A ( t ) T dr , t ^ kh. (3.14) 
Io 

Hence, A,(i) is negative semi-definite. Now, substituting (3.3d) in (3.3c) we have, 

A(kh) = AdA
TA(kh) AdA

T + AdCjCdA
T + BdB

T. (3.15) 

Following the argument in [15] (Theorem 3.1), we have 

Am«(-4dAj[Ar])<l (3.16) 
and therefore, ||Ad[fc]|| < 1. • 

Note that the system with jumps possesses the properties of the continuous and 
discrete time systems. That is, the continuous part satisfies the property of the con­
tinuous system and the discrete part, that of the discrete system. As a consequence 
of the above Lemma we have the following result: 

Lemma 3 .3 . Let the system E be FIB in [to,tj]. Then, the system is dissipative 
in the time interval. That is, ||.c(i)|| is non-increasing for t ^ kh and j|ar(fe/i)|| < 
||x(Jfe/T)|| for u = 0. 

P r o o f . Let f(t) = \\x(t)\\2. From (2.2) we have 

x(t) = $(t,to)x(to). (3.17) 

f(t) = *T(*o)*T(Mo)*(Mo)*(-o), t e [to,tf]. (3.18) 
Therefore, tu^ yu T 

Now, 

f(t) = xT(to) $T(t, to) $(i , t0) x(to) + xT(U) §T(t, to)$(t,tQ) x(t0), t £ kh 

= xT(t)AT(t)x(t) + xT(t)A(t)x(t) < 0. (3.19) 

Therefore, for t ^ kh, \\x(t)\\ is non-increasing. Now, consider f(kh). 

f(kh) = xT(t0) $T(kh, to) $(kh, to) x(t0) 

= xT(kh-)AT[k]Ad[k]x(kh-) < f(kh~). (3.20) 

• 
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Therefore, when the system is in balanced co-ordinates the state is dissipative in 
the interval [̂ o,̂ /] as it is the case with both the continuous and discrete systems. 

We now explore the notion of model reduction for the jump systems over the 
finite interval. It is well known that the reduced order model is dissipative in both 
the continuous and discrete time systems. We show that these properties carry over. 
However, it is to be noted that the lower order model may not be balanced as the 
discrete part of the system does not result in a balanced reduced order system. 

L e m m a 3.4. Let the system E be FIB in [to,tf]. Let the system be partitioned 
as x = [a?- x2] and the system matrices be partitioned conformably. Then, the 
reduced order model described by 

xi(t) = Au(t)x(t) + Bi(t)u(t), t^kh (3.22a) 
Xi(kh) = Alld[k]x1(kh-) + Bld[k]u(kh), (3.22b) 

y(t) = d(t)xi(t), t^kh (3.22c) 

y(kh) = Cu^x^kh-) (3.22d) 

satisfies the equations 

Ai(*) = ^n(t)Ai(Z) + Ai(0^ T i(0 + 5i(t)HnO. t^kh, (3.23a) 
Ai(kh) = AUd[k}A1(kh-)Ajld[k] + A12d[k}A2(kh-)Aj2d[k] 

+ Bld[k]Bfd[k], (3.23b) 
-AiOO = ^TiWAiW + AiWiliiW + CfWCiW, t^kh, (3.23c) 

Ai(*/T) = Aju[k]A1(kh)Aud[k)-i-A^ld[k]A1(kh)A2u[k] 
+ Cfd[k}Cld[k] (3.23d) 

where 

A(t) = Ai(ť) 0 
0 A2(t) 

(3.24) 

P r o o f . Follows directly from substitution and simplification. • 

Clearly, the system is not balanced as the discrete portion of the system is not bal­
anced. However, the continuous part of the system is balanced and it is clear that 
the subsystem has the non-positive property for Au(t). The system is "approxi­
mately" balanced if Ai ]̂ > A2. Furthermore, it is easy to verify that the contractive 
property extends to the discrete part of the system. We show this in the following 
Lemma. 

L e m m a 3.5. For the reduced order system described by equations (2.12a)-(2.12d), 
And is contractive in [to,tf]. 



584 R. ARIPIRALA AND V. L. SYRMOS 

P r o o f . Consider the partitioned equations (3.3b) and (3.3d). We have 

Ai(kh) = Alld[k]A1(kh-)AT
lld[k] + A12d[k]A2(kh~)AT

2d[k] 

+ BldB
T

d[k], (3.25a) 

Ai(Arn-) = A^WA^ktyAn^ + A^MA^kfyA^k] 

+ C[dCld[k], (3.25b) 

A2(kh~) = AT
2d[k]A1(kh)A12d[k] + AT

2d[k]A2(kh)A22d[k] 

+ CT
dC2d[k]. (3.25c) 

Substituting (3.25b) and (3.25c) in (3.25a), we have 

Ax(kh) = AlldA
T

ld[k] Ai(kh) AlldA
T

ld[k] + A12dA
T

2d[k] Ax(kh) A22dA
T

2d[k] 

+ AlldA
T

ld[k] A2(kh) A21dA
T

ld[k] + A12dA
T

2d[k] A2(kh) A22dA
T

2d[k] 

+ AndfCiA^lk] + A12ClC2A
T

12 + BxB
T[k]. (3.26) 

By noting that the second and subsequent terms on the right hand side constitute 
a positive semi-definite matrix, the result follows by an argument similar to the one 
in Lemma 3.2. D 

A direct consequence of the above result is that the reduced order system is once 
again dissipative. Therefore, in FIB co-ordinates, the system and all sub-systems 
are dissipative. We formalize this by the following Lemma. 

Lemma 3.6. The reduced system described by equations (3.23a)-(3.23d) is dis­
sipative in the time interval [toify]. 

In this section we have studied the properties of finite interval balancing. We have 
provide the conditions for the existence of the balancing transformation. Further­
more, we have shown that the dissipative property of the balanced system extends 
to the lower order system. We are now ready to study the case of infinite interval 
balancing. 

3.2. Infinite interval balancing 

In this section we explore the case of infinite interval balancing (HB). In this case, 
we let to —+ —oo and tf —> +oo. We will denote the gramians by Poo(t) and Qoo(t). 
We do not provide a rigorous solution to the problem but provide an outline of the 
procedure highlighting the differences from the case of FIB. 

The first question that needs to be resolved is the existence of the gramians in the 
asymptotic case when to and tf tend to infinity. In this case, a sufficient condition 
for the existence of the gramians is the square integrability of | |$(r, t) C(r)\\ and 
| |$(i. T) H(r)|| and square summability of \\$(kh, t) Cd[k]\\ and |j$(*, kh) Bd[k]\\. This 
may be obtained by considering the closed form of the gramians (3.4)-(3.5). This 
in turn is guaranteed by the asymptotic stability of $(t,s) and the continuity and 
boundedness of the system matrices. Therefore, the next question that needs to be 
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answered is the time period over which the balancing is done. If t varies in finite 
intervals, then the results of the previous section follow with minor modifications 
[17]. In the case that t —* ±00 we need additional conditions which guarantee that 
the transformation in the limiting case is well defined and Lyapunov. However, we 
note that in the limit when t —* 00, the gramian converges to that of the continuous 
time gramian. And therefore, it is reasonable to expect that the conditions of the 
continuous time case carry over to these systems too. 

Therefore, we give the results without proofs. The sufficient condition for the 
existence of a well defined transformation in the limit as t —• ±00 is the eigenvalues 
of the gramians be disjoint [17]. Before we present the results, we recall the notion 
of disjoint eigenvalues [17]. A matrix M(t) is said to be disjoint iff for any two 
eigenvalues o~i(t) and <Tj(t), i ^ j of the matrix, there is a r,-; and e,j so that 

\<Ti(t) - <Tj(t)\ > €ij Vt > Tij. (3.27) 

Lemma 3.7. Let the system £ be such that Qoo(t) and Poo(t) are well defined. 
Then, the pre-input normalizing transformation is well defined and Lyapunov as 
t —> ±00 if Qoo(t) is disjoint. 

Now, a similar characterization is necessary for the rest of the transformation to 
be well defined and Lyapunov in the limit as t tends to infinity. 

Lemma 3.8. If the system £ is asymptotically stable and Qoo(t), QooPoo(t) are 
disjoint, then the system is topologically equivalent to a balanced realization for 
t £ (—00, 00). 

Now we characterize the balanced system in terms of the Lyapunov equations. 
We assume that the system is IIB. Therefore, we have 

Theorem 3.2. Let the system £ be IIB. Then, gramians Qoo(t) and Poo(t) satisfy 
the following conditions: 

Qoo(t) = Poo(t) = A(t). (3.28) 

Further, the matrix A(t) is diagonal and satisfies 

A(t) = A(t)A(t)+A(t)AT(t) + B(t)BT(t), t^kh, (3.29a) 

A(kh) = Ad[k]A(kh-)AT[k] + Bd[k]BT[k], (3.29b) 

-A(t) = AT(t)A(t) + A(t)A(t) + CT(t)C(t), t^kh, (3.29c) 

A(kh~) = AT[k]A(kh)Ad[k] + Cj[k]Cd[k]. (3.29d) 

Note that the conditions are only necessary since for the balancing at infinity, 
additional conditions on the eigenvalues of the gramians are needed. When the 
system is in balanced co-ordinates, the notion of model reduction can be explored. 
In the case of infinite interval balancing, the properties of interest are the asymptotic 
stability of the reduced system. These results are currently under investigation. 
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4. ILLUSTRATIVE EXAMPLE 

In this section we consider an example to illustrate the balancing of the system with 
jumps. The system is a double integrator with discrete jumps and is defined as 
follows: 

where 

A 

Ad 

x(t) = A(t)x(t) + B(t)u(t), t^kh 

x(kh) = Ad[k]x(kh~) +Bd[k}u(kh), 

y(t) = C(t)x(t), t^kh 

y(kh) = Cd[k}x(kh~) 

"0 1' 
0 0 , в = ' 0 ' 

1 , c = [ 

COSĆ? 

sinć? 
— sinŕ? 

COSØ 
, вd = '1 

1 Cé [1 1 

(4.1a) 
(4.1b) 
(4.1c) 
(4.1d) 

(4.2a) 

(4.2b) 

The system has periodic jumps which occur at t = k, where k is an integer. The 
discrete jumps are characterized as rotations effected by Ad and translations effected 
by Bd. The balancing of this system is considered over the time interval [0,1]. Here 
0 = ~- when k = 1. The computations were performed by using the symbolic toolbox 
of MATLAB [5]. The solution to the reachability and observability gramians are 
given by the following equations 

and 

P(t) 

P(t) 

Q(t) 

Q(t) 
2 
3 

13 
6 J 

te[o,i), 

t = 1. 

2 - ť §-2*+V 
rj Z Ł ~Ţ~ гj rt ó Z ~ ~ Z l o 

0, t = l. 

te[o,i), 

(4.3a) 

(4.3b) 

(4.4a) 

(4.4b) 

Clearly, the 'pre-input normalizing' transformation is given by 

-Є[0.1), 

t = 1. 

Г t^V 0 1 

QЧt) = 3 

vTvť vT 
L 2 2 J 

, 

QЧt) = 
" 1.0801 0 

0.6172 l.ЗЗí 53 

(4.5a) 

(4.5b) 
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The observability gramian is transformed to S(t) and is given by equation (3.7) 

as 

5(ť) = 
І Ì _ І І _ _ _ _|_ 11 _______ _|_ V^t3 i 7tyťз" 
6 12 4 ^ 4 2 "т- є ~1~ 12 

_______ _L V t3 4- 7 *>/ 11 _ _ _ i І Ì _ І 
_ 2 ' 6 1 ° л i 

5(ť) = 0, ť = 1. 
12 12 12 J 

ťЄ [0,1) (4.6a) 

(4.6b) 

The singular value decomposition of S(t) is given by equation (3.8) where A 2 (0 
is given by 

Ľ2(ť) = 

E2(ť) = 0, ť = 1 

а + íl 0 

0 а-Џл 

t Є [0.1) 

where 

7ť Зť 2 ť 
4 + 3 12' 

P = * / 4 9 - 6 3 - + 4 1 _ 2 - lSt3 + 4t4. 

The singular vectors are given by 

U(t) cos ф — sm џ 
sin ф cos ф 

U(t) = 0, ť = l. 

ť є [ 0 , l ) , 

where 
__. _ 11 -u íá + = s in 

ť/3 

(4.7a) 

(4.7b) 

(4.8) 

(4.9) 

(4.10a) 

(4.10b) 

(4.11) 

Therefore, the overall balancing transformation is given by equation (3.11) as 

t5/4V2 Q 

T(t) cos ф — sin ф 
sin é cos ò vîз 3 / 4 

. \/2-У7+2/3 V^-Ут+2/3 . 

, ť є ( 0 , l ) (4.12) 

where 

7 = _ l 4 + 9 ť - 4 ť 2 + ť (4.13) 

It can be verified easily that the transformation T(t) is Lyapunov in the inter­
val (0,1). And the system is in balanced co-ordinates with the reachability and 
observability gramians given by A(t) in the interval [0,1]. 
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5. CONCLUSIONS 

In this paper we have studied balancing for continuous systems with finite jumps at 
periodic time instants. We provide sufficient conditions for the existence of balanc­
ing transformations over a finite interval and showed that the properties of both the 
continuous and discrete time systems extend to these systems. We have considered 
the case of infinite interval balancing and provided the conditions under which bal­
ancing transformations exist by heuristic arguments. Formal proofs of these results 
are under investigation. The notion of model reduction and the properties of the 
reduced model are under investigation. 

APPENDIX A.l 

In this appendix we carry out the calculations for the transformation of the reacha­
bility gramian. The calculations for the observability gramian are similar. We will 
denote Q(to,t) by Q(t) to simplify the notation. 

For the system E described by equations (2.12a)-(2.12d) we have, 

Q(t) = 

Q(kh) = 

simplifying (A. 1.1), 

Ąo 0(0 + 0(0 ̂ ( 0 + Щ вт(t), 
Äd[k] Q(kh~)Äт[k] + Bd[k] Bт[k]. 

t фkh, (A.l.l) 

(A.1.2) 

Q(t) 

TQ(t) Tт 

i - i T " 1 AT-T Q(t) + Q(t) 

AT-Ť Q(t)Tт +TQ(t) 

TQ(t)TT = A(TQTT) + (TQTT)AT+ BB 

we have. 

TTAT - ŤT 

ттлт_ тт 

т 

Q(t) = TQ(t)TT, t^kh. 

Similarly (A. 1.2) is 

т-т + т-iввтт-т 

+ BBJ 

(A.1.3) 

(A.1.4) 

Q(kh) = Ád[k]Q(kh-)AT[k] + Bd[k]BT[k], 

= T~x(kh) Ad[k]T(kh-)Q(kh~)TT (kh~) AT
d[k]T~T (kh) 

+ T~l(kh) Bd[k] BT[k] T~T(kh), (A.1.5) 

T(kh)Q(kh)TT(kh) = Ad[k]T(kh-)Q(kh~)TT(kh-)AT[k]+Bd[k]Bj[k].(A.1.6) 

Therefore, 

Q(t) = T~\t)Q(t)T-T(t), Ví. (A.1.7) 
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A P P E N D I X A.2 

In this appendix we present some ancillary results on Lyapunov transformations. 
The proofs are straightforward and are modifications of the continuous time case. 

L e m m a A . 2 . 1 . Let P(t) and Q(t) be two Lyapunov matrices with periodic finite 
jumps . Then P(t) Q(t) is Lyapunov. 

L e m m a A . 2 . 2 . Let S(t) be a symmetric positive-definite and Lyapunov over a 
finite t ime interval with periodic finite jumps. Furthermore, let S(t) satisfy the 
Properties I - I I I . Then, there is a eigenvalue decomposition 

S(t) = U(t)A2(t)UT(t) (A.2.8) 

where U(t) is unitary and A(t) is positive-definite with U(t) piecewise continuous 
with bounded discontinuities at periodic t ime instants. Furthermore, U(t) and A(t) 
are Lyapunov. 

P r o o f . It is clear tha t the argument is exactly identical to the continuous t ime 
case when t ^ kh. For t = kh, we have tha t the jump in S(t) is finite and hence 
U(kh) and A(kh) are Lyapunov. • 

(Received February 14, 1996.) 

REFERENCES 

[I] B. A. Bamieh and J .B. Pearson, Jr.: A general framework for linear periodic systems 
with applications to Hoo sampled-data control. IEEE Trans. Automat. Control 31 
(1992), 418-435. 

[2] T. Chen and B. A. Francis: H2 Optimal sampled-data control. IEEE Trans. Automat. 
Control 36 (1991), 387-397. 

[3] K. Glover: All optimal Hankel-norm approximations of linear multivariable systems 
and their I°°-error bounds. Internat. J. Control 39 (1984), 1115-1193. 

[4] P. T. Kabamba and S. Hara: Worst-case analysis and design of sampled-data systems. 
IEEE Trans, on Automatic Control 38 (1993), 1337-1357. 

[5] C. Moler: Matlab User's Guide. The Mathworks Inc., 1980. 
[6] B. C. Moore: Principle component analysis in linear systems: Controllability, observ­

ability, and model reduction. IEEE Trans. Automat. Control 26 (1981), 17-32. 
[7] C. T. Mullis and R. A. Roberts: Synthesis of minimum roundoff noise fixed point digital 

filters. IEEE Trans. Circuits and Systems 23 (1976), 551-562. 
[8] K. M. Nagpal and P. P. Khargonekar: Filtering and smoothing in an Hoo setting. IEEE 

Trans. Automat. Control 56(1991), 152-166. 
[9] S. Shokoohi, L. M. Silverman and P. Van Dooren: Linear time-variable systems: Bal­

ancing and model reduction. IEEE Trans. Automat. Control 28 (1983), 810-822. 
[10] S. Shokoohi and L. M. Silverman: Model reduction of discrete time-variable systems 

via balancing. In: 20nd CDC, 1981, pp. 676-680. 
[II] L.M. Silverman and B.D.O. Anderson: Controllability, observability and stability of 

linear systems. SIAM J. Control 11 (1968), 121-130. 
[12] L. M. Silverman and H. E. Meadows: Controllability and observability in time-variable 

linear systems. SIAM J. Control 5(1967), 64-73. 



590 R. ARIPIRALA AND V. L. SYRMOS 

[13] W. Sun, K. M. Nagpal and P.P. Khargonekar: Optimal sampler for Hoo control. In: 
32nd CDC, San Antonio 1993, pp. 777-782. 

[14] W. Sun, K.M. Nagpal and P.P. Khargonekar: Hoo control and filtering for sampled-
data systems. IEEE Trans. Automat. Control 55(1993), 1162-1175. 

[15] L. Pernabo and L. M. Silverman: Model reduction via balanced state space represen­
tations. IEEE Trans. Automat. Control 27(1982), 382-387. 

[16] L. Thiele: On the sensitivity of linear state-space systems. IEEE Trans. Circuits and 
Systems 33 (1986), 502-510. 

[17] E.I. Verriest and T. Kailath: On generalized balanced realizations. IEEE Trans. Au­
tomat. Control 28 (1983), 833-845. 

Dr. Ravi K.A. V. Aripirala and Dr. Vassilis L. Syrmos, Department of Electrical Engi­
neering, University of Hawaii at Manoa, Honolulu, HI 96822. Hawaii. 


		webmaster@dml.cz
	2012-06-06T07:03:40+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




