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K Y B E R N E T I K A - V O L U M E 26 (1990 ) , N U M B E R 4 

ON THE SKELETAL STRUCTURE 
OF PASCAL STATEMENT 

MAREK VAŠÍN 

This paper contributes to the error recovery method for syntactical analysis of deterministic 
contex-free languages introduced in [1]. The method is based on the notion of skeletal set. 
A skeletal set is a subset of the terminal alphabet meeting special conditions. Due to these condi­
tions, any string containing errors can be corrected so that the parser always recovers on the next 
skeletal symbol. To illustrate the practical applicability of the above mentioned method we prove 
that a convenient subset of Pascal terminal alphabet forms a skeletal set for the language of 
Pascal statements. 

The reader is assumed to be familiar with basic concepts of the theory of formal languages [2], 

1. INTRODUCTION 

In any compiler, error detection and error recovery belong to the most important 
aspects of source language processing. Most compilers use error recovery methods 
based on the structure of their parsing algorithms. The method of error recovery 
for deterministic contex-free languages described in [ l ] is fully language oriented. 

It is based on the structure of certain key symbols in the parsed string, in analogy 
to "panic mode"' recovery. However, in this method, the key symbols are not in­
dependent; they form an interrelated "skeletal set" of the language. These skeletal 
symbols decompose the parsed string into segments. The correctness of any segment 
within the input string depends only on the skeletal structure of the string. If the 
segment is incorrect the method replaces it by a correct one. 

To find a non-trivial skeletal set for a language may be .a non-routine task. As 
proved in [ l ] , it is. in general, algorithmically unsolvable. Nevertheless, when 
a skeletal set is found, it can be used for automatic generation of an error handling 
routine for any parser, which has the form of a deterministic push-down automaton. 
Therefore finding a good skeletal set for a programming language is an important 
contribution to the construction of its parsers. 

In this paper, the property of skeletal set is proved for a set of symbols of the 
language of Pascal statements. It can be used as a practical example of a skeletal 
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Fig. 1. 

set of a language. The language is defined by Figure 1. In the full description of Pascal, 
the non-terminal symbols {expression), {constant), {variable) etc. are further 
expanded by detailed syntax diagrams. For the sake of simplicity we shall treat 
them as terminal symbols here. 

2. NOTATION AND THE MAIN RESULT 

In what follows, Lwill denote a language over an alphabet X, K will be a subset 
of X, and Fwill stand for the set X — K. For the sake of simplicity of some concepts, 
the alphabet X is assumed to contain two special symbols >̂ and <t (endmarkers) 
surrounding any string from L (thus p <t, > BEGIN END <§, p IF expression 
THEN BEGIN; END ELSE <t will be legal examples of strings from our language 
of Pascal statements). We shall use the symbol K to denote also the homomorphism 
X* -> K* which deletes in a given string all symbols from Land leaves the symbols 
from K intact. 

Definition 1 (cf. [l]). Let K be a subset of X such that {>>. <̂ j c K. We shall 
say that K is a skeletal set (or a set of skeletals) of the language L if for each a, b eK, 
u', u" e V*, x', x", y',y" e X* such that K(x') = K(x"), the following condition 
holds: 

x'au'by' e L8c x"au"by" e L implies x'au'by' e L (l) 

For any string vv in the alphabet X, we call K(w) the skeleton of w. It is easy to see 
that the sets {p, <t) and X are skeletal sets of L. We shall call them the trivial 
skeletal sets. 
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Theorem. The set 

K = {p, BEGIN, REPEAT, IF, CASE,;, END, ELSE, UNTIL, «} 

forms a minimal non-trivial skeletal set for the language 

L= {->} (statement} {-4} w.r.t. inclusion . 

(2) 

3. PROOF (Part I) 

First we shall prove the minimality: Let us assume that some set K0 is a non-
trivial skeletal set of L; we shall show for each element of K that it is either an element 
of K0 or it replaces an element of K0: 

a) Let us assume that the semicolon is not an element of K0. Since K0 is by our 
assumption a non-trivial skeletal set, there exists a word >̂ a <4 e L such 
that [Ko(a)| > 0. Let us consider two cases: 
ax) ELSE $ K0: From the syntax diagram it is clear that the following two strings (3), 
(4) belong to the language L: 

> BEGIN 
IE expression THEN 

IF expression THEN 
BEGIN 

P BEGIN 
IF expression THEN 

IF expression THEN 
BEGIN 

(3) 

a END ELSE 

aEND 

BEGIN a I END ELSE END <ś 

(4) 

BEGIN a END END <š 

Hence also the string (5) should belong to L. It follows from (l) when we use as 
the skeletal a the last skeletal symbol of the string a END, and as b the first skeletal 
symbol of BEGIN a, as shown above: 

> BEGIN 
IF expression THEN 

IF expression THEN 
BEGIN 

(5) 

BEGIN x END ELSE END < 

It is a contradiction because the symbol ELSE is separated from the symbols IE 
by the semicolon. 

a2) If ELSE e K0, we can derive a contradiction analogically. The correctness 
of the following two strings: 

> BEGIN IF expression THEN 
IF expression THEN 

> BEGIN IF expression THEN 
IF expression THEN 

ELSE 

ELSE 

BEGIN a 

BEG/N a 

END ELSE END < 

END END< 
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implies a contradiction 

> BEGIN IF expression THEN 

IF expression THEN ELSE ; BEGIN a END ELSE END <eL 

when we define a in (l) as ELSE and b as the first skeletal symbol in the string 

BEGIN a. Thus the semicolon symbol is an element of any non-trivial skeletal set 

of the language L. 

Using the same arguments we shall find contradictions forcing other symbols 

to be elements of the set K0: 

b) Begin: 

> BEGIN T [71 END <eL, 
> BEGIN ; BEGIN \ ; | END END < e L => 
> BEGIN ; BEGIN ; | END < e L. 

c) Repeat: 

> REPEAT 

> REPEAT 

=> > REPEAT 

d) End: 

REPEAT 

UNTIL expression <eL, 

UNTIL expression UNTIL expression <EL 

UNTIL expression < Є L 

> BEG1N END 5 

> BEGIN ; 

> BEGIN 5 

BEGIN END <eL, 

END <eL 

BEGIN END <eL. 

e) Else: 

> BEGIN IF expression THEN ELSE BEGIN 

> BEGIN IF expression THEN BEGIN 

> BEGIN IF expression THEN ELSE BEGIN 

END END < єL, 

END ELSE END < Є L => 

END ELSE END < єL. 

f) Until: Let [expression, UNTIL) n K0 

UNTIL expression 

0; then 

REPEAT 

REPEAT 

REPEAT 

REPEAT UNTIL expression < eL, 

UNTIL expression < e L => 

REPEAT UN TIL expression <GL. 

Thus UNTIL and/or expression are elements of K0. 

g) Case: Let (CASE, expression, :, OF) n K0 = 0, then 

> BEGIN 

> BEGIN 

> BEGIN 

CASE expression OF constant: 
CASE expression OF constant: 

END <єL, 

END END <єL 

END <єL. 

Thus at least one of symbols from (C^SE, expression, :, OF) is an element of K0. 
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h) If: Let {IE, THEN, expression] n K0 = 0, then 

> IE expression THEN \ BEGIN 
> I |BEGIN 
> | |BEGIN 

END ELSE <eL. 
END <GL 

END ELSE <eL. 

Thus at least one of symbols from {IE, THEN, expression] is an element of K0. 

In fact, we have proved that symbols ;,BEGIN, END, REPEAT, ELSE are elements 
of any non-trivial skeletal set of L and that symbols UNTIL, IF and CASE cannot 
be omitted from any non-trivial skeletal set without replacing them by other sym­
bols (e.g. IE by THEN, CASE by OF, etc.). 

4. ON THE SYNTAX DIAGRAMS 

We use syntax diagrams to describe the syntax of the language of Pascal statements. 
Since the exact representation and meaning of syntax diagrams are not so apparent 
as their intuitive use, we shall present some definitions (cf. [3]): 

Definition 2. A recursive transition net (or RTN) is any quintuplet R = (E, X, 3, n0, 

F) such that: 
E is a non-empty set (set of nodes), 
X is a finite input alphabet such that X n I = 0, 
3 is a (partial) transition mapping: 5:1 x ( I u X ) - > exp (E) , 
n0 is an element of E (initial node), 
F is a subset of E (set of final nodes). 

An RTN can be seen in the syntax diagram as follows 

— The set E contains points of the syntax diagram which can be reached while going 
through the diagram. In our Pascal syntax diagram, we mark these points with 
the sign "•" . 

— The alphabet X contains all terminal symbols from the syntax diagram (i.e. all 
the symbols enclosed within ovals). 

— The mapping 5 maps the pair (n, t) to the set 3(n, t) containing all the nodes 
n' el such that there is an edge from the node n to the node n' labelled by the 
symbol t in the syntax diagram. The symbol t can be either from X or from I. 
In the second case, t is a non-terminal symbol (enclosed within a rectangular 
box) referring to the entry point of a component of the syntax diagram. 

— The node n0 corresponds with the entry point of the main component. 
— The set E contains the exit points of the diagram components. 

Definition 3. We say that C is a configuration of the RTN R = (E, X, 3, n0, F) if 
C = <«, x, y> for some n e E, x e X* and y e I*. 

Definition 4. We shall say that a configuration C of the RTN R = (E, X, 3, n0, F) 
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leads to a configuration C" (or C =>R C") if one of the following conditions holds: 
a) C = (n', tx, y) , C" = <n", x, y), t e X, for some n" e S(n', t) 
b) C = (n', x, y>, C" = (n", x, ny> for some n e <5(n', n") 
c) C = <«', x, n"y>, C" = <n", x, y> for some n' e F and n" G 27. 
The reflexive and transitive closure of the relation =>R will be denoted as => .̂ 

Definition 5. Let R = (2, X, d, n0, F) be an RTN. We shall say that the language 
L is recognized by R (or L = L(R)) if 

L = {x e X* | </i0, x, X) =>^ (n, X, X) for some n e E} 

Thus RTN may be seen to be a non-deterministic automaton with a push-down 
to save return points of uncompleted diagram components. The configuration de­
scribes the actual state of the computation, i.e. the current node, the remaining part 
of the input string and the content of the push-down. In each step one of the follow­
ing actions is done: 

a) If there is an edge from the current node labelled by the same terminal symbol 
as on input, the symbol can be accepted and the control moves along the edge. 

b) If there is an edge from the current node labelled by a non-terminal symbol 
(node, component name), this node (diagram component) can be entered. The node 
of the return point is actually pushed onto the push-down. 

c) If the current node is a final one, the computation can return back to the node 
popped from the top of the push-down; if the push-down is empty, the computation 
finishes and the input string is accepted as a string from L. 

There are two differences in our Pascal diagram w.r.t. the above definitions; the 
edge of "empty statement" and the edge by-passing the "ELSE clause" are not 
labelled by any symbol. Since these "2-edges" point to the final node, we can avoid 
them by including nodes preceding these edges to the set of final nodes E, too. As 
can be seen from the diagram, these nodes are the only points where the computa­
tions would not be deterministic; therefore we shall prefer the action a) in such nodes 
(according to Pascal semantics). 

5. PROOF (Part II) 

Now we shall show that K is a skeletal set of L: Let us modify the RTN of Pascal 
statements from Figure 1 to eliminate right recursion of the •(statement) non-terminal 
in edges of WITH, WHILE and EOR clauses as shown in Figure 1. Thus we remove 
the edge of DO in clauses of WITH, WHILE, FOR resp.,the node entered by this 
edge and the edge of (statement) going from that node. Then we replace them by 
an edge of DO entering the node from which the edge of WITH, WHILE, FOR resp. 
went. The modified RTN evidently accepts the same language as the original net. 

The following lemma shows that all computations in the modified net over strings 
with the same skeleton coincide after each skeletal accepted: 
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Lemma. Let z'by', z"by" e L, z', z", >', y" e X*, K(z') = K(z"), b e K and Jet for 

some m', m" e I 

</70, z'by', /.> =>« <m', fry', /> =>^ <n', >', / > =>^ </7/, X, /> , 

<n0, z"by", X} =>l (in", by", y"> =>R <n", >", /'> =>* <n/5 A, A> , 

be accepting computations of words z'by' and z"/3v" in the modified RTN; then 
n' = n" and y' = /'. 

Proof. We shall use induction on k = |K(z')| = |K(z")|: Let k = 0, then z' = 
= z" = X, b = > and the statement evidently holds. Let the statement hold for all 
strings zby such that |K(-)| < k and let k > 0. Then we can write z'by' = x'au'by', 
z"by" = x"au"by" for some x', x" e X*, K(x') = K(x"), aeK, u', u" e V*. 

From the above assumption it follows that there exist unique n and y such that 

<n0, x'au'by', Xy =̂ >* (n, u'by', y> ^*R <m', by', / > ^ ^ <n', >', / > =>« <n/ 5 A, A> 

<n0, x"au"by", A> =>*. </?, w"b>", y> =>^ <m", /?>", y"> =>^ <«",>", y"> =>« <n / s A,A>. 

We shall prove that then n' = n" and / = 7": The condition n' = n" holds since 

the skeletal symbol b determines the succeeding node of computation uniquely. It is 

evident from the diagram; the symbol; with multiple occurrences is the only excep­

tion. However, as can be seen from the diagram in this case, the skeletal symbol a 

is either from the same level of (statementy call (e.g. symbol BEGIN or REPEAT 

or CASE or;) or from the nested call of (statementy. Since y and n are unique after 

a was accepted, n' = n" holds evidently. 

When accepting string u'b, u"b resp., the push-down is changed from y to y', y" 
resp. We shall show that this change depends only on the current push-down content 
y and on symbols a and b: As can be seen, we can determine the direction of the push­
down changes from the symbols a and b since all recursive calls of non-terminal 
(statementy are prefixed by skeletal symbols: 

ajb BEGIN REPEAT CASE IF ELSE ; END UNTIL < 

> \ \ \ \ = 
BEGIN \ \ \ \ = = 

REPEAT \ \ \ \ = = 
CASE \ \ \ \ = = 

1F \ \ \ \ = Ѓ ' /* 7 7 

ELSE \ \ \ \ ŕ / ŕ /* /* 
\ \ \ \ = = = 

END S 7* / / 7 
UNTIL / г /" / 7* 

( \ ) One symbol is pushed onto the push-down; i.e. / = y" = vy, where v is node 

entered by the edge labelled by (statement) in the branch determined by the skeletal 
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symbol a and by (in the case of symbol; with multiple occurrences) the actual node 
of computation n: 

From the diagram it is evident that the skeletal symbols BEGIN or REPEAT or 
IF or CASE (i.e. the symbol b) can be accepted only in a new recursive call of non­
terminal (statement); thus the the push-down grows. On the other hand, all recursive 
calls of (statement) are prefixed by (the same) skeletals; thus the push-down grows 
by just one symbol. 
( = ) Push-down remains unchanged: It is evident that there exists a unique path 
connecting a and b and not going through another skeletal. The push-down cannot 
grow since b is not from {BEGIN, REPEAT, IF CASE', and cannot drop since a 
is not from {END, UNTIL.ELSE, <}. 
( / ) Push-down decreases: Having gone through the same level of (statement) call 
from the symbol a to a final node, the push-down has the same content, namely 7. 
Leaving this level new current node is popped from the push-down. From this node, 
there evidently exists a unique path to either another final node (in the case of implicit 
end of nested THEN or ELSE clauses) or directly to the skeletal symbol b. 

Since the initial contents y of push-down is unique, and the changes are determined 
only by the push-down and by the symbols a and b, we are sure that y' = y" holds. • 

One can see that the unique content of the push-down reflects the equality of 
skeletons of prefixes K(x') — K(x"). The reason we have reduced right recursion 
in branches of non-skeletals WITH, FOR, WHILE was to reduce "non-interesting" 
return points and make the push-down content "isomorphic" with the strings 
K(x') = K(x"). 

The lemma proved immediately implies the property (1) of skeletal set for the set K. 
The strings x'a and x"a lead in the modified RTN to the same node of computation 
and to the same push-down content as well as the strings x'au'b and x'au"b do. 
Thus the strings x'au'by' and x'au"by' are equally accepted or rejected as strings 
of L. 
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