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K Y B E R N E T I K A - V O L U M E 26 (1990) , N U M B E R 4 

REGULATED GALIUKSCHOV SEMICONTEXTUAL 
GRAMMARS 

MONICA MARCUS, G H E O R G H E P Ă U N 

We consider matrix, programmed, random context and regular control semicontextual gram­
mars in Galiukschov sense ([4]), with and without appearance checking. The generative capacity 
of such grammars is investigated, compared with non-restricted semicontextual grammars and 
with Chomsky grammars. 

1. INTRODUCTION 

The semicontextual grammars were introduced in [4] under linguistical motivation 
and they were investigated in [1], [6], [7], [8] from formal language theory point 
of view. These grammars are interesting counterparts of context sensitive Chomsky 
grammars (based on the process of rewriting nonterminals in given contexts) and of 
Marcus contextual grammars ([5]) (in which contexts are adjoined to strings), as 
they combine modified versions of such grammars: in Galiukschov grammars 
strings are adjoined in given contexts. The formal study of these grammars is there­
fore quite natural and the present paper relates the semicontextual grammars to an 
extensively investigated topic of formal language theory, namely the regulated 
rewriting (see [3] for a survey of the domain). Four of the most known regulating 
mechanisms are considered here, the matrix, the programmed, the regular control 
and the random context restrictions. Part of the results are the expected ones: all 
these mechanisms increase the generative capacity, whereas when adding the appear­
ance checking feature the power is more increased. However, the four mechanisms 
do not lead to equivalent classes of regulated semicontextual grammars (as in the 
case of Chomsky context-free grammars; the same conclusion has been obtained 
for pure grammars in [2]). Some extensions of previous results about semicontextual 
grammars and languages are obtained too: infinite hierarchies introduced by gram­
mars degree, inclusions into context-free languages family of random context semi-
contextual languages family of degree 1 (this extends a Galiukschov theorem). 
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2. SEMICONTEXTUAL GRAMMARS 

A semicontextual grammar is a system G = (V, B, P), where Vis a (finite and 
nonempty) vocabulary, B is a finite language over V, and P is a finite set of rewriting 
rules of the form xy -> xzy, with x, y, z e V*, x, y =)= X (V* is the free monoid 
generated by V under the operation of concatenation and the null element X). 

If w, w' e V*, w = uxyv, w' = uxzyv, u, v e V*, and x> -> xzy is a rule in P, 
then we write w => w'. Denote by =>* the reflexive transitive closure of this relation. 
The language generated by G is 

L(G) = {w e V* I there is u e B such that u =>* w) 

We denote 

deg (G) = max { xl |there is y e V* such that xy —> xzy e P or 

yx —> yzx e P} 

where |x| denotes the length of the string x. This is the degree of the grammar G. 
Then we define 

Jk = {L| L= L(G), deg(G) ^ k} , k = 1 , 

^oo = U ^ 

(the family of languages generated by grammars of degree at most k and the family 
of all semicontextual languages, respectively). 

The following results are known from [4], [6], [7], [8]: 

Jx c J2 a ... c= / M , strict inclusions, 

, / j c ^ 2 ' strict inclusion , 

J2 - £f2 + 0 s 

{a"/3a" | n = 1} ̂  ^ ^ 

(j^,-, i = 0, 1, 2, 3, denote the families in Chomsky hierarchy). 

3. REGULATED SEMICONTEXTUAL GRAMMARS 

A matrix semicontextual grammar is a system G = (V, B, M, F), where V is 
a vocabulary, B is a finite language over V, M is a finite set of sequences of the form 

(x1y1-^x1z1yi,..., xkyk -> xfezfe>-fe), k ^ 1 , 

of semicontextual rules, and E is a set of occurrences of rules in M. For vv, w' e V* 
we write vv => vv' if there are vv,, ...,wk + i in V* and (x1y1 -> X J Z J V I , ...,xfe>'fe-> 
~* A^zA3't) 'n M such that vv = w l s vvfe+1 = vv' and for each i, 1 ^ / ^ k, either 
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w; = upcjiVi, w;+1 = w;x,z;v,r;, or w; = w, + 1, w; does not contain the substring 
xiyi and x ;y ; -> x;z,r,- appears in E. 

The language generated by G is defined in the natural way. 

A programmed semicontextual grammar is a system G = (V, B, P), where V, B 
are as above and P is a finite set of quadruples of the form 

(b: xy -> xzy, E(/j), E(6)) 

where b is the label of this rule and E(b), F(b) are sets of labels of rules in P. A deriva­
tion in G has the form (wt, /3t) => (w2, b2) => (w3, b$) => ... => (w„, /3„), where w, e B, 
and for each /, 1 ^ i fg A, w; e F*, b{ are labels of rules in P and (w;, b() => 
=>(wi+i, bi+1) holds if either wi = uixiyivi, w;+, = w,-x;z;j';f;, for (&f: x^,- -> 
-> XiZ-ji, E(bt), F(bi)) in P and /3 ; + 1 e E(/3;), or w; = vv;+1, vv, does not contain 
the substring x ;j; ; for (Z>;: x;.y; -> x;z;>;;, E(/3;), E(/3£)) in P and bi+ , e E(6;). 

A regular control semicontextual grammar is a system G = (V B, F, C, E), 
where V, B are as above, P is a set of labelled semicontextual rules, C is a regular 
language over Lab(P) (the set of labels for rules in P), and E is a subset of P. A deriva­
tion in G has the form 

where rt,...,rn are labels of rules in P, r1r2...rneC and w, =>'"'vv;+1 if either vv, = 
= UiX-j^i, w;+1 = M;x;z,y,y;, r;: xji -> x;z;yi5 or w; = w;+1, w; does not contain 
the substring x,j/; and the rule r;: x ;y ; -> x ;z ;y ; appears in E. 

A random context semicontextual grammar is a system G = (V, B, P), where 
V, P are as above and P i s a finite set of random context rules, that is triples of the 
form 

(xy —> xzy, E, F) 

with E, E c V. Such a rule can be applied to a string vv in order to obtain a string 
w' if w = uxyv, w' = uxzyv, all symbols of E appear in w, but no symbol of E 
appears in w. (Note that we check the "random contexts" E, E in the whole string 
w, not in uv, outside the lefthand member of the applied rules, as usual [3].) 

In all the four cases, the starting set B of strings is included in L(G) — by definition 
or by convention. 

For all these classes of grammars we can define the degree as for non-regulated 
semicontextual grammars. The families of languages generated by matrix, pro­
grammed, regular control and random context semicontextual grammars of degree 
at most k, k^ 1, are denoted by J/k(ac), 0>

k(ac), ^k(ac), 0lk(ac), respectively; Jijac), 
0>

aD(ac), ^m(ac), 0ljac) denote the families of languages as above, of arbitrary 
degree. When no appearance checking feature is present (that is E = 0 in matrix 
and regular control grammars, E = 0 in rules of random context grammars and 
F(b) — 0 in rules of programmed grammars), then we write Jik, 0*k,

 (€k, 0tk, Ji'co, 
0>

ao,
 (£<XJ, 01^, respectively, for the corresponding families. 
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4. THE GENERATIVE CAPACITY OF NON-APPEARANCE 
CHECKING CASE 

The results of this section are summarized in the next theorem, proved in a series 
of lemmas. 

Theorem 1. The diagram in Figure 1 holds, where each arrow denotes a strict 
inclusion and the unrelated families are incomparable. 

Fig. 1. 

Lemma 1. fi) J\ c %k, k= 1, for all 3E e {Ji, 0>, %', 0t\ (ii) SCk £ SCk(ac), k = \ . 

for all I ' G J 1 , ^ , ^ 4 

Proof. Obvious, from definitions. D 

Lemma 2. &t - 0>k + 0, k = i. 

Proof. Let us consider the language 

LA = {a&V | n = /<} u {ab"fmemc" \n = k,m= 1} 

u {db"c" | n ^ /<} u {db"emfmc" \n = k,m = l} 

The grammar 

G = ({a, b, c, d, e,f}, {abkck, dbkck} , 

{(be ~> 66cc, 0), (6c -> 6/cc, {a}), (/e ->//«?, 0) , 

(bc-+befc,{d}),(ef-+eeff,®)}) 

generates Lk, hence Lk e .#._. 
Suppose that LA = L(G'), for some programmed grammar G' = (V, B, P). As B 

is finite, only for finitely many n's we have ab"fmemc" in fi, db"emfmc" in fi. Therefore 
we have to perform derivations of the form abrcr =>* ab"c", dbrcr =>* db"c", re-
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spectively, hence we need rules for introducing symbols e, f in strings not containing 
them. As B c Lk, each string in B contains the substrings bk, ck. There are infinitely 
many derivations of the form 

D: (abhch, tx) =>* (abhch, t2) => (abhfJleJich, t3) =>* (abhfJ2ej2cu, t4) 

and of the form 

D': (dbh'ch', t[) =>* (dbh'ch', t'2) => (dbh'eJl'fJi'ch', t'3) 

=>* (dbweh'fh'cw, !4) 

Assume j'j ^ (._; the case ix >. i'x is similar. The rules in D can be applied in the 
same order to dbll'c11', thus obtaining a string of the form dbifJeJc\ which is not 
in Lk, contradiction. fj 

Corollary. 0tx - Jk 4= 0 for all k ^ 1. 

Lemma 3. Jix - ^ 4= 0. 

Proof. Consider the language 

L = {a"ba"can \ n ^ 1} 

It can be generated by the matrix grammar of degree 1 

G = ({a, b, c), {abaca}, {(ab -> aab, ba -> baa, ca —> caa)}) 

Suppose L = L(G'), G' = (V, B, P) being a programmed grammar and consider 
an effective derivation w =>* anbancan => ambapcaq, m + p + q > 3n. The used 
rule is of the form xy -> xz>>, hence z = a1, r _t 1, hence only one of m, p, q is different 
from n, that is m 4= P, or p 4= q; the obtained string is not in L, contradiction, fj 

Lemma 4. ^ k <_ .>#k, k >. 1, strict inclusion. 

Proof. Let G = (V, B, P) be a random context grammar of degree k and construct 
the matrix grammar 

G' = (V, B, {(ocx _*„!, . . . ,„_-»• a_, xy -> xzj;) | (x>- -> xzy, {al5 ..., am}) e 

e P, a. e {a.b, fra; | b e V], H i ' ^ m}) 

Clearly, L(G) = L(G')> hence Mk £ „#k. 
The language L = {a"ba"ca" | n ^ 1} considered in the above lemma is not in Mx. 

For, if L = L(G"), G" a random context grammar, then, as each string in L contains 
all occurrences of symbols in V, the grammar G" can be considered a usual unrestrict­
ed semicontextual one. However, as we have proved, L^^x, contradiction. fj 

Corollary. Jix - M^ 4= 0-

Lemma 5. &x - Ji'm 4= 0. 

Proof. Consider the language 

L = {a"b" I n ^ 1} u {a"/j | n ^ 1} 
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generated by the programmed semicontextual grammar 

G - ({a, b}, {ab}, {(1: ab -> a2b2, {1}), (2: ab -> a26, {2})}) 

Suppose that L= L(G')> f o r a matrix grammar G' — (V, B, M). A matrix which 
can be applied to a string a"b (leading to a string amb, m > n) can also be applied 
to a string a"b", thus obtaining a string amb", m > n > 1, which is not in L, contra­
diction. • 

Corollary. ^ - #«, + 0. 

Lemma 6. „//,. c <€k, 0>k c #fc, k>.\, strict inclusions. 

Proof. In view of Lemmas 3 and 5, it is enough to prove the inclusions, and this 
can be done in the standard way followed for Chomsky grammars (see [3], Chapters 
2, 3). • 

Lemma 7. Sk+1 - <€k + 0 for all k _ 1. 

Proof. Consider the language 

Lfe_ {fca2fe+1} u{a2" f e+1 |rc = 1} 

generated by the semicontextual grammar of degree /c + 1 

G = ({a, &},{fra2fe+1, a 2 f e + 1 , a 4 f e + 1 } , 

{afe+1afe+1 -+afe+1a2feafe+1}) 

Suppose that Lk = L(G'), G' _ (V, B, P, C) being a semicontextual grammar of 
degree k with control language C. Clearly, the string ba2k+x must be in B: each rule 
xy -» xzj; has |x[ = 1, |j| = 1, hence we cannot add the symbol b in the left hand 
side of a string a'.On the other hand, in order to obtain strings a

2nk+x with arbitrary 
n, we need derivations of the form a2mk + x =>•* a2nk+x, for a2mk+x eB and using 
rules xy -> xzv with x = a1, y = aJ, 1 = i, j = fe. The corresponding rules used 
in the order imposed by a string in C can be used also starting from ba2k+x, thus 
obtaining string of the form ba2rk+x, contradiction. fj 

Corollary. All inclusions Mk c &k + u Jtk c ^///c+1, ^fc _ ^>fe+1, ^ c ^ 
proper, k >. 1. 

are 

A problem of interest in this context is also the relation with j5f2, the family of 
context-free languages. In [7], [8] it is proved that J2 — <£2 + 0. The language 
{a"ba"can \ n >. 1} in Lemma 3 is not context-free, hence Jt\ — <£2 4= 0. A similar 
relation holds also for programmed semicontextual languages: the grammar ({a, b,c}, 
{abaca}, {(l: ab -» aa/3, {2}), (2: ba ~» 6aa, {3}), (3: ca -» caa, {1})}) generates the 
non-context-free language 

„n+ I 
{a"ba"ca", an+xba"can, a"ba"+xca", a"ba"cď 

+ xba"ca"+x,a"ba"+xca"+x \ n = 1} 
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hence SPX — 5£2 =# 0. As we shall see in the next section, Mx c $?2 (in fact, Mx(ac) c 
c Sf2 too). 

On the other hand, the linear language {a"ba"bam | n, m ^ 1} is not in (^00: we 
need rules xy -> xa'y for modifying the suffix am; as jx| is bounded, there are such 
rules with x = arbas, or x = ar, which can be applied in such a way to modify the 
second substring a" in a string a"ba"bam with arbitrarily large n and m, thus obtaining 
anbarbam, n + r. 

5. THE GENERATIVE CAPACITY IN THE APPEARANCE 
CHECKING CASE 

The relationships between the considered families of regulated semicontextual 
languages generated with or without appearance checking are summarized in the 
next theorem. 

Theorem 2. The diagram in Figure 2 holds for all k ^ 1 (the dotted lines point 
out to open problems). 

Є Í Л . C ) - - . _ _ 

l - í ) 

Fig. 2. 

We prove these relations (sometimes, stronger results) in a series of lemmas. 

Lemma 8. Mx(ac) - Mk(ac) 4= 0 for all k ^ 1. 

Proof. The language 

Lk = {(a2kb2k)" f n ^ 1} u {6" | n ^ 2} 

is generated by the random context grammar of degree 1 

G = ({a, b}, {a2kb2k, b2}, {(ab -> ab2ka2kb, 0, 0), (bb -> 6/36, 0, {a})}) 

but Lk^Mk(ac): each matrix (rx, ..., rf) which is used in a derivation bl =>* bJ 

and introduces at least a new symbol 6 can be also used for rewriting a string of the 
form (a2fc62k)'+1 into a string containing at least one substring 62fc and at least one 
substring 6s, s =f= 2k. • 

Corollary. &k <= @tk(ac), fe_: 1, proper inclusion. 
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Lemma 9. 0g1 - 0>k(ac) 4= 0, k = 1. 

Proof. We consider again the language Lk in the proof of Lemma 2. Following 
the same argument and the fact that the derivation in a programmed grammar may 
begin by any rule, we start a derivation from abkck using a rule which introduces 
a substring ef; a string not in Lk is obtained, hence Lk $ ^k(ac). • 

Lemma 10. Jix - (SPjac) u Mjac)) #= 0. 
Proof. The language {a"ba"ca" | n ^ 1} is in Jix, but it is not in SPjac) u Mjac) 

(the same arguments as in the proof of Lemmas 3, 4). • 

Lamma 11. 0>x - Jik(ac) u Mjac)) + 0, fc = 1. 
Proof. The language 

Lk = {a"+1b"+k | n = 1} u {a"/jfc | n = 1} 

is in ^ j (it is generated by ({a, b}, {abk}, {(1: ab -> a262, {!.}), (2:a/j -> a2/3, {2})}) 
but it is not in ffljac) (the random context restriction is of no use, as each string con­
tains all symbols), nor in Jik(ac) (each matrix used for rewriting a

m + 1bm + k can be 
used also for rewriting a"bk, thus obtaining parasitic strings. • 

Corollary. Jik(ac) c <$k(ac), k— 1, strict inclusion. 
Proof. The inclusion is obtained in the standard way and the above lemma 

proves that it is proper. • 

Lemma 12. (Ji\(ac) n Mx(ac)) - %k #= 0, k = 1. 
Proof. The language 

Lk = {ak"bk"c2k | n = 2} u {bk"c2k+1 | n = 2} 

can be generated by the matrix grammar 

G = ({a, b,c},{a2kb2kc2k, b2kc2k+'}, 

{(aa -> aaka, bb -> bbkb)}, {aa —> aaka}) 

as well as by the random context grammar 

G' = ({a,b,c},{a2kb2kc2k, b2kc2k + x}, 

{(ab -> aafc/jfc/j, 0, 0), (/JC -> fo/jfcc, 0, {a})} 

The proof that Lk £ ^k is similar to the proof of Lemma 7. • 

Corollary. Jik <= J4k(ac), ^k c (€k(ac), k = \, strict inclusions. 

Lemma 13. 2Px(ac) - (ik #= 0 for all k = 1. 
Proof. Consider the language 

L* = {a/jfccfc, a/32fcc2fc) u {/j"fcc"fc | n = 1} 

generated by the programmed grammar 

G = ({a, b, c}, {abkck, bkck}, {(1: be -> 66fccfcc, {2}, 0), 

(2:a/3-+afc,0,{l})}) 
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Suppose Lk = L(G') for a regular control grammar G' = (V, B, P, C) without 
appearance checking. The strings abkck, bkck must be in B. Each derivation brkcrh =>* 
=>* b"kc"k, brhcrk e B, n > r, must use rules of the form xy —> xzy, \x\ ^ k, \y\ ^ k, 
and all of them are effectively used, hence these rules can be applied also to abkck, 
in the same order, thus obtaining strings not in Lk, contradiction. • 

Corollary. &k <= &k(ac) is a strict inclusion for all k ^ 1. 

Lemma 14. All inclusions Mk(ac) a Mk+X(ac), Jik(ac) a Jik+l(ac), 0>k(ac) c. 
<= 0>

k+x(ac), k >. 1, are proper. 

Proof. The language Lk in the proof of Lemma 7 is not in &k(ac), the language Lk 

in the proof of Lemma 8 is not in Jik(ac), whereas the language {ba2k+l} u 
u [a2nk+ib | n ^ s) is not in ,<%k(ac). All thess languages are in Jk+X, hence the 
relations in Lemma follow. • 

Open prajbms. Which are the relations between 0>k(ac), 0tk(ac) and <$k(ac)c> 
(We know only that ^\(ac) — (0^k(ac) u 0?k(ac)) 4= 0.) Are the inclusions ^k(ac) c_ 
c ^\+i(ac) proper? 

The last problem may seem surprising, but note that the language Lk in the proof 
of Lemma 7 can be generated by a regular control grammar of degree 2: ({a, b}, 
{ba2k+\ a2k+n

h {(/-,: baa -+ baba), (r2: aa -> aa2ka)}, {r]kr*r2}, {r,}) (each deriv­
ation starts by applying 2k times the rule rx, in the appearance checking mode, 
and ends by using at least one time the rule r2; if we start from ba2k+\ after 2k 
applications of r,, the rule r2 cannot be applied, therefore the derivation is blocked). 

Consider now the relation with families in Chomsky hierarchy. In [4] it is proved 
t h a t . / , <= <£\\ a stronger result is true. 

Theorem 3. Mx(ac) a if2, strict inclusion. 

Proof. The language Lk in the proof of Lemma 11 is linear, hence it is enough 
to prove the inclusion. For, consider a random context grammar G = (V, B, P), 
of degree 1. Define the sets 

B' = {ax(ax, a2)(a2, a3) ... (ak_x, ak) | axa2 ... ake B, a ; e V, 1 ^ i = k} , 

P' = {(a, b) -> (a,a1)(ax, a2) ... (afc_,, ak) (ak, b) | 

(ab -> aaxa2 ... akb, E, F) e P, a,- e V, 1 ^ i fs k} 

For a string x e (Vu V x V)*, denote by alph(x) the set of symbols in Vappearing 
in x (possibly in couples of V x V). For a subset T _; P, take the pure grammars 
GT(a, b) = (V x V, (a, b), T), (a,b)eVxV, and define the substitution s r : 
(V x V)* -> 2(KXK)*, sr((a, b)) = L((Gr(a, /J)), (a, b) e V x V (the languages 
L(GT(a, b)) are context-free). Moreover, for a rewriting rule r': (a, I?) -> z in P' 
associated to r: (a/3 -> aw6, E, E) in P, we consider the gsm gr, which replaces one 
occurrence of (a, b) by z, leaves unchanged the other symbols and checks whether 
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all the symbols in E are present, but no symbol in E appears in the processed string 
(a, simulates the application of the rule r). 

Consider now the subsets B(
1
0), B(

2
0), ..., B(0) of B' such that: 

(i) B = U£ ( 0 ) 

(ii) B^0) n B(0) = 0 for i =t= j , I = i , j ^ n0 , 

(iii) alph(x) = alph(y) for x, y e B(0), 1 ^ i fS n0 , 

(iv) if x e B^0), y e B(0), i #= j , 1 ^ /, j = n0, then a/p/z(x) #= alph(y). 

For a set C of strings, denote alph(C) = U alph(x). 
xeC 

Starting from a family B['\ ..., B^ of sets of strings in (Ku V x V)* (initially 
we have i = 0 and the sets B(0), 1 ^ j S n0, constructed as above), we consider 
the following procedure: 

For each B(I), 1 ^ j ^ nt, define 

Tjl) = \r' e P' | r': (a, b) -* z is obtained from 

r: (a/3 -»• awb, E, F) in P and alph(z) £ (fi(j)), 

E c alph(B{p), F n alph(Bp) = 0} 

and, for each rule r': (a, 6) -> z in P' such that alph(z) — alph(B{i)) 4= 0, consider 
the set ar(sr.(i)(B(l))). The family of these sets is finite (the set P' is finite and the 
family of sets B{p is finite); denote these sets, in a given order, by B[i+ n , ..., B{

n
i+ ' ' . 

Some remarks about this procedure are worth mentioning: 

1. alph(B{p) = alph(sTjii)(B
{p)) a alph(gr(sTj(i)(B

{p))) £ V, for all re Pas above. 
2. As a consequence of the above point, we find that the procedure stops after 

a finite number of steps, as no further rules r'\ (a, b) -*• z can be found such 
that alph(z) — alph(B{p) + 0 for some B(,). Let t be this moment of procedure 
halting. 

3. All sets Bp are context-free languages: we start from finite language B(0) and 
use finitely many context-free substitutions and gsm mappings (both preserve 
the context-free-ness). 

4. Each substitution sr.(i) corresponds to a derivation in G which does not in­
troduce new symbols in the current string; moreover the Tjl) definition ensures 
the fact that the random context restrictions are observed. Similarly, each 
use of a gsm corresponds to using the random context rule r for one step re­
writing (this rule enlarges the set alph(x) of the current string). 

Consequently, the language C = [J B(p is context-free and h(C) = L(G), where 
o g i g t 
1 ^ 7 ' g n i 

h: (Vu V x V)* —> V* is the homomorphism defined by h(a) = a, a e V, h((a, b)) = 
= b, (a, b) e V x V. In conclusion, L(G) is a context-free language and the proof 
is terminated. • 

(Received April 4, 1989.) 
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