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K Y B E R N E T I K A - V O L U M E 17 (1981), N U M B E R 3 

ON THE CAPACITY OF ASYMPTOTICALLY 
MEAN STATIONARY CHANNELS 

STEFAN SUJAN 

The properties of the information quantile capacity, the Shannon capacity, and the operational 
channel block coding capacity are investigated for discrete asymptotically mean stationary 
channels with finite alphabets. For channels decomposable into a finite number of ergodic 
asymptotically mean stationary components with finite input memories the positive block coding 
theorem and its weak converse are established. 

1. INTRODUCTION 

A principal goal of the Shannon theory is to relate the operational capacities 
defined as certain optima over actual deterministic codes to information theoretic 
extremum problems. This is done by proving appropriate coding theorems. The 
most common quantity resulting from this approach is the Shannon capacity. How­
ever, Nedoma [6] demonstrated an example of a stationary channel where the 
Shannon capacity strictly exceeded the operational one and this led Winkelbauer 
[14—17] to the concept of information quantile capacity that equals the operational 
one for more general channels. In this paper we investigate these concepts of capacity 
for asymptotically mean stationary (a.m.s.) discrete channels with finite alphabets. 
Similar problems were studied in [10] for channels with additive a.m.s. noise. 

Let A be a finite set with |A j > 1 elements. We denote by A°° the space of all 
doubly-infinite sequences x = (..., x~x, x0, x l s . . . ) , x ; e A and let 2*A denote the 
(T-field generated by the set of all cylinders of the form Cm(F) = [x : x"m

+"~l e F), 
F c A", where xm

+"~l = (xm, ..., xm+„_1). Any probability measure \i on (A00, 2FA) 
is called a source; we shall indicate the alphabet by writing [A, \i\ when convenient. 
The symbol TA stands for the shift, viz. (TAx)n = xn+l. As in [10] we use the symbols 
MA, MA, SA, SA, MA, and MA to designate the sets of all stationary (i.e. T^-invariant) 
sources, of all stationary and ergodic sources, of all a.m.s. sources, of all a.m.s. and 
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ergodic sources, of all «-stationary (i.e. TJ-invariant) sources, and of all block 
stationary sources, respectively. If \i e SA then fi e MA will denote its stationary mean 
[2], i.e., 

fi(F) = lim r ' f ^ ' f ) , F e &A . 
K-co ft = 0 

If JA = {F e &A : F = T4_1F} then / . / ^ = / j / ^ and /t <; /*' (cf. [2], the latter 
fact enables us to employ Jacobs' results [4]). Hence, the entropy 

H(n) = limn'1 Hn(fi") 

where / /(F) = /x(cS(F)), F <= A" and #„(//) = — £ /""(xo) log //'(xS) exists for 

any fieSA and the Shannon-McMillan theorem is valid as well. Throughout the paper 
log = log2, exp = exp2. 

A channel with input alphabet B and output alphabet A (both finite and non­
empty) is a list of probability measures {v̂ ,; y e B00} on (A00, !FA) such that for each 
event G e 2P'A, y i-» vy(G) is measurable. A channel is denoted by \B, v, A] or simply 
by v. Given an input source \B, fi] and a channel \B, v, A] the corresponding double 
source fiv is defined on (B00 x A00, 3FBxA) by 

//v(F x G) = \vy(G)^y) 

and the output source fiv on (A00, #"x) by 

f7v(G) = /iv(B°° x G), G e ^ . 

A channel \B, v, A] is said to be stationary if 

v(TAG | TBy) = v(G \ y) (v(- | y) = v,(-)) 

for G e $FA and y e Bx. A stationary channel is said to be ergodic if \i e Mj entails 
/iv e MBxA. If /j e SB entails fiv e SBxA, v is said to be a.m.s., and an a.m.s. channel 
is said to be ergodic if fiv e SBXA for any input source fi e SB [ l ] . 

A simple result on conditional probabilities gives the following. Given fi and v 
such that fiv is a.m.s. there is a stationary channel v satisfying fiv = fiv and called the 
induced stationary channel of/, and v [ l ] . An input independent concept is that of 
a stationary mean. This is a stationary channel [JB, v, A] such that, for any fi e MB, 
liv = fiv, vy <| vy fi-a.e., and 

l imK- 1 £ v(TJkG \ i;ky) = vy(G) /i-a.e., Ge^A. 
K-oo k = 0 

The stationary mean exists for every a.m.s. channel (cf. [1, Theorem 3]). If v is also 
ergodic then so is v [1, Lemma 4]). The converse is true as well: 
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Lemma 1. The stationary mean of an a.m.s. and ergodic channel is an ergodic 
channel. 

Proof. Let /jeAlJ. As M* c SB, fiveSgXA so that fiv\JBxA = / J V / / B X / 1 = 
= fivjJBXA e {0, 1}. Hence fiv e MBXA wheever fi e M^. • 

2. THE CAPACITIES 

The Shannon capacity results from the attempts to express the capacity as extremum 
of a functional of probability measures over an appropriately constrained space. By 
far the most common approach deals with maximizing the mutual information rates 
attainable over the channel. Put for y0 e B" and x0 e A" 

a ^ ) = "--Mog.M«) 
vn(yao) /Tv"(*o) 

If fi and v are a.m.s. we can use the Shannon-McMillan theorem of Jacobs [4] for 
any of the a.m.s. sources fi, fiv, and fiv (note that jiv is the A-marginal, and fi is the 
5-marginal of, the double source fiv). As fiv < fi x /jv we conclude that the limit 

l(y,x) = limln(y"0, x"0) 

exists in Lx(fiv) sense. If l(fiv) = H(fi) + H(fiv) — H(fiv) is the mutual information 
rate then 

/(//v) = £ „ v / = !l(y,x)áfiv(y,x). 

The function l(y, x) is shift-invariant and measurable so that {(y, x) : l(y, x) = 
= I([iv)} e J'BXA- ^ lie $B a n d v Is a.m.s. and ergodic then fiv e SBxA so that the 

above set is of measure zero or one. Consequently, we get the following result. 

Lemma 2. Given an a.m.s. ergodic source [B, ju] and an a.m.s. ergodic channel 
[B, v, A]. Then 

fiv{(y,x):l(y,x) = l((iv)} = 1 . 

Let RA denote the set of all sequences x e A™ which are typical for some ]i e M*. 
Then RAeJA and n(RA) = 1 for all n e MA (see [11-13]) . Consequently, n(RA) = 1 
for all fi e SA as well. If x e RA we let fix denote that fi e M* which has x as a typical 
sequence (note that a typical sequence determines the source uniquely). 

Lemma 3. If fi e SB and \B, v, A] is a.m.s. then 

nv{(y, x)eRBXA: l(y, x) = l(n(y>x))} = 1 . 

Proof. Use [13, Lemma 5] or [15] to get the conclusion for stationary JX and v. 
In the a.m.s. case use the fact that the set in the conclusion belongs to JBxA. Q 
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Put 

[I = r] = {(y,x)eRBxA:l(y,x)Sr}. 

Let [B, v, A] be a.m.s. and 3 e (0, l). The 3-information quantile is defined by 

C*(v; 3) = sup sup {r : juv[l g /•] < 3} . 
/ i e S B * 

Theorem 1. The set S* in the formula for the 3-information quantile can be replaced 
by any of the sets SB, MB, M* and MB\ 3 e (0, l). 

Proof. 

(I) Replacement by SB. Since SB <= SB we get the inequality 

sup sup {r : [iv[l S r] < 9} = C*(v; 3 ) , 3 e (0, 1). 
IIESB 

Choose and fix an arbitrary 3 e (0, 1) and assume the strict inequality. This means we 
can find a source /.i0 e SB\SB such that 

sup {r : fi0v[l < r] < 3} > C*(v; 3) . 

Since [/ = r] eJBxA we can replace in the latter relation the a.m.s. measures by 
their respective stationary means and so get 

sup {r : ~~~v\l < 7-] < 3} > sup sup {r : jl\<[l ^ r] < 3} . 
« e S B * 

We claim that the right hand side upperbounds 

sup sup {r : fiyv[l :g r] < 3} . 
J>eRB 

To prove the claim choose y e RB. Then (iy e M*. c MB and the definition of station­
ary mean for channels gives ~jiyv = nyv. At the same time 

{ny : y 6 RB] = M* cz S* 

and this proves the claim. Hence we have 

(*) sup {r : jl~v[l S r] < 3} > sup sup {r : pyv\I = r] < 3} . 

Next we show 

(**) VoA1 ú r] - I /x/[7 < r] /.„(dy) . 
JRB 

Hyv[I<r]=^v([lSr]s\s)fly(ds) = 

Let _y e RB. Then 

к - i 

' E 
k = 0 

= l imíT1 X v(TIs[í <; r ] s | T-^^ds). 
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Since J is invariant and the shifts are bijective maps we can write 

Ti"[7 < r]s = T7fc{t : I(s, t) < r} = 

= {. : l(s, T» < r} = {. : / ( V ' s , t) < r} = [I < r] r„-,% . 

Consequently, 

,V-[/ < r] = [ limK"1 £>([/ < r] r B- , s | Trfc,)^(d5) = 

= l i m K ^ ' V [v([I =§ r ] T B - u S |TB-fcs)^(ds). 
K-*oo t = 0 J 

But //, = ^TB-'C for all /c so that all integrals on the right hand side of the latter 
relation equal the same number, namely ixyv[I < r ] . Since fx0v e SBxA there is the in­
duced stationary channel v such that p.0v = Jj^v. However, p,0 e MB and hence 

^ = P0v = A0v so that /I^v = ^QV . 

On the other hand, [i0v = jl0v, when restricted to invariant events so that we get (**). 
Substituting (**) into (*) we get 

sup \ r : piyv[I < r] £0(d>>) < 3 i > sup sup {r : ^v[7 < r] < 9}. 

But this is a contradiction. Indeed, this inequality entails the existence of a real 
number r0 such that 

џyv[I < r0] Д0(d>-) < 
J я в 

and 
r 0 > sup {r : nyv[l < r] < 9} 

for all j e RB. The second property implies that, for each y e RB, nyv[l < r 0 ] ^ 3, 
and this contradicts the first property. 

(II) Replacement by MB. Because MB c SB, part (I) gives sup sup [r : /xv[l < r] < 
I1EMB 

< S} <. sup sup {r : fiv[l < r] < 9}. Again assume the strict inequality. Hence, 
/'eSB 

there is a n0 e SB \ MB with the property 

sup sup {r : fiv[l < r] < 9} < sup {r : n0v[I < r] < 3} . 

Choose v as the induced stationary channel of v and n0 so that 

p0v[I < r] = w[I < r] = p0v[ ! ^ r] . 

On the other hand, 

liv[l < r] = jlv[l < r] = ^uvp < r] 

where /z e M B and v is the stationary mean of the channel v. The difference between 
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these two channels is however inessential (in fact, given an input source, the double 
sources determined by the induced stationary channel and the stationary mean must 
give rise to isomorphic probability spaces), and we get 

sup {r : p.0v[l <; r] < 9} = sup sup {r : fiv[l = r] < 9} < 
IIEMB 

< sup [r : p0v[I < r] < 9} , 
a contradiction. 

(III) Replacement by MB. Repeat the proof for step (II) starting with the original 
definition of C*(v; 9). 

(IV) Replacement by A1*s. If /i e M"B then /( is a.m.s. and 

M-«-i"iWj'. 
j = 0 

Hence MB <=. MB
S _ SB and the conclusion follows by parts (I) and (II). • 

The limit 
C*(v) = lim C*(v; 9) 

«-*0 

is said to be the information quantile capacity of the channel [B, v, A], Note that the 
limit exists as the C*(v; 9) are bounded and nonincreasing as 9 -» 0. 

Now let us turn to the concept of Shannon capacity. In the a.m.s. case there are 
a larger number of possibilities to constraint the set of input sources: 

Cs;(v) = sup I(nv), C7s(v) = sup l(nv) , 
fjeMB* /J-SB* 

Cs(v) - sup I(nv) , Cs'"
s(v) = sup I(nv) , 

neMs IIESB 

C(v) = sup sup l(jiv) . 
n neMB

n 

Theorem 2. Given an a.m.s. channel [B, v, A], 

c(v) = cr(v) = c:(v) = cr(v) = c(v). 
In general, C(v) ^ C*(v). If however [B, v, A] is also ergodic then C(v) = C*(v) = 
= C*(v; 9), 9 e (0, l). 

Proof. Let \i e MB. Then l([iv) = l(jjv) = /(^v) so that we can repeat the reasoning 
of Parthasarathy [7] showing that Cs(v) = Cs(v). A direct consequence of the fact 
that nvjJB>tA = fivl^BxA is the relation 

txv{(y, x) : l(y, x) § c} = ^{(y, x) : l(y, x) < c} 

for all real c, whence the relation Cams(v) = C""!S(v) follows by the same arguments 
as in the stationary case. Denote Cs(v) = Cs(v) = Cs(v) and similarly C"ms(v). The 
inequality Cs(v) ^ Cms(v) follows from the inclusion MB _ SB. Assuming the strict 
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inequality we can proceed as in parts (I) and (II) of the proof of Theorem 1 in order 
to get Cs(v) = Cams(v). As MB c M"B

S cz SB, we have Cs(v) = C°ms(v) = C(v), thus 
proving the first assertion. The proofs of the remaining ones follow from [3, Lemma 
1, Corollary 1]. • 

Let v denote the stationary mean of an a.m.s. channel v. According to part (II) 
in the proof of Theorem we can work with stationary input sources when dealing 
with the information quantile capacity and, for any fi e MB, l(fxv) — J(/n>) = I(fiv) 
so that C*(v; £) = C*(v; #), 3 e (0, 1). By similar reasoning C(v) = C(v). Hence, 
all results are proper generalizations of the results known in the stationary case. 

3. THE OPERATIONAL CAPACITY 

In this paper we shall restrict ourselves to the operational channel block coding 
capacity [3]. However, our proof of the corresponding coding theorem makes it an 
easy task to get also the results for the operational source/channel block coding 
capacity (see [3] for an excellent survey of the work concerning the capacities and 
the corresponding coding theorems). 

A block-length n channel block code <& for a discrete channel \B, v, A] is a col­
lection of M = | # | distinct codewords y; G B" and M disjoint decoding sets G; a A", 
i = 1, ..., M. The rate R of a code is R = n _ 1 log M. A code <W = {(y,, G;) : i = 
= 1, . . . , M} has error probability e if 

max sup vv(C0(A" \ G,)) < £ 
l g i g M yeC0"(yi) 

We call such a code also an (M, n, s) code [18]. We say R is a permissible rate if 
there exist ([exp («R)], n, £„) *) codes such that £„ -* 0 as n -* GO through a sub­
sequence of positive integers. Define the block coding capacity C0(v) as the supremum 
of all permissible rates. 

Note that it is possible to define the concept of an £-permissible rate for any 
fixed £ e (0, 1). This concept is closely related with the Theorem on £-Capacities as 
established by Winkelbauer [14—16]. 

In general, we establish that a particular number C0 is the capacity of a given 
channel by proving the positive coding theorem (that is, for any R < C0, there exist 
([exp (nR)], n, s„) codes with £„ -» 0 as n -* oo, and hence that C0 <. C0(v)) and 
a weak converse (i.e., given any sequence of ([exp (nR)], n, £„) codes, R > C0, 
there is an £0 > 0 such that £„ >. e0 for n large enough; hence C0 ^ Co(v))- The 
positive part is usually proved using Feinstein's lemma [5]. The problem is that 
Feinstein's lemma gives "good" codes for an artificial measure on the output 
n-sequences induced by the "capacity yielding input source". Under some additional 

*) [•] denotes integer part of •. 
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assumptions on the channel, however, we can reach at an arbitrarily good approxim­
ation of v^-) on output n-tuples by that artificial measure. By far the mot common 
assumption is that the channel has finite input memory. That is, there exists a num­
ber m such that, for any integer i, any n ^ 1, and x e A", if y\t"~1 = (y')\-"m~1 then 

v(e?(x) | y) = v(c?(x) I / ) . 

Then the measure v;„ on the n-tuples from A" defined by the properties 

v.„[x | y\+-~7l~ = v(C"(x)\y), x e A"; 

vin[E \Y] = ~~ V,„[X I y] , E c A", y e B"+m 

xeE 

is close to the artificial measure on A" in the variational sense (see [3] for another 
idea of approximation based on Ornstein's 5-distance). Call the least number 
m = m(v) such that the above condition is satisfied the duration of the input memory. 

Lemma 4. Given an a.m.s. channel [B, v, A] with finite input memory, the sta­
tionary mean [B, v, A] has finite input memory of the same duration. 

Proof. Let m = m(v), i, n, xe A" and k _ 0 be given. Choose y and y' coinciding 
in coordinates from i — m up to i + n — 1 and use the finite input memory condition 
for i + k and TBy and TBy', respectively. Then 

v(T^C1(x) | TB
ky) = v(T;kCl(x) | TB

ky') 

thus 
v(C";(x) | y) = v(C?(x) \y'). • 

The above notion of the block-length n channel block code can be reformulated 
as follows. Let [B, v, A] be an a.m.s. channel with finite input memory of duration 
m = m(v). Let ij/ : A" -> B" + m. Then the set 

{ ( y . ^ ' M ^ y e ^ M ; 

®S) = {yeB"+m : v^-'iy) | y] > 1 - £} 

is said to be a (|^ ;„(^)|, n, s) code at origin i". We denote |^,„(iA)| = Sin(il/; e, v) and 
put 

Sin(e, v) = max {Sinty; e, v):^e (B"+m)A"} . 

Theorem 3. Let [B, v, A] be a finite composition 

vy(G) = YJv'y(G)yk 

(A = {1, ..., k], yx > 0, ~7y^ = 1) of a.m.s. and ergodic channels [B, v \ A] with 
finite input memories. Let 

C*(v) = sup min l(fivx) . 
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Then 

(I) lim lim sup n" 1 log S0n(e, v) < C*(v) 
£-0 n-co 

and 

(II) lim lim inf n ~1 log S0„(e, v) ^ C*(v). 
£-»0 n-oo 

Comment. One can easily check that the composed channel is a.m.s. and has finite 
input memory. If k > 1, it cannot be ergodic. By an easy modification of the proof 
given in [ l l ] one can verify that the left hand sides in (I) and (II) above coincide, 
thus these quantities define the operational block coding capacity C0(v). 

Proof. The proof is an adaptation of the proof for the stationary case [17]. As 
both (I) and (II) will be proved indirectly, Feinstein's lemma naturally appears in the 
proof of (II) while Fano's inequality works in (I). Since we did not establish until 
now what happens for codes at origins i 4= 0, we use the symbol C(v) to designate 
the left hand sides of (l) and (II) and not C0(v). 

(I) Assume the contrary, i.e., let C(v) > C*(v). Then there is a real number r with 
C(v) > r > C*(v). We find a stationary memoryless input source \i with H(\i) = r; 
hence C*(v) < r = H(/.i) < C(v). As in [17] we choose e and n0 such that, for n Si n0, 
L„(e, n) < S0n(e, v), where 

L„(e, n) = min {|E| : E <= B", //(E) > 1 - e} 

(note that, as p. e Mg, n'1 log L„(e, u) converges to H(fi) for n -> oo, c e (0, 1), cf. 
[12]. The same is true even for fie S^ [9]). Hence there is a map \fi : A" -» Bn+m 

(m = m(v)) such that L„(e, fi) < S0n(ij/; e, v) and this makes it possible to define 
a block-length n source/channel block code as a pair of encoder % : B" -» Bn+m and 
decoder 5 : A" -> B" such that the error probability 

e0„(n, v, x, 8) = 1 - ~~ v0n[5_1{z} | xz] fi"{z] 
zeB" 

is less than 2e. (Note that this construction is a rather particular case of what is usually 
called the source/channel block code. In fact, we just require that the input source 
producing n-tuples be encoded into the input of the channel which acts not on n-
tuples but on (n + m)-tuples due to the memory effect.) The encoder XJ implements 
a mapping on infinite strings: 

{(tZ)-m+fc(m+B) + i}ogi<m+„ = K C - T 1 * - 1 ) . Z-B™. 

We denote by fix'1 the encoded source (i.e., the channel input process) and by 
co = (u?_1) v the corresponding double source. As in [17] we deduce that the 
source/channel error probability 

e0n(co) = 1 - X m a x HC0(x) | '-) K d z ) 
xeA" zeB" J C0"(z) 
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satisfies 
e 0 „ H ^ e'0„(n, v, x, 5). 

As one can easily check, fix"1 is a. m.s. (in fact, [ix~l e MB
+'") and, moreover, 

n + m - 1 

i l r r r = (m + nY1 ^ (A't-1)^ 
; = o 

is a stationary ergodic source with the same entropy as JUT -1. Since a> is a.m.s. as 
the result of joining an a.m.s. input source to an a.m.s. channel, Jacobs' arguments 
[4] work well to show that 

1(a) = H(fix~l) - H(co;B\ A), 

where 
H(co; B\A) = lim (m + n)-'1 H„(w; B\A). 

Here, Hn(to; B I A) is the (n + m, n)-dimensiona! relative entropy (see [17], p. 910) 
for which one has the following form of Fano's inequality 

H„(co; B\A)<: (m + n) e0n(a>) log \B\ + 1 

(see [ U ] ; in fact, the proof is a purely finite-dimensional construction so that 
carries over to the a.m.s. case as well). Using Jar* as the input source and checking 
the relation 

J()JFTv) = X y . / G ^ - V ) = /(co) 
ASA 

(for this use the similar relation valid for the corresponding stationary means and 
established in [17] and the fact that I(fiv) = Efiv I, where / i s a function equally di-
tributed under [iv and under ]Tv) we can derive the desired contradiction in the same 
way as done in [17]. 

(II) Assume C(v) < C*(v) so that C*(v) > r + a > r > C(v) for some appropriate r 
and a > 0. Thus, there is a fi e M% such that 

min l([ivA) > r + a . 

On the other hand, using r > C(v) we deduce the existence of an e e (0, 1) such that 

co(£> v) = !im inf n~x log S0n(e, v) < r . 

At this stage it is almost clear that the latter two inequalities contradict. Formally, 
we use the procedure employed by Khinchin [5] in his proof of Feinstein's lemma 
to get a map ip,, for which 

(s/2) exp (nr) < S0„(^„; e, v) < S0n(s, v) 

for any n sufficiently large. Hence c0(e, v) > r, a contradiction proving the theorem. 

• 
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4. CONCLUDING REMARKS 

Let us denote by C,(v) the quantities standing on the left hand sides of assertions 
(I) and (II) of Theorem 3 with 50« replaced by Sin, i 4= 0. We claim that C,(v) = C(v) 
This can be seen indirectly by showing that C;(v) = C*(v), too. In fact, the proof of 
Theorem 3 makes use either of finite-dimensional constructions (like block encoders 
and decoders, Feinstein's lemma etc.) that can be performed for any origin i or, 
of the asymptotic results which, in light of [4], do not depend on the particular 
choice of i. More precisely, the limiting quantities corresponding to a.m.s. sources 
and channels (like entropy, information rate etc.) coincide with those which cor­
respond to their stationary means, and the latter ones do not depend on i. 

As a simple consequence of Theorem 3 we get the following result. 

Corollary. Given an a.m.s. and erodic channel [#, v, A\ with finite input memory. 
Then 

C,(v) = C(v) = C(v) = C*(v). 

However, we already know that C*(v) = C*(v; 9) for all 3 e (0, l) (see Theorem 2). 
Thus, two natural problems appear: 

— in the ergodic case, is it necessary to take the limit for s -* 0 when computing 

— in the general case, does C*(v; .9) determine the behavior of the maximum length 
of the n-dimensional 3-codes for separate values of 9 e (0, 1)? (see [8] and [10] 
for the answer in affirmative in the particular case of channels with additive, 
stationary or a.m.s., noise). 

These questions will be investigated in a subsequent paper devoted to the Theorem 
on e-Capacities for a.m.s. channels. 

(Received October 10, 1980.) 
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