
Kybernetika

Marek Vašín
On the skeletal structure of Pascal statement

Kybernetika, Vol. 26 (1990), No. 4, 308--315

Persistent URL: http://dml.cz/dmlcz/125437

Terms of use:
© Institute of Information Theory and Automation AS CR, 1990

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/125437
http://project.dml.cz

K Y B E R N E T I K A - V O L U M E 26 (1990) , N U M B E R 4

ON THE SKELETAL STRUCTURE
OF PASCAL STATEMENT

MAREK VAŠÍN

This paper contributes to the error recovery method for syntactical analysis of deterministic
contex-free languages introduced in [1]. The method is based on the notion of skeletal set.
A skeletal set is a subset of the terminal alphabet meeting special conditions. Due to these condi
tions, any string containing errors can be corrected so that the parser always recovers on the next
skeletal symbol. To illustrate the practical applicability of the above mentioned method we prove
that a convenient subset of Pascal terminal alphabet forms a skeletal set for the language of
Pascal statements.

The reader is assumed to be familiar with basic concepts of the theory of formal languages [2],

1. INTRODUCTION

In any compiler, error detection and error recovery belong to the most important
aspects of source language processing. Most compilers use error recovery methods
based on the structure of their parsing algorithms. The method of error recovery
for deterministic contex-free languages described in [l] is fully language oriented.

It is based on the structure of certain key symbols in the parsed string, in analogy
to "panic mode"' recovery. However, in this method, the key symbols are not in
dependent; they form an interrelated "skeletal set" of the language. These skeletal
symbols decompose the parsed string into segments. The correctness of any segment
within the input string depends only on the skeletal structure of the string. If the
segment is incorrect the method replaces it by a correct one.

To find a non-trivial skeletal set for a language may be .a non-routine task. As
proved in [l] , it is. in general, algorithmically unsolvable. Nevertheless, when
a skeletal set is found, it can be used for automatic generation of an error handling
routine for any parser, which has the form of a deterministic push-down automaton.
Therefore finding a good skeletal set for a programming language is an important
contribution to the construction of its parsers.

In this paper, the property of skeletal set is proved for a set of symbols of the
language of Pascal statements. It can be used as a practical example of a skeletal

308

4ttø««v»*ц£

-[>.>}- statenent <H> "V

IF X ê x p r e s s i ô r T H THÊTT}»-] statenent f-*-{ ELSE]•] statement j-

{ CRSE }*{ expression)*(QF]/const V{~T"}.-| statenent \{ END] — — j

express i on J--f variable

-[identifier]—•—[paraneter 1 ist }-

-{ BEG ÍŇJrH s t a t e n e n

-GЗ-
ЇЗ-rC ENÐ }-

-CĽ>
-fBEFERT ЬЧ s t a t e n e n

-ro- Eг - [UNTIL^)—•—[e x p r e s s i o n }-

-[FOR }»{ variable }»-{ : = }•{ expression }»{ TO

k express1on
UITH }—»{ identifier H^PO]—•

UHILE }•{ expression }•{ DO }—

—• — —| statenent]- — — — -j

—• — —| statenent [— — — — -j

—o — —I statement}- — — — -
!

Fig. 1.

set of a language. The language is defined by Figure 1. In the full description of Pascal,
the non-terminal symbols {expression), {constant), {variable) etc. are further
expanded by detailed syntax diagrams. For the sake of simplicity we shall treat
them as terminal symbols here.

2. NOTATION AND THE MAIN RESULT

In what follows, Lwill denote a language over an alphabet X, K will be a subset
of X, and Fwill stand for the set X — K. For the sake of simplicity of some concepts,
the alphabet X is assumed to contain two special symbols >̂ and <t (endmarkers)
surrounding any string from L (thus p <t, > BEGIN END <§, p IF expression
THEN BEGIN; END ELSE <t will be legal examples of strings from our language
of Pascal statements). We shall use the symbol K to denote also the homomorphism
X* -> K* which deletes in a given string all symbols from Land leaves the symbols
from K intact.

Definition 1 (cf. [l]). Let K be a subset of X such that {>>. <̂ j c K. We shall
say that K is a skeletal set (or a set of skeletals) of the language L if for each a, b eK,
u', u" e V*, x', x", y',y" e X* such that K(x') = K(x"), the following condition
holds:

x'au'by' e L8c x"au"by" e L implies x'au'by' e L (l)

For any string vv in the alphabet X, we call K(w) the skeleton of w. It is easy to see
that the sets {p, <t) and X are skeletal sets of L. We shall call them the trivial
skeletal sets.

309

Theorem. The set

K = {p, BEGIN, REPEAT, IF, CASE,;, END, ELSE, UNTIL, «}

forms a minimal non-trivial skeletal set for the language

L= {->} (statement} {-4} w.r.t. inclusion .

(2)

3. PROOF (Part I)

First we shall prove the minimality: Let us assume that some set K0 is a non-
trivial skeletal set of L; we shall show for each element of K that it is either an element
of K0 or it replaces an element of K0:

a) Let us assume that the semicolon is not an element of K0. Since K0 is by our
assumption a non-trivial skeletal set, there exists a word >̂ a <4 e L such
that [Ko(a)| > 0. Let us consider two cases:
ax) ELSE $ K0: From the syntax diagram it is clear that the following two strings (3),
(4) belong to the language L:

> BEGIN
IE expression THEN

IF expression THEN
BEGIN

P BEGIN
IF expression THEN

IF expression THEN
BEGIN

(3)

a END ELSE

aEND

BEGIN a I END ELSE END <ś

(4)

BEGIN a END END <š

Hence also the string (5) should belong to L. It follows from (l) when we use as
the skeletal a the last skeletal symbol of the string a END, and as b the first skeletal
symbol of BEGIN a, as shown above:

> BEGIN
IF expression THEN

IF expression THEN
BEGIN

(5)

BEGIN x END ELSE END <

It is a contradiction because the symbol ELSE is separated from the symbols IE
by the semicolon.

a2) If ELSE e K0, we can derive a contradiction analogically. The correctness
of the following two strings:

> BEGIN IF expression THEN
IF expression THEN

> BEGIN IF expression THEN
IF expression THEN

ELSE

ELSE

BEGIN a

BEG/N a

END ELSE END <

END END<

310

implies a contradiction

> BEGIN IF expression THEN

IF expression THEN ELSE ; BEGIN a END ELSE END <eL

when we define a in (l) as ELSE and b as the first skeletal symbol in the string

BEGIN a. Thus the semicolon symbol is an element of any non-trivial skeletal set

of the language L.

Using the same arguments we shall find contradictions forcing other symbols

to be elements of the set K0:

b) Begin:

> BEGIN T [71 END <eL,
> BEGIN ; BEGIN \ ; | END END < e L =>
> BEGIN ; BEGIN ; | END < e L.

c) Repeat:

> REPEAT

> REPEAT

=> > REPEAT

d) End:

REPEAT

UNTIL expression <eL,

UNTIL expression UNTIL expression <EL

UNTIL expression < Є L

> BEG1N END 5

> BEGIN ;

> BEGIN 5

BEGIN END <eL,

END <eL

BEGIN END <eL.

e) Else:

> BEGIN IF expression THEN ELSE BEGIN

> BEGIN IF expression THEN BEGIN

> BEGIN IF expression THEN ELSE BEGIN

END END < єL,

END ELSE END < Є L =>

END ELSE END < єL.

f) Until: Let [expression, UNTIL) n K0

UNTIL expression

0; then

REPEAT

REPEAT

REPEAT

REPEAT UNTIL expression < eL,

UNTIL expression < e L =>

REPEAT UN TIL expression <GL.

Thus UNTIL and/or expression are elements of K0.

g) Case: Let (CASE, expression, :, OF) n K0 = 0, then

> BEGIN

> BEGIN

> BEGIN

CASE expression OF constant:
CASE expression OF constant:

END <єL,

END END <єL

END <єL.

Thus at least one of symbols from (C^SE, expression, :, OF) is an element of K0.

311

h) If: Let {IE, THEN, expression] n K0 = 0, then

> IE expression THEN \ BEGIN
> I |BEGIN
> | |BEGIN

END ELSE <eL.
END <GL

END ELSE <eL.

Thus at least one of symbols from {IE, THEN, expression] is an element of K0.

In fact, we have proved that symbols ;,BEGIN, END, REPEAT, ELSE are elements
of any non-trivial skeletal set of L and that symbols UNTIL, IF and CASE cannot
be omitted from any non-trivial skeletal set without replacing them by other sym
bols (e.g. IE by THEN, CASE by OF, etc.).

4. ON THE SYNTAX DIAGRAMS

We use syntax diagrams to describe the syntax of the language of Pascal statements.
Since the exact representation and meaning of syntax diagrams are not so apparent
as their intuitive use, we shall present some definitions (cf. [3]):

Definition 2. A recursive transition net (or RTN) is any quintuplet R = (E, X, 3, n0,

F) such that:
E is a non-empty set (set of nodes),
X is a finite input alphabet such that X n I = 0,
3 is a (partial) transition mapping: 5:1 x (I u X) - > exp (E) ,
n0 is an element of E (initial node),
F is a subset of E (set of final nodes).

An RTN can be seen in the syntax diagram as follows

— The set E contains points of the syntax diagram which can be reached while going
through the diagram. In our Pascal syntax diagram, we mark these points with
the sign "•" .

— The alphabet X contains all terminal symbols from the syntax diagram (i.e. all
the symbols enclosed within ovals).

— The mapping 5 maps the pair (n, t) to the set 3(n, t) containing all the nodes
n' el such that there is an edge from the node n to the node n' labelled by the
symbol t in the syntax diagram. The symbol t can be either from X or from I.
In the second case, t is a non-terminal symbol (enclosed within a rectangular
box) referring to the entry point of a component of the syntax diagram.

— The node n0 corresponds with the entry point of the main component.
— The set E contains the exit points of the diagram components.

Definition 3. We say that C is a configuration of the RTN R = (E, X, 3, n0, F) if
C = <«, x, y> for some n e E, x e X* and y e I*.

Definition 4. We shall say that a configuration C of the RTN R = (E, X, 3, n0, F)

312

leads to a configuration C" (or C =>R C") if one of the following conditions holds:
a) C = (n', tx, y) , C" = <n", x, y), t e X, for some n" e S(n', t)
b) C = (n', x, y>, C" = (n", x, ny> for some n e <5(n', n")
c) C = <«', x, n"y>, C" = <n", x, y> for some n' e F and n" G 27.
The reflexive and transitive closure of the relation =>R will be denoted as => .̂

Definition 5. Let R = (2, X, d, n0, F) be an RTN. We shall say that the language
L is recognized by R (or L = L(R)) if

L = {x e X* | </i0, x, X) =>^ (n, X, X) for some n e E}

Thus RTN may be seen to be a non-deterministic automaton with a push-down
to save return points of uncompleted diagram components. The configuration de
scribes the actual state of the computation, i.e. the current node, the remaining part
of the input string and the content of the push-down. In each step one of the follow
ing actions is done:

a) If there is an edge from the current node labelled by the same terminal symbol
as on input, the symbol can be accepted and the control moves along the edge.

b) If there is an edge from the current node labelled by a non-terminal symbol
(node, component name), this node (diagram component) can be entered. The node
of the return point is actually pushed onto the push-down.

c) If the current node is a final one, the computation can return back to the node
popped from the top of the push-down; if the push-down is empty, the computation
finishes and the input string is accepted as a string from L.

There are two differences in our Pascal diagram w.r.t. the above definitions; the
edge of "empty statement" and the edge by-passing the "ELSE clause" are not
labelled by any symbol. Since these "2-edges" point to the final node, we can avoid
them by including nodes preceding these edges to the set of final nodes E, too. As
can be seen from the diagram, these nodes are the only points where the computa
tions would not be deterministic; therefore we shall prefer the action a) in such nodes
(according to Pascal semantics).

5. PROOF (Part II)

Now we shall show that K is a skeletal set of L: Let us modify the RTN of Pascal
statements from Figure 1 to eliminate right recursion of the •(statement) non-terminal
in edges of WITH, WHILE and EOR clauses as shown in Figure 1. Thus we remove
the edge of DO in clauses of WITH, WHILE, FOR resp.,the node entered by this
edge and the edge of (statement) going from that node. Then we replace them by
an edge of DO entering the node from which the edge of WITH, WHILE, FOR resp.
went. The modified RTN evidently accepts the same language as the original net.

The following lemma shows that all computations in the modified net over strings
with the same skeleton coincide after each skeletal accepted:

313

Lemma. Let z'by', z"by" e L, z', z", >', y" e X*, K(z') = K(z"), b e K and Jet for

some m', m" e I

</70, z'by', /.> =>« <m', fry', /> =>^ <n', >', / > =>^ </7/, X, /> ,

<n0, z"by", X} =>l (in", by", y"> =>R <n", >", /'> =>* <n/5 A, A> ,

be accepting computations of words z'by' and z"/3v" in the modified RTN; then
n' = n" and y' = /'.

Proof. We shall use induction on k = |K(z')| = |K(z")|: Let k = 0, then z' =
= z" = X, b = > and the statement evidently holds. Let the statement hold for all
strings zby such that |K(-)| < k and let k > 0. Then we can write z'by' = x'au'by',
z"by" = x"au"by" for some x', x" e X*, K(x') = K(x"), aeK, u', u" e V*.

From the above assumption it follows that there exist unique n and y such that

<n0, x'au'by', Xy =̂ >* (n, u'by', y> ^*R <m', by', / > ^ ^ <n', >', / > =>« <n/ 5 A, A>

<n0, x"au"by", A> =>*. </?, w"b>", y> =>^ <m", /?>", y"> =>^ <«",>", y"> =>« <n / s A,A>.

We shall prove that then n' = n" and / = 7": The condition n' = n" holds since

the skeletal symbol b determines the succeeding node of computation uniquely. It is

evident from the diagram; the symbol; with multiple occurrences is the only excep

tion. However, as can be seen from the diagram in this case, the skeletal symbol a

is either from the same level of (statementy call (e.g. symbol BEGIN or REPEAT

or CASE or;) or from the nested call of (statementy. Since y and n are unique after

a was accepted, n' = n" holds evidently.

When accepting string u'b, u"b resp., the push-down is changed from y to y', y"
resp. We shall show that this change depends only on the current push-down content
y and on symbols a and b: As can be seen, we can determine the direction of the push
down changes from the symbols a and b since all recursive calls of non-terminal
(statementy are prefixed by skeletal symbols:

ajb BEGIN REPEAT CASE IF ELSE ; END UNTIL <

> \ \ \ \ =
BEGIN \ \ \ \ = =

REPEAT \ \ \ \ = =
CASE \ \ \ \ = =

1F \ \ \ \ = Ѓ ' /* 7 7

ELSE \ \ \ \ ŕ / ŕ /* /*
\ \ \ \ = = =

END S 7* / / 7
UNTIL / г /" / 7*

(\) One symbol is pushed onto the push-down; i.e. / = y" = vy, where v is node

entered by the edge labelled by (statement) in the branch determined by the skeletal

314

symbol a and by (in the case of symbol; with multiple occurrences) the actual node
of computation n:

From the diagram it is evident that the skeletal symbols BEGIN or REPEAT or
IF or CASE (i.e. the symbol b) can be accepted only in a new recursive call of non
terminal (statement); thus the the push-down grows. On the other hand, all recursive
calls of (statement) are prefixed by (the same) skeletals; thus the push-down grows
by just one symbol.
(=) Push-down remains unchanged: It is evident that there exists a unique path
connecting a and b and not going through another skeletal. The push-down cannot
grow since b is not from {BEGIN, REPEAT, IF CASE', and cannot drop since a
is not from {END, UNTIL.ELSE, <}.
(/) Push-down decreases: Having gone through the same level of (statement) call
from the symbol a to a final node, the push-down has the same content, namely 7.
Leaving this level new current node is popped from the push-down. From this node,
there evidently exists a unique path to either another final node (in the case of implicit
end of nested THEN or ELSE clauses) or directly to the skeletal symbol b.

Since the initial contents y of push-down is unique, and the changes are determined
only by the push-down and by the symbols a and b, we are sure that y' = y" holds. •

One can see that the unique content of the push-down reflects the equality of
skeletons of prefixes K(x') — K(x"). The reason we have reduced right recursion
in branches of non-skeletals WITH, FOR, WHILE was to reduce "non-interesting"
return points and make the push-down content "isomorphic" with the strings
K(x') = K(x").

The lemma proved immediately implies the property (1) of skeletal set for the set K.
The strings x'a and x"a lead in the modified RTN to the same node of computation
and to the same push-down content as well as the strings x'au'b and x'au"b do.
Thus the strings x'au'by' and x'au"by' are equally accepted or rejected as strings
of L.

ACKNOWLEDGEMENT

The author is deeply indebted to Michal Chy til for reading the first drafts and for many valuable
comments. (Received January 10, 1989.)

R E F E R E N C E S

[1] M. P. Chytil and J. Demner: Panic mode without panic. In: Automata, Languages and
Programming (Thomas Ottman, ed., Lecture Notes on Computer Science 267), Springer-
Verlag, Berlin— Heidelberg — New York 1987, pp. 260 — 268.

[2] J. E. Hopcroft and J. D. Ullman: Formal Languages and Their Relation to Automata.
Addison-Wesley, Reading 1969.

[3] M. Chytil and S. Scherlova: Semantika programovacich jazyku — atributove gramatiky
(Semantics of Programming Languages). Univerzita Karlova, Praha 1984.

RSDr. Marek Vasin. Univerzita Karlova, matematicko-fyzikdlni fakulta (Charles University —
Faculty of Mathematics and Physics), V Holesovickdch 2, 180 00 Praha 8. Czechoslovakia.

315

		webmaster@dml.cz
	2012-06-05T21:19:37+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

