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CONDITIONAL INDEPENDENCE AND 
ITS REPRESENTATIONS* 

JUDEA PEARL, DAN GEIGER, THOMAS VERMA 

This paper summarizes recent investigations into the nature of informational dependencies 
and their representations. Axiomatic and graphical representations are presented which are 
both sound and complete for specialized types of independence statements. 

1. INTRODUCTION 

A central requirement for managing reasoning systems is to articulate the condi­
tions under which one item of information is considered relevant to another, given 
what we already know, and to encode knowledge in structures that display these 
conditions vividly as the knowledge undergoes changes. Different formalisms give 
rise to different definitions of relevance. However, the essence of relevance can be 
captured by a structure common to all formalisms, which can be represented axio-
matically or graphically. 

A powerful formalism for informational relevance is provided by probability theory, 
where the notion of relevance is identified with dependence or, more specifically, 
conditional independence. 

Definition. If X, Y, and Z are three disjoint subsets of variables in a distribution 
P, then X and Yare said to be conditionally independent given Z, denotedl(X, Z, Y)P, 
iff P(x, y j z) = P(x | z) P(y \ z) for all possible assignments X = x, Y = y and 
Z = z for which P(Z — z) > 0.1(X, Z, Y)P is called a (conditional independence) 
statement. A conditional independence statement a logically follows from a set E 
of such statements if a holds in every distribution that obeys I. In such case we 
also say that or is a valid consequence of I. 

This paper addresses the problem of representing the sum total of all independence 
statements that logically follow from a given set of such statements. Since the size 
of this closure set is normally astronomical, it is important to find representations 
that are economical in storage and permit efficient procedures for verifying member­
ship in the closure. Such procedures should enable us to determine, at any state 
of knowledge Z, what information is relevant to the task at hand and what can be 
ignored. Permission to ignore gives reasoning systems the power to act on the basis 

* This work was partially supported by the National Science Foundation Grant No. IRI-
8610155, "Graphoids: A Computer Representation for Dependencies and Relevance in Automat­
ed Reasoning (Computer Information Science)". Sections of this paper are based on Pearl [17] 
and Pearl et al. [18]. 
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of local information. We present axiomatic and graphical representations for in­
dependence statements of a specialized nature: causal statements, marginal statements 
and fixed-context statements. The results will be stated without proofs; these can be 
found in the references cited. 

2. AXIOMATIC REPRESENTATION 

It is easy to verify that the set of statements I(X, Z, Y)P generated by any probability 
distribution P must obey the following set of axioms: 

Symmetry 

(La) I(X,Z,Y)=>I(Y,Z,X) 

Decomposition 
(1 .b) I(X, Z, Y u W) => I(X, Z, Y) & I(X, Z, W) 

Weak Union 
(l.c) I(X, Z, Yu W) => I(X, Zu W,Y) 

Contraction 
(l.d) I(X, ZKJY, W) & I(X, Z, Y) => I(X, Z,YKJ W) 

If P is strictly positive, than a fifth axiom holds: 

Intersection 

(l.e) I(X, Z u W, Y) & I(X, ZKJY, W) => l(X, Z,Yu W) 

Axioms (l.a) through (l.d) form a system called semi-graphoid (Pearl and Verma 
[20]) and were first proposed as heuristic properties of conditional independence 
by Dawid [4]. Systems obeying all five axioms were called graphoids (Pearl and 
Paz [19]). 

Intuitively, the essence of these axioms lies in Eqs. (l.c) and (l.d) asserting that 
when we learn an irrelevant fact, relevance relationships among other variables in 
the system should remain unaltered; any information that was relevant remains 
relevant and that which was irrelevant remains irrelevant. These axioms, common 
to almost every formalization of informational dependencies, are very similar to 
those assembled by Dawid [4] for probabilistic conditional independence and those 
proposed by Smith [24] for Generalized Conditional Independence. The difference 
is only that Dawid and Smith lumped Eqs (l.b) through (l.d) into one, and added 
an axiom to handle some cases of overlapping sets X, Y, Z. We shall henceforth 
call axioms (l.a) through (l.d) Dawid''s axioms, or semi-graphoid axioms, inter­
changeably. 

The general problem of verifying whether a given conditional independence 
statement logically follows from an arbitrary set of such statements, may be undecid-
able. Its decidability would be resolved upon finding a complete set of axioms for 
conditional independence, i.e., axioms that are powerful enough to derive all valid 
consequences of an arbitrary input set. Until very recently, all indications were that 
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axioms (La) through (l.d) are complete, as conjectured in [19], but a new result 
of Studeny [25] has refuted that hypothesis. Currently, it appears rather unlikely 
that there exists a finite set of axioms which is complete for conditional independence, 
thus, the general decidability problem remains unsettled. The completeness problem 
is treated in [10] and completeness results for specialized subsets of probabilistic 
dependencies are summarized in Section 7. 

3. GRAPHICAL REPRESENTATIONS 

Interestingly, both undirected graphs (UGs) and directed acyclic graphs (DAGs) 
conform to the graphoid axioms (hence the name) if we associate the statement 
l(X, Z, Y)G with the graphical condition "every path from X to Y is blocked by the set 
of nodes corresponding to Z". In UGs, blocking corresponds to ordinary inter­
ception. In DAGs, it is defined by a criterion called d-separation. 

Definition (d-separation). If X, Y, and Z are three disjoint subsets of nodes 
in a DAG D, then Z is said to d-separate X from Y, denoted l(X, Z, Y)D, iff there 
is no path* from a node in X to a node in Yalong which the following two conditions 
hold: (l) every node with converging arrows either is or has a descendant in Z, 
and (2) every other node is outside Z. A path satisfying the conditions above is said to 
be active, otherwise it is said to be blocked (by Z). Whenever a statement l(X, Z, Y)D 

holds in a DAG D, the predicate l(X, Z, Y) is said to be graphically-verified (or 
an independency), otherwise it is graphically-unverified by D (or a dependency). 

Fig. 1. 

In Figure 1, for example, X = {2} and Y= {3} are d-separated by Z = (1); the 
path 2 <- 1 -> 3 is blocked by 1 e Z while the path 2 -> 4 <- 3 is blocked because 
4 and all its descendents are outside Z. Thus 1(2, 1,3) is graphically-verified by D. 
However, X and Yare not ci-separated by Z' = {1, 5} because the path 2 —> 4 <- 3 
is rendered active. Consequently, 7(2, (1,5), 3) is graphically-unverified by D; 

* By path we mean a sequence of edges in the underlying undirected graph, i.e., ignoring the 
directionality of the arcs. 

35 



by virtue of 5, a descendent of 4, being in Z. Learning the value of the consequence 5, 
renders its causes 2 and 3 dependent, like opening a pathway along the converging 
arrows at 4. 

Ideally, to employ a graph G as a representation for dependencies of some distri­
bution P we would like to require that for every three disjoint sets of variables in P 
(and nodes in G) the following equivalence should hold 

(2) I(X,Z,Y)G iff I(X,Z,Y)P 

This would provide a clear graphical representation of all variables that are condi­
tionally independent. When Eq. (2) holds, G is said to be a perfect map of P. 
Unfortunately, this requirement is often too strong because there are many distribu­
tions that have no perfect map in UGs or in DAGs. The spectrum of probabilistic 
dependencies is in fact so rich that it cannot be cast into any representation scheme 
that uses polynomial amount of storage (cf. [27]). Geiger [7] provides a graphical re­
presentation based on a collection of graphs (Multi-D AGs) that is powerful enough 
to perfectly represent an arbitrary distribution, however, as shown by Verma, it 
requires, on the average, an exponential number of DAGs. 

Being unable to provide perfect maps at a reasonable cost, we compromise the 
requirement that the graph represents each and every dependency of P, and allow 
some independencies to escape representation. We will require though that the set 
of undisplayed independencies be minimal. A treatment of minimal representations 
using undirected graphs is given in [17] and [19], here we focus on DAG repre­
sentations. 

Definition. A DAG D is said to be an I-map of P if for every three disjoint subsets 
X, Yand Z of variables the following holds: 

(3) l(X,Z,Y)D^l(X,Z,Y)P 

D is said to be a minimal /-map of P if no edge can be deleted from D without 
destroying its 7-mapness. 

The task of finding a DAG which is a minimal /-map of a given distribution P 
can be accomplished by the traditional chain-rule decomposition of probability 
distributions. The procedure consists of the following steps: assign a total ordering d 
to the variables of P. For each variable i of P, identify a minimal set of predecessors 
St that renders i independent of all its other predecessors (in the ordering of the first 
step). Assign a direct link from every variable in St to i. The analysis of [26] ensures 
that the resulting DAG is a minimal /-map of P. The information required for this 
construction consists of n conditional independence statements, one for each variable, 
all of the form l(i, St, U^— S,) where U(i) is the set of predecessors of i and St 

is a subset of U(0 that renders i conditionally independent of all its other predecessors. 
This set of conditional independence statements is called a causal input list Land is 
said to define the DAG D. The term "causal" input list stems from the following 
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analogy: Suppose we order the variables chronologically, such that a cause always 
precedes its effect. Then, from all potential causes of an effect i, a causal input list 
selects a minimal subset that is sufficient to explain i, thus rendering all other preceding 
events superfluous. This selected subset of variables are considered direct causes 
of i and therefore each is connected to it by a direct link. 

4. THE MAIN RESULTS 

Clearly, the constructed DAG represents more independencies than those listed 
in the input L, namely, all those that are graphically verified by the d-separation 
criterion. The results reported in the preceding subsection guarantee that all graphically-
verified statements are indeed valid in P, i.e., the DAG is an I-map of P. It turns 
out that the constructed DAG has another useful property; it graphically-verifies 
every conditional independence statement that logically follows from L (i.e. holds 
in every distribution that obeys L). Hence, we cannot hope to improve the d-separa-
tion criterion to detect more independencies, because all valid consequences of L 
(which defines D) are already captured by ^-separation. 

The three theorems below formalize these results. Proofs can be found in the 
references cited. 

Theorem 1 (Soundness) [26]. Let D be a DAG defined by a causal input list L of 
any dependency model obeying axioms (La) through (l.d) (e.g., probabilistic 
dependence). Then, every graphically-verified statement is a valid consequence of L. 

Theorem 2 (Closure) [26]. Let D be a DAG defined by a causal input list L. Then, 
the set of graphically-verified statements is exactly the closure of L under axioms 
(La) through (l.d). 

Theorem 3 (Completeness) [9]. Let D be a DAG defined by a causal input list L. 
Then, every valid consequence of L is graphically-verified by D (equivalently, every 
graphically-unverified statement in D is not a valid consequence of L). 

Theorem 1 guarantees that the DAG displays only valid statements. Theorem 2 
guarantees that the DAG displays all statements that are derivable from L via axioms 
(La) through (l.d). Theorem 3 assures that the DAG displays all statements that 
logically follow from L, i.e., the semi-graphoid axioms are complete, capable of deri­
ving all valid consequences of a causal input list. Moreover, since a statement in a DAG 
can be verified in polynomial time, Theorems 1 through 3 provide a complete poly­
nomial inference mechanism for deriving all independency statements that are 
implied by a causal input list. 

The first two theorems are more general than the third in the sense that they hold 
for every dependence relationship that obeys axioms (La) through (l.d), not neces­
sarily those based on probabilistic conditional independence (proofs can be found 
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in [26] and [29]). Among these dependence relationships are partial correlations 
([3], [19]) and qualitative dependencies ([5], [23]) which can readily be shown 
to be semi-graphoids. The completeness of d-separation (Theorem 3) relative partial 
correlations has been established in [10] while completeness relative to qualitative 
dependencies has not been examined yet. 

5. DETERMINISTIC NODES AND D-SEPARATION 

Theorems 1 through 3 assume that L contains only statements of the form 
l(i, Sh U(j)— S^. Occasionaly, however, we are in possession of stronger forms of 
independence relationships, in which case additional statements should be read 
off the DAG. A common example is the case of a deterministic variable, cf. [22], i.e., 
a variable that is functionally dependent on its corresponding parents in the DAG. 
The existence of each such variable i could be encoded in Lby a statement of global 
independence l(i, Sh U — St — i) asserting that conditioned on Sh i is independent 
of all other variables, not merely its predecessors. The independencies that are 
implied by the modified input list can be read from the DAG using an enhanced 
version of d-separation, named D-separation. 

Definition. If X, Y, and Z are three disjoint subsets of nodes in a DAG D, then Z 
is said to D-separate X from Y, iff there is no path from a node in X to a node in Y 
along which the following three conditions hold: (1) every node with converging 
arrows either is or has a descendant in Z; (2) every other node is outside Z, and (3) 
no node is functionally determined by Z. 

The new criterion certifies all independencies that are revealed by d-separation 
plus additional ones due to the enhancement of the input list. For example, if the arc 
2 -> 4 in Figure 1 were deterministic, then 2 D-separates 5 from 3 and, indeed, 5 and 
3 must be conditionally independent given 2 because 2 determines the value of 4. 
The soundness and completeness of D-separation is stated in Theorem 4. In fact, 
the link 3 —> 4 is redundant because J (4,2,135) implies I (4, 23,1). It is for this reason 
that deterministic nodes can be presumed to have deterministic incoming arrows. 

Theorem 4 [11]. Let D be a DAG defined by causal input list L, possibly containing 
functional dependencies. Then a statement is a valid consequence of L if and only 
if it is graphically-verified in D by the D-separation criterion. 

These graphical criteria provide easy means of recognizing conditional inde­
pendence in Bayesian networks (see Section 8) as well as identifying the set of para­
meters needed for any given computation. We now show how these theorems can 
be employed as an inference mechanism. Assume an expert has identified the follow­
ing conditional independencies between variables denoted 1 through 5: 

L = {1(2, 1, 0), 7(3, 1, 2), 7(4, 23, 1), 7(5, 4,123)} 
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(the first statement in Lis trivial). We address two questions. First, what is the set 
of all valid consequences of L? Second, in particular, is 1(3, 124, 5) a valid conse­
quence of L? For general input lists the answer for such questions may be undecid-
able but, since Lis a causal list, it defines a DAG that graphically verifies each and 
every valid consequences of L. The DAG D is the one shown in Figure 1, which 
constitutes a compact representation of all valid consequences of L. To answer the 
second question, we simply observe that 1(3, 124,5) is graphically-verified in D. 
A graph-based algorithm for another subclass of statements, called fixed context 
statements, is given in Section 7 (see Theorem 8). 

6. STRONG COMPLETENESS 

Theorem 3 can be restated to assert that for every DAG D and any statement a 
graphically unverified by D there exists a probability distribution Pa that embodies 
D's causal input set L and the dependency a. By Theorem 2, Pa must embody all 
graphically-verified statements as well because they are all derivable from L by 
Dawid's axioms. Thus, Theorems 2 and 3 guarantee the existence of a distribution 
Pa that satisfies all graphically verified statements and a single, arbitrarily-chosen, 
graphically unverified statement (i.e., a dependency). The question answered by the 
next theorem is the existence of a distribution P that embodies all independencies 
of D and all its dependencies, not merely a single dependency. A set of axioms that 
guarantees the existence of such a distribution is said to be strongly complete [2]. 

Theorem 5 (Strong Completeness) [9]. For every DAG D there exists a distribu­
tion P such that for every three disjoint sets of variables X, Yand Z the following 
holds; 

I(X,Z,Y)D iff I(X,Z,Y)P 

Theorem 5 legitimizes the use of D AGs as a representation scheme for probabilistic 
dependencies; a model builder who uses the language of DAGs to express dependen­
cies is guarded from inconsistencies. 

7. OTHER COMPLETENESS RESULTS 

This section presents a summary of completeness results for two specialized subsets 
of independence statements. Proofs can be found in [8] and [10]. The first result 
establishes an axiomatic characterization of marginal statements, i.e., statements 
of the form l(X, Z0, Y) where the middle argument Z0 is fixed. The second result 
provides a complete axiomatic characterization of fixed-context statements, i.e., 
statements of the form l(X, Z, Y) where X u Z u Ysum to a fixed set of variables U. 

Theorem 6 (Completeness for Marginal Independence). Let I be a set of marginal 
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statements closed under the following axioms: 

Symmetry l(X, Z0, Y) -> l(Y, Z0, X) 

Decomposition l(X, Z0, YW) -> l(X, Z0, Y) 

Mixing I(X, Z0, Y) & /(NY, Z0, W) -+ I(X, Z0, YW). 

There exists a probability model P that obeys all statements in I and none other. 

Theorem 7 (Completeness for Fixed-Context). Let I be a set of fixed-context 
statements closed under the axioms: 

symmetry l(X, Z, Y) -> I(Y, Z, X) 

weak union l(X, Z, YW) -* l(X, ZY, W) 

weak contraction l(XY, Z, W) & l(X, ZW, Y) -+ l(X, Z, YW) . 

There exists a probability model P that obeys all statements in I and none other. 
Moreover, if I is closed also under 

intersection I(X, ZW, Y) & I(X, ZY, W) -> l(X, Z, YW), 

then P can be selected to be strictly positive. 

The membership question, whether a given marginal statement follows from an 
arbitrary set of such statements, can be answered in linear time (cf. [8]). For fixed-
context statements, the membership question can be answered in quadratic time 
(cf. [2] and [28]). Inferences involving fixed-context statements relative to strictly 
positive distributions are governed, in fact, by much stronger results, equivalent 
to Theorems 1 through 3, based on undirected-graph representation. 

Definition. An undirected graph G is said to be the skeleton of a list L of statements 
if a pair (a, /?) of vertices is adjacent in G iff there is no statement l(X, Z, Y) in L 
such that a e X and /?e Y. 

Theorem 8. Let L be a list of fixed-context independence statements relative to 
a positive distribution P, and let G be the skeleton of L. Then, the following hold: 

1. Soundness. Every graphically-verified statement in G is a valid consequence of L. 

2. Closure. The set of graphically-verified statements is exactly the closure of L 
under axioms (l.a) through (l.e). 

3. Completeness. Every valid consequence of L is graphically-verified by G (equi-
valently, every graphically-unverified statement in G is not a valid consequence 
ofL . 

Theorem 8 strengthens the soundness property known to hold for Markov fields 
(cf. [13], [14]). 
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8. COROLLARIES 

Theorem 1 leads to four corollaries which are the key to the construction of 
minimal DAG representations for a given distribution P. Such representations were 
called Bayesian networks in [17], and influence diagrams in [18]. 

Definition. Given a probability distribution P on a set U of variables, U = 
= {XX,X2, ...,Xn), a DAG D — (U,E) is called a Bayesian network of P iff D 
is a minimal I-map of P. 

Corollary 1. Given a probability distribution P(xx, x2,..., x„) and any ordering d 
of the variables. The DAG created by designatings as parents of Xt any minimal set 
St of predecessors satisfying 

(4) I(XhSuUw-St), U(i) = {XuX2,...,X^x} 

is a Bayesian network of P. Conversely, every Bayesian networks of P can be 
constructed by identifying the parent sets ;S(- defined in (4) along some ordering d. 
If P is strictly positive, then all the parent sets are unique (cf. [19]) and the Bayesian 
network is unique as well (given d). 

Since all conditional independencies portrayed in the network (via cI-separation) are 
valid in P, they are order independent. This yields an order-independent test for 
minimal I-mapness. 

Corollary 2. Given a DAG D and a probability distribution P, a necessary and 
sufficient condition for D to be a minimal I-map (hence a Bayesian network) 
of P is that each variable Xt be conditionally independent of all its non-descendants, 
given its parents S{, and no proper subset of Sf satisfies this condition. 

The necessary part follows from the fact that every parent-set St cI-separates Xt 

from all its non-descendants. The sufficient part holds because xt-'s independence 
of all its nondescendants entails x,'s independence of its predecessors in a particular 
ordering d (as required by Corollary 1). 

Corollary 3. If a Bayesian network D is constructed from P (by the method 
of Corollary 1) in some ordering d, then any ordering d' consistent with the direction 
of arrows in D would give rise to an identical network. 

The validity of Corollary 3 follows from that of Corollary 2, which ensures that the 
set St will satisfy Eq. (4) in any new ordering, as long as the new set of Xt's prede­
cessors does not contain any of X/s old descendants. Thus, once the network is 
constructed, the original order can be forgotten; only the partial order displayed 
in the network matters. 

Another interesting corollary of Theorem 1 is a generalization of the celebrated 
Markov-chain property which is used extensively in the probabilistic analysis of 
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random walks, time-series data and other stochastic processes (cf. [6], [15]). The 
property states that if in a sequence of n trials Xu X2, ...,Xn the outcome of any 
trial Xk, k = 2, 3, ..., n depends only on the outcome of its directly preceding trial 
Xk~x then, given the entire past and future trials Xi,X2, ...,Xk-1,Xk+1, . . . ,X„, 
the outcome of Xk depends only on its two nearest neighbors Xk_t and Xk+1. 
Formally: 

If I(Xk,Xk.1,Xk_2...X1), 2 ^ k ^ n , then 

I\Xk,Xk-.1Xk+i, Xn... Xk+1Xk-2... Xx), 2 fS k ^ n — 1 . 

(The converse holds only for full graphoids, e.g., strictly positive distributions.) 
Theorem 1 generalizes the Markov-chain property to dependencies other than 
probabilistic and to structures other than chains. The ^/-separation criterion uniquely 
determines a Markov blanket for any given nodeXf in a Bayesian network, namely, 
a set BL(Xt) of variables that renders Xt independent of all variables not in BL(Xi), 
i.e., l(Xh BL(Xt), U - BL(Xi) - Xt). 

Corollary 4. In any Bayesian network, the union of the following three types 
of neighbors is sufficient for forming a Markov blanket of a node Xt: the direct 
parents ofx,-, the direct successors of Xt and all direct parents of the latter. 

Thus, if the network consists of a single path (i.e., a Markov chain), the Markov 
blanket of any non-terminal node consists of its two immediate neighbors, as expected. 
In trees, the Markov blanket consists of the (unique) parent and the immediate 
successors. In Figure 1, however, the Markov blanket of node 2 is {1, 4, 3). Note 
that in general, these Markov blankets are not minimal; alternative orderings might 
display Xt with a smaller set of neighbors. 

The necessary part of Corollary 2 was stated without proof in [12] and was later 
used in the derivations of [16] and [21]. Corollaries 2 and 3 are proven in Smith 
[24] using the axioms of Eq. (1). Since Theorem 1 establishes J-separation a sound 
procedure relative to Dawid's axioms, the validity of such corollaries can now be 
verified by purely graphical means. The use of (/-separation in proving the validity 
of graphical transformations on influence diagrams is discussed in [17]. 
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