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K Y B E R N E T I K A — V O L U M E 14 (1978), N U M B E R 1 

Nash and Stackelberg Solutions 
to General Linear-Quadratic 
Two Player Diíľerence Games 
Part I. Open-Loop and Feedback Strategies 

RAIMO P. HÄMÄLÄINEN 

Concepts needed in the definition of difference game problems are first studied in detail. 
Solutions for a general class of deterministic linear quadratic two-player nonzero-sum difference 
games are then developed. Nash and Stackelberg solutions for open-loop and zero-memory 
information structure are considered. An augmentation techniques and a dynamic programming 
approach are applied to obtain the solutions. A recursive algorithm is developed for the Nash 
open-loop solution. Computational difficulties, which are caused by the augmented representa­
tions when the number of time stages is great, are thus avoided. 

1. INTRODUCTION 

Nonzero-sum differential games constitute a relatively new research topic in control 
theory and applied mathematics. Increasing interest has been taken in these dynamic 
games due to their potential applicability in modelling decision problems in engi­
neering and economics. The studies of nonzero-sum differential games can be 
considered to have been initiated in the articles by Starr and Ho [1] and [2]. However, 
the roots of many person decision problems go further into the past. Marschak [3] 
and Radner [4] studied the team problem and established the importance of the 
information structures of the decision makers for the solution. A team decision 
problem is an optimization problem which has many decision makers but only one 
common cost criterion. This means that there are no conflicts of interest between 
the players. The study of information structures was later continued in dynamic 
team problems by Ho and Chu [5] and [6]. The introduction of dynamics was to 
lead into difficult situations where present information is influenced by what has been 
done in the past. Zero-sum differential games have also been subject to extensive 
research since the appearence of Isaacs's book [7] and the paper by Ho et al., [8] 
where the linear-quadratic pursuit-evasion game was discussed. In a zero-sum 
game a single performance criterion is minimized by one of the players and maxi-



mized by the other. However, most of these early studies on zero-sum games were 
close to optimal control problems and did not have much in common with the 
problems appearing in nonzero-sum games. 

Nonzero-sum differential games also resemble classical optimal control problems 
in some respects but because of multiple cost criteria it must be further specified 
what is damanded of an optimal solution. The aims of the players are no more 
completely antagonist as in the zero-sum case. Starr and Ho [1] and [2] discussed 
three solution concepts: Nash equilibrium, minimax and noninferior or Pareto 
optimal. Open-loop and closed-loop solutions were given to a two-player game 
with linear system and quadratic criteria. The Nash problem has also been treated 
by Case [9] and Lukes and Russel [10]. Krikelis and Rekasius [11] studied the 
steady-state problem and proposed an iterative method to obtain the solution to the 
pair of algebraic matrix Riccati equations related to the problem. In the above studies 
the uniqueness of the obtained affine Nash strategies could only be shown in the 
linear-quadratic open-loop problems. Uniqueness results of the closed-loop strategies 
were valid only when the solutions were assumed to be linear or in pure feedback 
form. It was not until some years later that a counterexample [12] was presented, 
in which the existence of nonlinear and nonunique Nash closed-loop strategies was 
established. Basar [13] considered the linear-quadratic discrete-time games with 
different information structures and showed that the nonuniqueness of Nash solutions 
could be overcome by including additive random perturbations in the state dynamics. 
This also yields the equivalence of the global and stagewise, i.e. closed-loop and feed­
back, Nash solutions in discrete-time linear-quadratic games. 

The Stackelberg solution is another strategy, originally used in problems of static 
economic competition [14], which has been extended to dynamic games. Chen and 
Cruz [15] and Simaan and Cruz [16] and [17] illustrated widely the properties of 
Stackelberg open-loop, closed-loop and feedback strategies in multistage games and 
obtained the feedback solutions for continuous-time and discrete-time linear-qua­
dratic games. 

In addition to these papers on Nash and Stackelberg strategies a large number 
of more specific differential game problems has been treated in the literature only 
some of which can be mentioned here. Simaan and Cruz solved the sampled-data 
controls for a Nash problem [18] and the Stackelberg game between two groups 
of players where each player uses a Nash strategy within his group [19]. Among 
the few approaches to find approximative solution to nonzero-sum games with 
nonlinear dynamics are the works by Nishikawa et al. [20] and by Pau [21]. Mukun-
dan and Eisner [22] presented numerical techniques to solve nonlinear game problems 
by restricting the solutions to the class of linear feedback strategies. 

In this paper we shall first consider in detail the general definition of a difference 
game problem. A unique approach is then presented for the development of solution 
algorithms for deterministic discrete-time games with different information structures. 



Nash and Stackelberg solutions are investigated in the cases of two-player open-loop 
and feedback strategies using general quadratic performance criteria, which include 
all the quadratic forms and cross-terms of the state and the players' controls. Corres­
ponding problems have not before been dealt with in the literature. The recursive 
algorithm derived for the Nash open-loop solution is of special interest because it 
decreases significantly the computational difficulties in games with long intervals 
of play. 

Currently these nonzero-sum difference games are subject to wide interest. This 
is manifested in the fact that the problems considered in the present paper were 
independently studied also by Dolezal in [23] and [24]*), using only somewhat 
simpler quadratic criteria. He employed an entirely different method to solve the 
open-loop problems. The techniques is based on a discrete maximum principle 
approach. For the Nash open-loop solutions two recursive algorithms are found 
one of which corresponds to a special case of the one presented in this paper. The 
Stackelberg open-loop solution leads into a matrix two-point boundary-value 
problem, the analytic solution of which is generally not available. Not even the 
numerical solution of this problem is easily obtained. The corresponding boundary 
value problem for the continuous-time game was presented by Simaan abd Cruz [17]. 
Dolezal [23, 24] did not consider games where the players' information structures 
are unequal (see part II of this paper [25]) and it is not clear whether his approach 
could be applied to these problems. 

2. FORMULATION OF THE PROBLEM 

In the following the general deterministic two-player linear-quadratic nonzero-sum 
discrete-time game is defined. This includes the specification of system dynamics, 
performance measures, the structure of the control strategies and the information 
available to the players. 

Evolution of the system state x(k) is described by the linear difference equation 

(2.1) x(k + 1) = A(k) x(k) + B,(k) u(k) + B2(k) v(k), 

where x(k) e R", u(k) e Rp and v(k) e Rq for all k belonging to the set of time-points 
K — {0, 1, ..., N - 1}. The control vector u(k) represents the decision of player 1 
and the control vector v(k) the decision of player 2 at stage k. The system matrix 
functions A, Bt and B2 are assumed time-varying and of dimensions n x n, n x p 
and n x q respectively. 

*) The author is indebted to an anonymous referee for pointing out these articles which were, 
however, published only after the submission of the present paper. 



The performance measure for player;' is a general quadratic cost function given by 4 ' 

(2.2) J, = ixT(N) St x(N) + i Z[x r(fc) Qt(k) x(k) + 2xT(k) Mn(k) u(k) + 
k = 0 

+ 2xT{k) Mi2(k) v(k) + uT(k) Rn(k) u(k) + 2uT(k)Ni(k) v(k) + 

+ vT(k) Ri2(k) v(k)] , i = l , 2 , 

where the weighting matrices S;, Qt(k), Mn(k), Mi2(k), Rn(k), Nt(k) and Ri2(k) are 
of dimensions n x n, n x n, nX p, n x q, p x p, p x q and q x q respectively 
for i = 1, 2 and k e K. Moreover, the cost functions are assumed to be convex with 
St. S2> Qi(k), Q2(k), Ri2(k) and R2i(k) being symmetric positive semidefinite matri­
ces and Rn(k), R22(k) symmetric positive definite matrices for all ke K. 

In addition to the usual quadratic terms of the system state vector and of the 
players' control vectors, the above cost functions also include all the cross-terms 
of these variables. The role of these cross-terms depends on the specific game problem 
in question and they cannot be given any general physical interpretation. 

These general quadratic criteria are encountered when for example the performance 
measures of the players are defined in terms of the output of the controlled system. 
General nonzero-sum games have so far received minor interest in the literature 
although the corresponding output regulator problem plays an important role in 
optimal control theory. Analogously to the regulator case the solution of an "output"-
game can be returned to the solution of a game with general performance criteria. 
To illustrate this let us consider system (2.1) with the following output-equation: 

(2.3) y(k) = C(fc) x(k) + D,(k) u(k) + D2(k) v(k) 

where y(k) e Rm is the system output at stage k and C(k), D}(k) and D2(k) are matrices 
of appropriate dimensions. The cost functions for player 1 and player 2 are now 
assumed to be of the simple quadratic form in y(k), u(k) and v(k): 

(2.4) Jt = hJ(N) Si y(N) + \ £ \yT(k) Q'(k) y(k) + 
* = o 

+ uT(k) R'n(k) u(k) + vT(k) R'i2(k) v(k)] , / = 1, 2 , 

where S'u S2, Q[(k), Q'2(k), R'i2(k), R'2i(k) are symmetric positive semidefinite and 
R'n(k), R'22(k), are symmetric positive definite matrices for all keK. 

The above formulated game problem is solved by returning the cost functions 
(2.4) to the standard general form (2.2) by substituting the system output y(k) in (2.4) 
by expression (2.3). The weighting matrices then become 

(2.5) St = CT(N) S't C(N) 

Q{k) = CT(k) Q't(k) C(k) 



M,,</<) = CT(k) Q',(k) Dj(k) 

Nik) = D[(k) Q\(k) D2(k) 

R..(k) = R'..(k) + Dj(k) Q'i(k) Dj(k) , i, j = 1, 2, keK. 

It is interesting to note that in this case, when the original cost was given by (2.4), 
the cross-terms in (2.2), whose weighting matrices are Mtj(k) and N\(k), i, j = 1, 2, 
appear only when D1(fc) 4= 0 or D2(k) 4= 0 for some k e K, that is, when the output 
at a stage is an explicit function of the control of one of the players at the same stage. 

2.1. Information Structures and Strategies 

A principal difference between game and optimal control problems is that the 
solution of a nonzero-sum game is strongly dependent on the information available 
to the players and on the structure of the permissible control laws. Thus it becomes 
necessary to define these explicitly before the game can be solved. The information 
of the past and present values of the state vector that player i has access to at stage k 
will be denoted by zf\ Since we are dealing with deterministic problems this infor­
mation is perfect without any stochastic noise components. The information structure 
is called perfect memory when at time k the decision maker knows the present 
state vector and remembers perfectly all the past states i.e.: 

(2.6) ZW = {x(0),x(l),...,x(k)}, keK. 

In the zero-memory case only the current time value of the state is available, that is 

(2.7) z f = { # ) } , keK. 

The third kind of information structure that is of importance is the open-loop 
information structure, where the player can only use the initial value of the state 
vector in his control law, in this case 

(2.8) zf) = {x(0)} for all keK. 

In addition to the information Z;fc) player ;' is assumed to have exact knowledge 
of the system dynamics and of each others' cost functions. 

The decisions of the players are based on the available information z f at different 
stages and the control laws are picked from a given class of admissible strategies. 
The strategy for player i at stage k is denoted by yf and it is a function of the in­
formation zf: 

(2.9) «(fc) = V f ( z f ) > y f e T f and z f e Z f 

(2.10) v(k) = y2
k\zf), y2

k)erf and zf e Z2
k), 



where r(k), r(k) are the strategy spaces and Z(k), Z(k) are the information spaces 
in question at stage k. Generally, F(k) and r(k) are spaces of functions from Z(k) 

into Rp and correspondingly Z(k) into Rq. 

2.2. Solution Concepts 

The solution to a game problem is determined by the strategies and the information 
available to the players together with the properties that are required of the optimum. 
In the following Nash and Stackelberg solution concepts will be studied. 

A pair of sets ((r
(0>*, . . . , y^~1)v), (y(

2
0)*, ..., y(

2
N~m)) with y(k)* e T(k) and 

y(k)* e f(k) for each k e K is called a Nash solution to the game if the following 
inequalities hold 

(2.11) ^ [ ^ • • . . y r n i y f * yf1'*)] = 
^A[Mo),...,rri)),(7(

2°)*,...,rri)*h 

(2.12) j2[(y
(r, • •., rm(r (

2
0 )*, • • -, y(ri)*)'] = 

^/2[(7i0)*,...,riN-1)*),(/20),...,rri))], 

that neither of the players can lower his cost by unilaterally deviating from his Nash 
solution provided that the other player uses his Nash strategy. 

In practice the stagewise definition of the Nash solution is often more important. 
Instead of the two inequalities (2.11) and (2.12) we now have two inequalities at each 
stage. The pair (/;/>*, y f* ) with yf* e r(k) and y(

2
k)* e r(

2
k) is a stagewise Nash 

solution at stage k e K if it satisfies the inequalities 

(2.13) J . . [ ( 7 ^ * , . . 

^ A[(yi0)*, 

(2.i4) J2[(y(r,--;yrm),(y(20)*, 

s u(/r, • •.,?rn(r2
0)*, • • •.yr i }*,^, y (r i>*....,/r i}*)]. 

As the equilibrium conditions are here satisfied at each stage, when controls at 
the other stages are fixed to their optimal values, recursive solution algorithms derived 
by dynamic programming techniques become applicable. 

Another solution concept frequently studied is the Stackelberg strategy. It can 
be described by a situation where one of the players knows only his own cost func­
tion but the other player knows both cost functions. It may also be so that one of the 
players is forced to wait until the other player announces his decision, before making 
his own. A general solution principle is to first optimize the response of the folllower 
to any fixed strategy of the leader. Then the leader's cost is minimized with the 



knowledge of the follower's response. Suppose that player 1, the leader, and player 2, 
the follower, both have the zero-memory information structure. The definition 
of a stagewise Stackelberg solution can then be given in the following way. Consider 
first the follower's strategy at stage k when the leader's control is fixed. The follower's 
optimal response to a fixed y(t) at stage k e K is y(k)o if 

(2.15) j2[(y[
0)*, . . . , y ( r i } * , y r y?+ 1 )*. • ••,yiri)*)> 

(y (
2

0 )*, . . . ,y (r i )*,yr ,yr i )*, . . . ,yr i )*)]^ 

g / 2 [ (yr , . . . .yr x ) *.y? ) . r f + 1 ) *, . . . .yr 1 ) *) , 

(y(
2

0)*,...,yr1)*,y(2,,),y?+1)*,...,yri)*)] , 

for all y£> e r?>. 

Thus the optimal response becomes a function of the leader's control i.e. y2
k>0 = 

= y2
k)°(u(k)). The pair (y^*, y2

k)*) is then a stagewise Stackelberg solution at stage k 
with player 1 leading if 

J1[(y (
1

0 )*,... ,yr i )*,yr,y (r i )*,--.,y (r i )*), 

(y(
2
0)*, . • . , y r i , * , y r , y r , ) * , ...,y(2N-1)*)] S 

(2.16) s J,[(yi0)*, ...,yr i )*,y?),7?+1)*. . . . . y r ^ ) , 

(y (20 )*, • • •, y " " 1 } * , y 2
k ) 0 , y ( 2* + 1 > * , • • •, y 2

w _ 1 ) * ) ] 

for all y(,k) e r(.k), where y^0* = y2C)°(y(ifc)*). It is seen that the assumed information 
structures enter implicitly the definition of this solution concept. The Stackelberg 
solution with player 2 leading would be defined in an analogous manner. 

The Stackelberg solution to a game, where more general than the zero-memory 
information structures are allowed, may become quite complicated. The follower's 
response at a certain stage can then become dependent of values of the state of the 
leader's policy even at other time points besides the current time. This can make 
the determining of the leader's optimal strategy very difficult in general. 

3. OPEN-LOOP SOLUTIONS 

Consider the game problem of chapter 2 with the cost functions defined by (2.2) 
and the system dynamics by (2.1). The concept of open-loop solution implies that 
both players have access to the open-loop information set. This means that they 
can use only the initial state vector when determining their optimal policies. The 
admissible strategies for each stage keK are functions mapping z t = {x0} into 
Rp for player 1 and z2 = {x0} into Rq for player 2 when x0 = x(0). 



In order to obtain the optimal strategies the problem will be rewritten with the 
aid of augmented state, initial state and control vectors x, x0, u and v 

(3.1) x 4 [xT(l) j xT(2) i . . . |x T (A0] T 

(3.2) x 0 4 [ x T ( 0 ) i x T ( 0 ) | . . . i x T ( 0 ) ] T 

(3.3) u 4 [u r(0) ; M T (1) j . . . j uT(N - l ) ] T 

(3.4) v 4 \yT(Q) I vT(l) I . . . ! vT(N - 1)] T 

which have nN, nN, pN and oiV components respectively. The system dynamics (2.1) 
can now be replaced by the static equation 

(3.5) x = Ax0 + JBjW + B2v 

where the nN x niV-matrix A is block-diagonal and its fc-th n x n-block is 

(3.6) [A]kk±<P(k,0), k = l,2,...,N, 

with $(fc, /) being the fundamental matrix associated with (2A) given by 

(3.7) <P(k, I) = A(fc - 1) A(fc - 2)- . .. - A(l), k> I 

and 

<Z>(fc, k)=I. 

Bx and B2 are lower block triangular matrices of dimensions nN x pN and nN x qN 
respectively with the n x p and n x q blocks defined by 

(3.8) [ S г ] / t , å l 0 

r <P(k, l) Bi(l - 1) for fc ^ l 

else 

when fc, I = 1, 2, . . . , N and i = 1, 2. 

By using these augmented vectors and matrices the general quadratic cost functions 
(2.2) are transformed into the following equivalent form 

(3.9) J,. = i[xTQiX + 2xTMnu + 2xTMi2v + uTRnu + 2uTNiv + 

+ vTRi2v + xTQoix0 + 2xT
0Monu + 2xT

0Moi2v] , i = 1, 2, 

where Qt and Qoi are symmetric block-diagonal nN x nN matrices whose n x n 

blocks are defined for i — 1, 2 by 

(3.10) [OVUAJ 
Qi(k) for fc = 1,2, ...,N - 1 , 

5Ѓ for fc = ІV 



46 and 

6,(0) for k = 1 , 

for k = 2,3, ...,N . 
(3.H) [SoJ^j 

(0 

The block-matrices M u , M2 1 , M 0 1 1 , M 0 2 1 are nN x piVdimensional and corres­
pondingly M I 2 , M 2 2 , M 0 1 2 , M 0 2 2 are nN x aiV dimensional defined for/',;' = 1, 2 by 

cM 
(3.12) [ M l 7 ] t ( 4 ] 

(.0 

when fc = 1,2, . . .,iV and 

r M 
(3+3) [Mcn/L.,4 

10 

My(fc) for / = fc + I , 

else 

when fc = 1,2, . . . , N and 

M;j.(0) for fc = / = 1 , 

else , 

when fc, / = 1, 2, . . . , iVand i,j = 1, 2. 

The symmetric matrices Rtj and R2J are block-diagonal of dimensions pN x pN 
for j = 1 and tjiV x qN for7 = 2 respectively: 

(3.14) [ R y ] t t I R;,(fc - 1) for fc = 1, 2, . . . , N 

Finally we have the pN x qN block-diagonal matrices Nt and N2: 

(3.15) [ i V ^ A i V ^ k - 1) for fc = 1, 2, . . . , N . 

The original dynamic game problem has thus become a static game where the quadra­
tic cost criterion is expressed in terms of the initial state vector and the augmented 
control vectors. Different solutions based on the open-loop information structure 
can now be determined in a straightforward manner. It is clear that the constant 
terms depending solely on x0 like xT

0Qoix effect only the values of the of optimal 
costs of the players without entering the solution procedure. 

3.1. The Nash Open-Loop Solution 

The Nash open-loop equilibrium solution is obtained by first deriving the N 
decisions of each player with fixed strategies for the other player and finally requiring 
these to be satisfied simultaneously. We define the augmented strategy vectors by 

(3.16) y^o) 4 M\x0)r \ (y[2\x0)r j ... J ( y ^ W l 7 

(3.17) y2(*0) A M\x0)r \ (y[2\x0)r ]...] (y?~ " M T • 



The control of player 1 that minimizes Jx(u, y2) for a fixed -;2 is then 

(3.18) u°= -G^[Fxx0 + Exf2] 

and the control of player 2 that minimizes J2(yx, v) for a fixed yx is 

(3+9) v° = -G2\F2x0 + E2yx], 

where G, and G2 are symmetric matrices defined by 

(3.20) G, = Rn + BTMi; + [Ml + EjQi] El3 i = J, 2 , 

and 

(3.21) Ei = MJ„ + [Mj ; + BJQ;] A, i = 1,2, 

(3.22) £, = iV, + B[M12 + [M[, + B[g , ] B2 

(3.23) E2 = JV[ + B2'M21 + [M2 2 + BT
2Q2] B, . 

The Nash open-loop strategy pair (y*, T5) results when (3.18) and (3.19) are 
satisfied simultaneously. Solving the pair of equations 

(3.24) ft = u°(x0, f2) , 

(3.25) f2 = v°(x0, y*) 

yields 

(3.26) it* = y*(x0)= -Rux0, 

(3.27) v* = ^ (x 0 ) = - Wt,x0 , 

where 

(3.28) Hu = [G, - EXG2
1E2]"

1 [F, - £ , 5 , ] F 2 ] , 

(3.29) ij„ = [G2 - E.Gr'E,]-1 [F2 - £2G2 *£,] . 

The solution (3.26) and (3.27) thus obtained is at each stage a linear function 
of the initial state for both players. Necessary condition for the existence of this 
equilibrium solutionis invertibility of G,, G2 and of either the matrix [G t - Efi^E^ 
or the matrix [G2 - E2GliEi~\. The equivalence of these latter conditions is revealed 
by the following general matrix identity 

(3.30) [G, - E.G^E,]-1 = 5 : ' + GX
XEX[G2 - E.G^E,]^ E2G;1 . 

Thus it is sufficient to check the nonsingularity of the lower dimensional matrix 
only. 



3.2. The Stackelberg Open-Loop Solution 

The Stackelberg open-loop solution is determined at the start of the game in such 
a way that the leader first computes the follower's optimal reaction to his set of 
decisions on the whole interval of the play. After this the leader minimizes his own cost 
function assuming that the follower will response rationally at all stages in the 
future. The follower's optimal strategy is thus determined by the values of the leader's 
control. 

Suppose the leader's control is u. Then the followers response minimizing J2(ii, y2) 
is 

(3.31) ya
2(u)^ ~G^[F2x0 + E2u], 

where matrices G2, E2 and E2 are those defined above by (3.20), (3.21) and (3.23). 
The leader then seeks a solution that minimizes Jfyi, y2(y~i))- This results in the 
linear strategy 

(3.32) Q* = y*(x)= -H„x0, 

where 

(3.33) Hu = [G1L - E1LG2
lE2y

i [ F u - E^G^F,] 

and 

(3.34) GlL=Gl-E
T

2G2
1E'1, 

(3.35) F1L = Fi-E
T

2G2
1F12, 

(3.36) E1L = E, - ElG^Gj, 

with 

(3.37) G ]2 = R12 + B2Ml2 + [M[ 2 + S^gi] B2 

(3.38) E12 = MT
0i2 + [M[ 2 + BT

2Qx-\ A . 

Matrices g . , Ft and El are defined by equations (3.20), (3.21) and (3.22). The follo­
wer's Stackelberg strategy y* is then his optimal response to the leader's Stackelberg 
control: 

(3.39) v* = f2(x0) = y°2(y*(x0)) = -Hvx0 

where 

(3.40) Hv = GZl[F2 - E2F„] 



or it can also be written as 

(3-41) Hv = [G2 - E.G^E.J-1 [E2 - E2G^F1L] . 

Here it is required that the matrices G1L, G2 and either [G1L - E1LG2
1E2] or 

[G2 - E2(JI1E1L] are invertible. The obtained Stackelberg open-loop solutions 
(3.32) and (3.39) yield at each stage a pair of strategies (y(l)*(x0), y2

k)*(x0)) which are 
linear functions of the initial state x0. 

One observes that irrespective of the entirely different solution concepts the 
Stackelberg open-loop strategies are determined by the same kind of equations as 
the Nash open-loop strategies. The only deviations are the additional terms that 
enter the leader's G1L, F1L and E1L matrices. 

A game with player 1 being the follower and player 2 the leader would be solved 
in the same way, merely a change in the indexing in the above equations would be 
needed. 

3.3. Recursive Algorithms 

The practical applicability of the preceding forms for the solutions are likely to 
decrease due to dimensionality problems when N becomes large, because the solutions 
are given in terms of the augmented matrices. Therefore one would rather have the 
solutions in a form where high dimensional matrix equations would be transformed 
into a series of low dimensional equations. 

It is, indeed, possible to express the Nash open-loop solution in a much more 
convenient way by replacing the augmented vector representation by two recursive 
matrix equations. An equally simple recursive procedure is, however, not obtained 
for the Stackelberg open-loop solution. Thus we shall only consider the Nash open-
loop solution in this context. Derivation of the recursive equations is based on an 
implicit version of the pair of equations (3.24) and (3.25), where the augmented 
state vector x has not been eliminated. Then the matrices involved become of suitable 
block triangular and block diagonal forms allowing the derivation of a stagewise 
solution procedure beginning from the lowest row of block matrices. We omit the 
details but it can be verified by performing some algebraic manipulations that the 
Nash open-loop solution (3.26) and (3.27) is given in the following feedback form 

(3.42) u*(k)= -Hu(k)x(k) 

(3.43) v*(k) = -Hv(k)x(k) 

The feedback gains Hu(k) and Hv(k) are 

(3.44) Hu(k) = [Gx(k) - £,(fc) G~2\k) E2(k)]~' [Ft(k) - £.(fc) G2\k) F2(k)] 

(3.45) Hu(k) = [G2(k) - E2(k) G;\k) E^fc)]"1 [F2(fc) - E2(/c) G;l(k) Ft(k)] , 



50 where the matrices G;(/c), P,(fc) and E,(k) are defined by 

(3.46) G.(fc) = Rn(k) + BT(k) P,(fc + 1) B{k) i = 1, 2 

(3.47) F.-(fc) = Mfj(fc) + BT(k) P,(k + l) A(k) ( = 1,2 

and 

(3.48) E,(fc) = Nt(k) + Br(k) Pt(k + 1) B2(k) 

(3.49) E2(fc) = NT

2(k) + BT

2(k) P2(k + 1) Bt(k). 

The Nash control laws are then obtained by solving recursively the coupled 

asymmetric Riccati-type matrix difference equations for Pj(fc) and P2(k) 

(3.50) Pt(fc) = Qt(k) - Mn(fe) Hu(k) - M12(fc) //„(fc) + 

+ AT(k) P,(k + 1) [A(fc) - Bt(k) Hu(k) - B2(k) Hv(k)] 

(3.51) P2(k) = Q2(fc) - M22(/<) ff„(fc) - M2 t(k) H„(/c) + 

+ Ar(/<) P2(fc + 1) [A(fc) - Bt(k) Hu(k) ~ B2(k) Hv(k)] 

with 

Л(Л0 = Si, P2(N) = S2. 

Finally the system equation must be employed repetitively in order to eliminate 
the current time state vectors from the solution and to obtain the open-loop strategies. 
This yields 

(3.52) u*(fc) = r?>*(x0) = -Htl(k) «P(fc) x0 

and 

(3.53) v*(k) = y«)*(x„) = -Hv(k) V(k) x 0 , 

where *F(k) satisfies the difference equation 

(3.54) 

!P(fc) = [A(k - 1) - Bx(k - 1) Hu(k - 1) - B2(k - 1) Hv(k - 1)] T(k - l ) , 

•P(O) = / . 

The necessary condition for the existence of the solution involving the augmented 
matrices is now replaced by corresponding conditions at each stage i.e. inver-
tibility of G,(k), G2(k) and of either [Gt(fc) - £.(fc) G2\k) E2(k)~\ or [G2(k) -
- E2(k) G"x\k) Et(k)] for all fc e K. 



The solution algorithm for this Nash open-loop game proceeds stagewise back- 51 
wards so that at a stage fc the Gt(k), Ft(k) and Et(k) matrices are first determined 
by the aid of P;(fc + l) which is known from the preceding step. The feedback gains 
Hu(k) and Hv(k) can then be evaluated from (3.44) and (3.45) and used to obtain 
Pj(fc) from (3.50) and (3.51). When the feedback gains have been computed in this 
manner for the whole interval, equation (3.54) is solved recursively in the forward 
direction to yield the open-loop strategies (3.52) and (3.53). 

4. FEEDBACK SOLUTIONS 

The feedback strategies for a game are characterized by the stagewise definition 
of the conditions for the solution and by the zero-memory information structure 
for both players. This definition of the solution is probably the most important 
one from the practical point of view. For example, if a game theoretic approach is 
used in designing regulators or decentralized control systems, it is natural to assume 
that optimization of control at each stage is solely based on current-time values 
of the state vector. The stagewise definition of solutions is also convenient from the 
computational point of view since recursive solution algorithms can be derived 
inductively by straightforward dynamic programming techniques. 

4.1. The Nash Feedback Solution 

Consider again the game with cost functions (2.2) and system governed by (2.1). 
Let Jf(k) denote the optimal cost-to-go from stage fc to the final stage i.e. Jf(k) is 
the cost for player i over the interval [fc, fc + 1, . . . , JV] with the players' controls 
being fixed to the optimal strategies on that interval. 

Starting from the final stage one readily sees that 

(4.1) J((N) = J*(N) = ixT(N) S, x(N). 

At stage N - 1 the game problem faced by the players becomes a static nonzero-sum 
game when the system equation is used to eliminate x(jV) from the cost functions. 
The Nash solution to this game is obtained in the same way as in the open-loop case. 
This yields a linear strategy in x(N - l) for both players and the resulting costs are 
again quadratic in the current time state vector x(N - l). By an inductive argumen­
tation this can be shown to be true for all stages. 

Assume first that at a stage fc + 1 the optimal costs are quadratic functions of the 
form 

(4.2) Jf(k + 1) = \xr(k + 1) P,(k + 1) x(k + 1) , i = 1, 2 . 



Consider then the game prpblem that remains to be solved at stage fc. The costs 
become 

(4.3) J;(fc) = i[xr(fc) Qt(k) x(k) + 2xT(k) Mn(k) u(k) + 

2xT(k)Mi2(k)v(k) + uT(k)Rn(k)u(k) + 2uT(k)Ni(k)v(k) + 

+ vT(k) Ri2(k) v(kj] + \xT(k + 1) P;(fc + 1) x(k + 1), i = 1,2 . 

Elimination of x(k + l) from J;(fe) results in a static game problem whose Nash 
solution is again easily obtained and it yields a pair of linear strategies 

(4.4) u*(k) = yf}*(x(k)) = -H„(k) x(fc) , 

(4.5) t;*(fc)=rrG<k))=-H0(fc)x(fc>J 

where Hu(k), Hv(k) and the related matrices in their definitions are those given 
in terms of P;(fc + l) by equations (3.44)-(3.49). Existence of the solution requires 
invertibility of matrices Gt(k), G2(k) and [Gt(fc) - Ei(fc) G2

l(k) E2(k)]. The optimal 
cost-to-go is now easily observed to be quadratic in x(k) for both players: 

(4.6) J*(fc) = ixT(fc) P;(fc) x(fc), i = 1,2. 

with Pi(fc) and P2(fc) given by 

(4.7) P.(fc) = Qt - MnHu - HT
UMT

X1 - M12HV - HTMT
l2 + 

+ H'URUHU + HTNtHv + HTNTHU + HTR12HV + 

+ [A - BlHu - B2HV]T P,(k + 1) [A - B.fl, - B2HV] 

and 

P2(k) = 0.2- M21HU - HTMT
21 - M22HV - HTMl2 + 

(4.8) + HUR21HU + HT
UN2HV + HT

VNT
2HU + HVR22HV + 

+ [A - BtHu - B2HVJ P2(k + 1) [A - B1H„ - B2HV] , 

where the argument fc of the time-varying matrices on the right hand sides has been 
dropped for convenience. 

The above results now imply by backward induction that J*(k) and J*(k) arc 
quadratic of the form (4.6) for all fc e K. The solution on the whole interval can thus 
be a recurcive algorithm where a static game is solved at each stage starting from 
the last stage and proceeding backwards to the initial stage. This is possible because 
of the assumed zero-memory information structure since the solution at a certain 
stage will not depend functionally on controls at the earlier stages. 

The Nash feedback solution is now given by (4.4) and (4.5) for all fc e K. The feed­
back gains Hu(k) and Hv(k) are determined in terms of the matrices G;(fc), P.(fc) and 
Ej(k) which depend on P;(fc + l), i = 1, 2. Here matrices Px(fc) and P2(k) deter-



mine the values of the cost-to-go and they are obtained by solving the pair of sym­
metric coupled Riccati-type matrix difference equations defined by (4.7) and (4.8) 
with the boundary conditions 

(4.9) Pt(N) = Sn i = 1,2. 

It is interesting to compare these equations to the corresponding pair of matrix 
difference equations (3.50), (3 51) obtained in the Nash open-loop case. The structure 
of the equations is much the same, only symmetry together with a number of terms 
are missing from the open-loop equations. This is analogous to the differences 
between Nash open-loop and Nash feedback solutions in continuous time linear 
quadratic games [12]. 

Further, one might wish to compare these values of the cost functions (4.6) with 
those obtained when both players use arbitrary linear feedback strategies of the type 
u(k) = -Hu(k)x(k) and v(k) = -Hv(k)x(k). The cost-to-go would again be ob­
tained from (4.6) by solving the difference equations (4.7) and (4.8) for P,(k) and 
P2(k) where Hu(k)andHv(k) are substituated by the arbitrary feedback gains in question. 
The remaining problem would become linear without coupling between the equa­
tions. For example the optimal costs-to-go in the Nash open-loop game could be 
calculated in this way. 

4.2. The Stackelberg Feedback Solution 

The solution procedure for the Stackelberg feedback strategy is quite similar 
to that in the Nash case. A series of static games is solved recursively proceeding 
backwards from the final stage, k = N - 1, to the initial stage, k = 0. The same 
technique remains applicable also in this Stackelberg problem because of the assumed 
zero-memory information structure and due to the fact that the optimal costs-to-go 
become again quadratic in the current-time state vector. 

The game (2.2) and system (2.1) is considered with player 1 being the leader and 
player 2 the follower. Omitting further details of the derivation of this algorithm 
the recursive equations defining the Stackelberg feedback solutions are given. At 
a stage k eK the Stackelberg optimal cost-to-go for player i is a quadratic function 
of x(k) 

(4.10) J*(k) = \xT(k) Pt(k) x(k), i = 1, 2 

and the feedback solutions are linear strategies 

(4.11) U*(k) = ir(x(k))=-Hu(k)x(k), 

(4.12) v*(k) = yf*(x(k)) = -Hv(k) x(k). 

In the above equations Ei(fc) and P2(k) satisfy the pair of symmetric coupled 
Riccati type matrix equations (4.7) and (4.8) with the final conditions (4.9). The 



feedback gain matrices, which also appear in the equations for E^fc) and P2(k), are 
given by 

(4.13) Hu(k) = [G1L(/c) - E1L(fc) G2\k) E2(k)yi [E1L(/c) - E1L(/c) G2\k) E2(/c)] 

(4.14) HB(k) = [G2(/c) - E2(k) G^(k) E.^fc)]-1 [E2(fc) - E2(k) G^k) E1L(/c)] 

where 

(4.15) G1L = G,(k) - ET
2(k) G2\k) E[(/c) , 

(4.16) E1L = F.(fc) - ET
2(k) G-2\k) F12(k) , 

(4.17) EiL = E1(k) - ET
2(k) G2\k) G12(k) 

and 

(4.18) G12(/c) = Rl2(k) + BT
2(k) P\k + 1) B2(k) , 

(4.19) E12(fc) = MT
2(k) + BT

2(k) P\k + 1) A(fc) . 

The matrices G,(/c), E;(/c) and E](/c) above are defined in terms of P,(k + i), 
i = 1,2, by equations (3.46) —(3.49). The solution exists provided G1L(fc), G2(fc) 
and moreover either [G1L(/c)-E1L(fc) G2\k) E2(kj] or [G2(fc)-E2(/c) G^fc) E1L(k)] 
are nonsingular for all k e K. 

The solution procedure for this Stackelberg feedback solution is algorithmically 
of the same kind as the preceding Nash feedback one. Similarly as in the open-loop 
case the corresponding equations defining the Nash feedback strategies yield the 
Stackelberg feedback strategies with player 1. being the leader when Gt(k), Ft(k) and 
E^/c) are replaced by G1L(fc), E1L(fc) and E1L(k) respectively. One might expect 
a more clear difference in the structure of the Nash and Stackelberg solution algo­
rithms since the Nash problem is a real two player game compared to the Stackel­
berg problem, where the leader is in fact the only decision maker. A detailed inspec­
tion of the definitions of the auxiliary matrices, however, reveals that after performing 
the required substitutions the analytic representations of the corresponding matrix 
difference equations become quite different. Yet the practical numerical solution 
algorithms, which are based on the recursive equations derived above, remain similar. 

5. CONCLUSION 

In this paper we have developed algorithms for open-loop and feedback strategies 
in deterministic general linear-quadratic two-person nonzero-sum difference games 
with the Nash and the Stackelberg solution concepts. The feedback strategies are 
derived by a dynamic programming techniques and the solution is in both cases 



obtained by solving a pair of recursive matrix equations. The open-loop strategies 55 

are found by converting the dynamic game problem into a static one by an augmenta­

tion method. In these two cases both the Nash and the Stackelberg solution procedu­

res are given algorithmically in the same formats. A computationally advantageous 

recursive algorithm is derived for the Nash open-loop solution. The augmented 

form representation is replaced by two nonsymmetric matrix-difference equations, 

which resemble the symmetric ones obtained in the feedback case. 
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