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K Y B E R N E T I K A - ^ V O L U M E 14 (1978), N U M B E R 3 

On the Evaluation of Properties 
of the Sequential Probability Ratio Test 
for Statistically Dependent Observations 

IVAN VRANA, MOHAMED MAHMOUD EL-HEFNAWI 

The paper deals with the method for the evaluation of performance parameters of the sequential 
probability ratio test (SPRT) when this test is applied to statistically dependent observations. 
The effective Monte-Carlo simulation method is proposed for this purpose. Some basic properties 
of the SPRT are shown when used to the detection of a signal with a random phase in a coloured 
Gaussian noise environment. These results were obtained by the proposed method. 

1. INTRODUCTION 

The sequential probability ratio test (SPRT) is the optimum sequential test in 
many decision problems [ l ] . From the practical point of view it is sometimes useful 
to know the properties of the SPRT also for decision problems in which the optimum 
sequential test is not yet known. Such a problem is e.g. a radar decision whether 
the target is present or absent. In this paper we shall show an effective method of 
evaluating the performance of the SPRT for a decision problem of the detection 
of a signal with a random phase in a coloured Gaussian noise environment. We shall 
also introduce some numerical results obtained by this method. We shall deal only 
with the case when the test will be terminated with the unit probability (for both 
hypotheses) after the finite number of sequential steps, i.e. with the case which has a 
practical importance. 

Let us assume the decision problem 

(1) Hk : Ym = Nm + kS,„((p), k = 0, 1 . 

Let us denote by X1 the transpose of matrix X and m will be called the number 
of observations. Then the column complex vectors F„„ Nm and Sm(<p) have the follow­
ing interpretation 

(2) Ym = ( > w 2 , . . . , ymf = ((yi + ]y"i), . . •,()>'„, + jym))T 



190 is the vector of observations with complex elements yt — (y\ + jy"). 

(3) Sm(cp) - (Sl(<p), ..., sm(<p)Y = ((s[(<p) + js'frp)), ..., (s'm(cp) + js'm(<p))Y 

is the vector of a determined signal with a random parameter q>. This vector has 
complex elements 

(4) s,((p) = S',(<p) + )s'l(q>) = Sie
v 

and q> is the random variable uniformly distributed in the interval <0, 2K). 

(5) Nm = (ni,..., nm)T = ( K + jni'), . . . , ( n r a + )nm))T 

is the noise vector with complex elements nt = n\ + jn'/. We shall assume that the 
complex elements of the noise vector (the complex samples of noise) have the follow­
ing properties for all i, ke <1, m>: 

(6) E(n't) = E « ) = 0 ; 

K"'i<) = 0 , 
E(«X) = E ( « ) = cik ; 

E denotes an averaging operator, cik are elements of the positive-definite covariance 
matrix Cm of the vector Re(Nm) = (n'u ..., n'm) and of the vector Im (Atm) = 
= (n'[, ..., n'm) respectively. The matrix Cm is of the order m and it has real 
elements. It follows from (6) that 

(7) E(Wm) = 0 

E(NmNl) = 0 

E(AtJV*) = 2Cm 

where the symbol Af* denotes conjugate transpose of the matrix Nm. The term qua­
drature components of the complex number nx will denote its real and imaginary 
parts n'i and n'[. The joint probability density function of the quadrature components 
of the noise vector wm(ni, . . . , n'm, n'[, ..., n'm) is Gaussian and we shall formally 
denote it by wm(Nm). Then 

(8) wm(Ag = * exp (-iNZC^Nj 
(2n)m det Cm 

where C"1 is an inverse of the matrix Cm and det Cm denotes the determinant of Cm. 
Analogically, we shall denote the joint probability density function of quadrature 
components of the observation vector wm(yi, . . . , y'm, y"u ..., y'm) by wjYm). 



The sequential probability ratio test (SPRT) calculates the likelihood ratio 

0) Aiym) = M^m 
wm(Ym I H0) 

sequentially for m = 1,2, . . . . The test is either terminated for the given m by accept­
ing one of the hypotheses 

(10) H0 if A(Ym)^B 

H. if A(Ym) = A 

or the test continues in observation by increasing m by 1 if B < A(Y) < A. A, B 
are constant upper and lower thresholds of the SPRT, HLV denotes an averaging 
operator over the random parameter cp, wm(Ym | HK) are conditional distributions 
of the observation vector under hypothesis HK. 

Four performance parameters characterize the performance of the SPRT. They 
are probability of type 1 and type 2 errors and the average numbers of observations 
under both hypotheses. Let us denote 

(11) Zm = In A(Y„,) 

and let 

y = (In B, In A) = (J5', A') 

be an open interval. Then the probability of accepting Hx when HK is true will be 

(12) PK(Ht) = PK(ZX £ A') + PK(ZX e y) PK(Z2 £ A \ Zx ey) + ... 

. . . + PK(ZX e y) PK(Z2 e y \ Zx e y) x . . . 

• • • x PK(Z„-X ey\Zxey, ..., Z„_2 e y) PK(Z„ ^ A'\Zxey, ... Z„_x ey) + ... 

Probabilities of errors are evidently P0(HX) and PX(H0). The probability of false 
alarm Pf = P0(HX) and the probability of correct detection Pd = PX(HX) = 1 — 
- P^HQ). The average test length is given by equations 

(13) E(m \HK) = t iPK(m = i) 
; = i 

where the probability density of m is given by the equation 

(14) PK(m - 0 = PK(Z{ ty,Zt-ley,...,Zlev). 

Substituting into (13) and after arrangement we obtain 

(15) E(m | HK) = PK(ZX $y) + t iP^Z, £y\Zi_xey,...,Zxey)x 



x IMz.-i e y | z ;-2 e y, . . . , Zx e y) x . . . 

. . . x PK(Z2 e y | Z, e y) PK(Z, e y). 

Equations (12) and (15) give us general relations for the calculation of all performance 
parameters of the SPRT. Wald [2] introduces the following equation for the average 
test length 

(is) ^m\H<).Zd!!MJd^ldME 

where w^y | HK) denotes the conditional joint probability density function 
w(y'i, y'{ | HK) of one pair of quadrature components y\, y". Since (16) is valid only 
for independent and identically distributed observations, i.e. if it holds, 

(17) Zm = l l n W ' H H l ) - m\n^y\Hi) 

t=i w^ytlHo) w^ylHo) 

it is clear that for our decision problem (16) cannot be used and it is necessary to use 
the general equation (15). 

It is necessary to integrate the joint probability density functions of Z l 5 Z2, . . . , Zm 

over the corresponding complex domains of these events for calculation of pro­
babilities of events appearing in (15). Unfortunately it is very difficult to express 
the m-th joint probability density function of Z l 5 Z2, . . . , Zm in the closed form and 
hence it is difficult to obtain the above mentioned probabilities. But it is possible 
to evaluate performance of the SPRT with the aid of the Monte-Carlo simulation 
method. This method gives us an unbiased estimate [3] for all four performance 
parameters describing properties of the SPRT. These estimates are random variables 
and we can control the accuracy of the method by guaranteeing that the true per­
formance parameters will lie, with the given probability, inside the confidence interval 
of the chosen width. The Monte-Carlo simulation method usually requires a large 
amount of calculations. This implies high requirements for an operational speed 
of the computer used and high requirements for the computer time consumption. 
Further, we shall show how to simplify significantly the Monte Carlo simulation 
method in our case. Using this method we shall determine some basic properties 
of the SPRT for the case when the SPRT is applied to radar observations. 

2. SIMPLIFICATION OF THE MONTE-CARLO SIMULATION 
METHOD 

The Monte-Carlo simulation method will require the simulation of the whole 
hypothesis testing problem, i.e. to simulate both signal and noise processes and to 
simulate the sequential processor. Increasing the accuracy of the estimated perfor-



mance parameters will require an increasing number of times of performing the test. 
For the proposed method to be effective (from the point of view of the computer 
time consumption) it is necessary to minimize the number of operations as much as 
possible. 

The likelihood ratio A(Ym), according to (l), (8) and (9), will be for our case 

(18) A(Ym) = E,(exp(iY:Cm-'F,„ - \((Ym -Sm(<p))* Cm\Ym - Sm(cp))))) 

= E„(exp ( - i Sm(cp) C;1 Sm(<p) + i S m » C~%Ym + \YtC~1 Sm(cp))) . 

Let 

(19) Sm = Sm(<p) . e _ j " 

be a complex vector which, according to (4), has elements s; not depending on (p. 
Then the likelihood ratio (18) can be arranged to the form 

(20) A(Ym) = exp ( - iS*C- lSm) E„(exp (i(SmCm ^ e " j " + Y^Cm
 ,Smej"))) 

and by averaging over cp and by taking the logarithm of both sides of the equation 
we shall get 

(21) Zm = In A(Ym) = - i S * C ; 1 S „ , + In l0(|S*C„;1Fm|) 

where I0 is the modified Bessel function of the zero order and the symbol |x| denotes 
the modulus of a complex variable x. 

The SPRT processor compares the value Zm to the two constant thresholds A' = 
= In A and B' = In B. Taking into account that the term S*C~ 1Sm is a constant 
for the given m and the In I0 is a strictly monotonic function, then the inequalities (10) 
are evidently equivalent to the inequalities 

(22) \Qm\ < mm accept H0 

\Qm\ ^ s4m accept Hx 

^m < \Qm\ < ^m continue the test 

where 

(23) |Q,„| = |5raC;1F,„| 

and 3Sm, stfm are modified lower and upper thresholds, respectively, given as follows 

(24) <%m = (In I0(ln B + iSt^SJj)-1 , 

s4m = (lnl0(ln A + iSlC-'SJ)-1 , 

(in I 0 ) - 1 is the inverse function of In I0 . 

Because the thresholds sim, @)m are constants for a given m (they do not depend 
on the observed signal), it is possible to calculate them only once for each m regard-



194 less on the number of repetitions of the test. Thus the SPRT processor operating 
according to (22) will calculate the function (In I 0 ) _ 1 only twice for each m, whereas 
the processor according to (10) will calculate the function In I0 for the given m each 
time the test is repeated when the test length is not less than m. In most cases, due 
to this fact, the processor operating according to (22) has a significant advantage 
compared to the processor operating according to (10). 

For further reduction in the number of operations, it is very important to arrange 
the equation (23) for \Qm\ in such a manner, which simplifies the simulation of both, 
signal and noise processes. \Qm\ should be simulated as follows 

(25) \Qm\ = ISX^iV,* + KcivSm)\ 

= IS^C; 1 ^ + Ke^SlC^S,^ • K = 0 ; 1 

where K denotes the true hypothesis. It is seen that | Q,„\ has two parts; due to signal 
and noise components of observation. In the Monte-Carlo method we can separately 
simulate both the signal and noise processes and then calculate \Qm\ directly using 
(25). But by a simple arrangement and by factorisation of the matrix C" 1 we can 
reach a considerable simplification. 

Since the covariance matrix Cm and its inverse C" 1 are both positive-definite, we 
can factorize them as a product of a lower triangular matrix and its conjugate trans­
pose, i.e. 

(26) Cm = GmG* , 

(27) Cm ' = D*„D,„ 

where 

(28) Dm = G ~ I . 

Let us multiply Qm by e~1<p, take the modulus of the resultant and use (27). Then 

(29) \Qm\ = \(DmSm)* (D,„Nme-w + KD,„Sm)\ 

Let us denote 

(30) iNm = DmN,„. 

The quadrature components of the vector 1Atm have again evidently the Gaussian 
probability density function w,„(1Atm) and they have the following properties 

(31) E(lNm) = E(DmNm) = Dm E(Nm) = 0 , 

(32) E(1/Vm
1/V^) = E(DmNmNlDT

m) = Dm E(NmNj„) DJ
m = 0 , 

(33) E(1Atm
1/V*) = E(DmNmN*Dt) = Dm E(NmN*) D*m = 2DnCmD*m = 

= 2DmGmG*D* = 2/„,, 



where Im is the unit matrix of the order m. Then 195 

(34) wJlNm) = - - — exp ( - i'Nt' Nm). 
(2n)m 

Quadrature components of the elements of vector 1Nm are thus independent and they 
are zero-mean. Let 

(35) 2Nm = 'N^-'"" = Dm/Vme-j" 

Transformation (35) is identical to that defined by (A.2) in Appendix and the random 
variable <p is statistically independent on the elements of a vector 17V„, and it has the 
probability density function 

(36) w(<p) = — for <pe <0, 2n) , 
2lT 

= 0 for <p 4 <0, 2n) . 

Then according to the theorem, proven in Appendix, it holds 

(37) wm(2Nm) = wm(lNm). 

The vector 2Nm has thus elements with independent quadrature components, which 

are zero-mean and have the Gaussian joint probability density function.. 

Equation (29) will be rewritten to the form 

(38) \Qm\ = |D*(2Atm + KDm)\ 

where 

(39) Dm = DmSm 

is the column vector representing the signal part of |<2m|. Vector D,„ coincides with 
the vector D m + 1 in all the first columns. From (38) it follows that during simulation 
it is simply sufficient to generate two mutually independent white Gaussian sequences 
with zero means and unit variances and to use them as the quadrature components 
of the vector 2Atm, instead of the simulation of the coloured Gaussian complex 
process with the covariance matrix of the quadrature components Cm. 

The new arrangement of \Qm\, as given by (38), will suppress the necessity for 
simulating the signal process. Since the only random variable in the signal process 
is (p and <p does not appear in the signal part of | Qm\ as given by (38), then there is no 
need for generating the random variable <p and the signal part Dm should be calculated 
only once for the given m during the whole simulation runs of the SPRT. 

Thus it is clearly seen that arrangement (38) of |Q,„| will simplify the generation 
of both the signal and the noise processes and will simplify the calculation of \Qm\ 
compared to the direct method via (25). 



Note. It is seen that the SPRT, designed for the detection of the signal with the 
random phase in the Gaussian noise environment, has identical statistical properties 
also for the detection of the completly known signal in the Gaussian noise environ­
ment. In other words, the probabilities of errors and the average test lengths are the 
same for the both above mentioned cases. 

3. MISMATCHED OBSERVATIONS 

In technical applications both signal and noise are described by some set of para­
meters ip, which define their concrete properties. Such parameters are e.g. the ampli­
tude, the rate of phase changes, the variance, the spectrum width, etc. Let the assumed 
signal be defined by a set of nonrandom parameters 9S and the assumed noise be defined 
by a set of nonrandom parameters &N. Let the processor be designed according to 
the values of parameters of the above mentioned sets. These values of parameters 
will be called the design parameters. The values of parameters of the actually observed 
signal and the accompanying noise will be called the actual parameters. Actual para­
meters can generally differ from the prespecified design parameters. This deviation 
of parameters of the actually observed signal from the corresponding design para­
meters will be called the case of mismatched observations. To differentiate between 
the actual and design parameters we shall denote the former by the symbol $. i.e. 

<? = (3s, K): 
From the point of view of technical applications it is important to know the per­

formance of the SPRT also in the case of mismatched observations, i.e. to know the 
probabilities of errors and the average test lengths under both hypotheses. Equations 
(12) and (15), given in Introduction for the probabilities of errors and the average test 
lengths, hold also for the case of mismatched observations, but the statistics of the 
log-likelihood ratios Zx , Z2 , . . . , Zm will differ from that of matched case. For mis­
matched case the joint probability density function of the random variables ZUZ2, ... 
..., Zm will be also calculated from the probability density function of the observa­
tion yu y2, ..., ym, but with actual parameters $ replacing the design parameters \j/. 
This results in a different joint probability density function of Z., Z2, ..., Zm, com­
pared to the matched case. The direct calculation of the performance parameters 
of the SPRT in a mismatched case is practically impossible for the same reasons 
like those for the matched case. But these performance parameters could be again 
evaluated by the Monte-Carlo simulation method described in the preceding section. 
Further we shall show, how to simplify this method also for the case of mismatched 
observations. 

The mismatched signal parameters can be easily introduced into (29) and (38) by 
assigning values 5S different from 9S. Then 

(40) | Q„,| = |(Z>„, Sm(9s))* (>Nm + KDmSm(3s))\ = 

-\(9m(9s))*(2Nm + KSj9s))\ 



where evidently we understand Dm = Dm(9N), 3>m(9s) = 3>m(9N, Ss) and 2)m(§s) = 
= 3>m(9N, 9S). The matched case is a special case of (40) if Ss = 9S. 

Equation (40) should be slightly changed for introducing mismatched noise para­
meters. Let Rm be the positive-definite covariance matrix of the actual coloured noise 
(of its quadrature components) and Rm

 i be the inverse of Rm. Then (33) will not be 
valid, because Cm is not the covariance matrix of Nm yet and thus the quadrature 
components of 1Nm are not yet independent. To transform the vector Nm to a vector 
with independent quadrature components, let us arrange (25) as follows 

(41) \Qm\- \SX&s) KDmRmRm \Nm + Ke3* Sm(9m))\ 

By factorizing the matrix R~i to a product of triangular matrices W* and W,„ and 
by defining the square matrix 

(42) L,„ = DmRmW* 

and introducing the noise vector 

(43) 3At„ = WmNme-i9 

we shall obtain, after an arrangement 

(44) |Qm\ = \(@m(9s))* (Lm
3Nm + K ®m(9s))\ . 

In equations (42) through (44) we shall evidently understand that Rm = Rm(3N), 

Lm = Lm(9N, 9N). When the noise parameters are matched, i.e. Rm = Cm, then 

Lm = Im-
Analogically like in the previous section, we can show that the noise vector 3Atm 

has independent quadrature components with zero mean and with a Gaussian joint 
probability density function. 

Performance of the SPRT for the case of mismatched noise parameters could be 
evaluated merely by introducing the matrix Lm into the simulation process. The 
advantage of this arrangement is that the matrix Lm+i coincides with the matrix Lm 

in the first m rows and m columns. Thus the matrix Lm is needed to calculate only 
once regardless on the number of the test repetitions. This evidently leads to decreas­
ing the number of operations and memory requirements during simulation compared 
to the direct calculation via equation (41). 

4. APPLICATION OF THE SPRT TO THE DETECTION 
OF A RADAR SIGNAL 

In this section we shall show an example, when our decision problem (1) will be 
the detection of a radar signal. For this concrete decision problem we shall show what 



form the equations used for simulation have and further we shall show some basic 
properties of the SPRT when used for detection of a radar signal. 

In the case of a radar signal we shall deal with the case where the complex elements 
of the signal vector Sm(q>) have the form 

(45) sfo)-Xap(XiF+<p)) 

and the elements of the covariance matrix of the noise quadrature components are 

(46) cik = 5ik + lexp(-Q(i-k)2) 

where X is the amplitude and F is the phase modulation of the signal, ). is a variance 
and Q is a positive constant characterizing the spectrum width of the coloured noise 
component and 5ik is the Cronecker delta. In this case obviously 

(47) 9S = (X,F); 9N^(?.,Q). 

Let us denote 

(48) S'm(F) = ±Sm(F,X). 

Then equation (44) will have the form 

(49) | Qm\ = X\(Dm S'm(F)f (LjNm + KXDm Sm(P))\ . 
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Fig. 1. The dependence of the average test length E(/n | H0) on the phase modulatior\ F. Matched 
case. 

.P,. = 10~3, ^ = 0 - 9 , r2 = 5-3 . 10~4 , A = 1 0 4 . 



For illustration we shall further introduce some typical properties of the SPRT, 
evaluated by the described Monte-Carlo simulation method. More detailed results 
are in [3]. For each set of design and actual parameters the simulation consisted 
of 1000 runs when evaluating the average test lengths E(m | H0) and E(m | Ht) 
and it consisted of 50 000 runs when evaluating both the actual probability of detec-

Fig. 2. The dependence of the average test length E(m | H^ on the phase modulation F. Matched 
case. 

Pf 1 0 - 3 , Pd=0-9, G = 5 - 3 . 1 0 " ~ 4 , /. = 104 

tion Pd and the actual probability of false alarm Pf. The assumptions that for the 
given type of a signal with properties (45), (46) the SPRT will stop by accepting 
one of two hypotheses after the finite number of steps was checked (with the statis­
tical accuracy of the used method) during the Monte-Carlo simulations. 

Figure 1 shows us the dependence of the average test length E(m | H0) on the phase 
modulation of signal F (due to the Doppler effect) for the matched case. Since 
E(m | HK)F = E(m | HK)2K-F, Fig. 1 shows only a part of these characteristics for 
F e <0,7t>. Analogically Fig. 2 shows us the dependence of the E(m | Hj) on phase 
modulation F for the matched case. 

The basic property of the SPRT is the fact that a total probability of an erroneous 
decision will not exceed the prespecified value. Thus even for very bad conditions 



like small phase modulation F or small amplitude X, the SPRT will achieve the 
desired error probabilities if it is made matched to the above mentioned signal 
conditions. But, as it is seen from Figs. 1 and 2, the small probabilities of error are 
paid by a relatively large average test length in these cases. 

Fig. 3. The average test length EimlH^) versus the actual signal amplitude X. Matched noise 
parameters S N = 9N . 

P л = 0 - 9 , ЛГ=2-5, F=F, fl= 5-3.10" X = 104 . 

Mismatching of the signal parameters 9S results in a change of both the probability 
of detection Pd and the average test length E(m | H,) while both values Pf and 
E(m | H0) remain unchanged. Figure 3 shows us an influence of mismatching of the 
amplitude X to the average test length E(m | H,). It is seen from these curves that 
their tops lie roughly near the value X = XJ2. The curves have the shape similar 
to those introduced in [4] for the case of the SPRT used for a completely known 
signal in a white Gaussian noise. 



Figure 4 shows us, what influence has mismatching of the signal amplitude X on the 

actual probability of detection Pd. The influence of mismatching the phase modula­

tion F on the actual probability of detection Pd is shown in Fig. 5. This dependence 

is called the speed characteristics of the SPRT processor. For comparison purposes, 

the characteristic which corresponds to the dependence Pd on F = F in the matched 

case is also drawn. 
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Fig. 4. The actual probability of detection Pd versus the actual signal amplitude X. Matched 
noise parameters SN = 9N . 
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The influence of mismatching of the noise parameters k, Q can be briefly summa­

rized as follows. The processor SPRT operates quite well under such noise conditions, 

if X _| A, fo g Q. But if either 1 > X or 0, > Q (i.e. when values of actual parameters 

exceed the values of their corresponding design parameters), then the performance 

of the SPRT will quickly deteriorate. From the class of the SPRT processors satisfy-



ing the design requirments on their error probabilities, the processor which is matched 
to the actual noise parameters will reach the minimum average test length. 

For the radar signal the work [3] compares the performance of the optimum 
fixed-length test (the likelihood-ratio test [5]) to the performance of the SPRT. 

F/1Г 

Fig. 5. The speed characteristics of the SPRT. Matched noise parameters 8N ---
Pf=10~3, ^ = 0 - 9 , X = 2 - 5 , fl=5-3.10~4, X = 104 . 

This comparison covers a wide range of changes of parameters 9S, 3N. The results 

of these comparisons can be summarized as follows. To reach the same probabilities 

of errors and the same average test lengths E(m | H^) by both tests, the SPRT requi­

res a 0-8 times smaller value of the signal amplitude X than the likelihood-ratio test. 

Under the same values of the signal amplitude and the same error probabilities, the 

test length of the likelihood-ratio test is approximately 1-4 times longer than E(m | H^) 

of the SPRT and 1-8 times longer than E(m | H0) of the SPRT. Thus, it is clear 

that the SPRT is more advantageous than the optimum fixed-length test from all 

the assumed points of view. 



5. APPENDIX 

Theorem. Let U = (au ft, a2, ft, ..., a„, ft, cp) be the random vector with 
real elements and with the joint probability density function of its elements 

(A.l) w(U) = w(aufiu . . . ,«„,&,<?) = _ l _ e x p ( - * £ ( « ? + fi)) . 
(2TT)" + 1 I - I 

Further, let V = (au bu a2, b2, . .., an, bn, <p) be a random vector with real elements 
at, bb <p which originated from the elements <xh ft, cp of the vector Uby the functional 
transform 

(A.2) ak = ak cos cp - ft sin cp , 

bk = ak sin <p + ft cos cp 

for all k e <], n>. Then the joint probability density function of the elements of the 
vector V is 

(A.3) W(V) = W(au bu..., a„, bn, cp) = —j—-exp ( - i f (a? + &?)) 
( 2 T T ) " + 1

 f = i 

Proof. We can easy show that the vector V originated from the vector U by the 
one-one functional transform V = f(U). It holds evidently for all k e <1, n) 

(A-4) ak = f^ott, ft, cp), 

bk = f2(«fc, ft, </>) 

and 

(A.5) afc = gt(ak, bk, cp) , 

k = g2(a*, !>/t, <2>) , 

. where functions g,, g2 are given by equations 

(A.6) ak = ak cos cp + bk sin cp , 

ft = — ak sin cp + bk cos cp . 

Then for the joint probability density function W(V) it holds 

(A.7) W(V) = (detJ)w(U) 



where / is a Jacobian of the transform U = f *(F). Evidently 

"At! 0 0 . . . 
(A.8) J = Ю = 

Õ(V) N2 0 

0 Л7, 

Nn 

мi 
M 2 

M 3 

M„_ 
лt' 

where 0 are square 2 x 2 fields with zero elements, 0' are 3 x 2 fields with zero 
elements and, for all k e <1, n — 1>, Nk are the square 2 x 2 fields given as follows 

(A.9) Лt. = [ cos (p sin (p~\ 
— sin <p cos <pj 

Л̂  

and Mk are some 2 x 3 fields. The field At' has the structure 

(A.10) N' = COS ф s i n ą> I 

— sin ą> cos ф /c 
0 0 1 

where / and k are some functions of a„, i>„, (/>. The matrix J is then divided into fields 
with the square fields in the main diagonal. Its determinant can be easily evaluated 
by applying a generalized elimination method [6] and it is 

(A.ll) det J = det Nx det At2>1 det At3j2 . . . det At („_1 ) ) („_2 ) det At'. 

Due to the structure of the matrix J according to (A.8), where the first column 
consists only of zero fields except of the first row, the leading fields are 

(A.12) _VMt_1) = Att = At. 

Then 

(AT3) det J = (det At)" - 1 det At'. 

Since det At = cos2 q> + sin2 q> — 1 and det N' = 1, then 

(A. 14) d e t J = l . 

Using (A.6) we can show that 

(A.15) . 4 + Pi = a\ + b\ . 

Substituting (A.14), (AT) and (A.15) into (A.7) we get 

(A.16) W(V) = w(V). 

The theorem is proven. 
(Received December 1, 1977.) 
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