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KYBERNETIKA-VOLUME 21 (1985), NUMBER4 

RECURSIVE ESTIMATION 
AS AN OPTIMALLY CONTROLLED PROCESS 

JAROSLAV MARKL 

A recursive estimation by means of two simple stochastic approximation algorithms is treated 
as a controlled process with the gain as the control variable. The optimal control is derived 
for the case when excitation and noise are mutually independent and uncorrelated random 
processes. 

1. INTRODUCTION 

In recent years the behaviour of stochastic approximation algorithms was studied 
in many of papers — see e.g. [1, 2, 3, 4]. Almost all of them are concerned with the 
asymptotical performance and the deepest results formulate the asymptotically 
optimal algorithms for the given external conditions of estimation. The results of 
this kind are very interesting from the mathematical point of view according to the 
behaviour in a finite number of initial steps is not important. However, the practical 
point of view is quite different: we are always in a finite distance from the beginning 
of estimation and therefore we are first of all interested in the initial behaviour. 
In practice we need not have the exact estimates in infinity, but we need to reach 
estimates with the prescribed accuracy in a finite number of steps as soon as possible. 
Unfortunately, the stochastic approximation algorithms, including the asymptotic­
ally optimal ones, exhibit generally a very poor initial convergence. Many of the 
proposed asymptotically optimal algorithms can even diverge at the very beginning 
of estimation. 

The present paper deals with two well-known simple identification algorithms: 
standard (simple) stochastic approximation (SSA) and normalized stochastic appro­
ximation (NS A). The estimation by means of these two algorithms is treated as a con­
trolled process with the gain as a control variable. For simple external conditions — 
when the excitation and noise are independent and uncorrelated random processes — 
the optimal control is derived. The derived algorithms have an optimal behaviour 
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from the very beginning of estimation and their asymptotic optimality is a pure con­
sequence of the overall optimality. 

The structure of the paper is as follows. First of all the identification model and 
the estimation algorithms are described (Section 2). Then the estimation process is 
defined as a controlled process and the notion of an optimal trajectory of identifica­
tion process is introduced (Section 3). In Section 4 the special case of a constant 
control is discussed. The main results — the laws of optimal control of estimation — 
are contained in Section 5. In Section 6 some generalizations of the main results are 
briefly mentioned. 

The paper represents an extension of the results presented in [5]. 

2. THE IDENTIFICATION MODEL 

The following notation will be used: 
zt n-dimensional input vector 
yt scalar output 
b n-dimensional vector of unknown parameters 
bt estimate of the vector fa 
dt error of the estimate, dt — fa — bt 

y\t random component of the input-output mapping: z. -» yt 

xt gain (scalar) of the estimation algorithm 

The subscript t denotes discrete time t = 0,1,2,... 
The two considered algorithms for parameter estimation of the stochastic linear 

system 

(2.1) y, = - > + r,, 
have the form 

(2.2) h, = b,_1 +Kt{yt-z]h,_i)zt (SSA) 

(simple standard stochastic approximation) and 

(2.3) b, = & . _ 1 + x , 2 ^ _ _ _ L _ _ i z . ( NSA) 
-J*. 

(normalized stochastic approximation). 
The sequences {z j , {nj are assumed to be random, independent and with the 

following statistics: 
(2.4) E{z,) = 0 

M «.*}-{* ^ 0 t o ; ; ; 
(2.6) E{,,) = 0 

(") *w={? for:;: 
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From the independence of random sequences {z,}, {nt} and the assumptions (2.4), (2.6) 
we conclude 

(2.8) E{z^,} = 0 

It is further assumed that the inputs z. have gaussian distribution, but no assumption 
is made about the kind of the noise distribution. 

The following lemma will be useful in the sequel. 

Lemma 2.1. Let the coordinates of an n-dimensional vector z be independent 
random variables, gaussian distributed, with zero means and with common variance erf. 

Then it holds: 
(2.9) E{(zzT)2} = (n + 2 K / 

(2.10) E 1—1 = for n > 2 (othervise undefined) 

(2.1.) E J i J - 0 

(2.2) E j ^ l - i , 
Proof. The proof of (2.9) is straightforward and can be omitted. The proofs 

of (2.10)—(2.12) are similar and therefore only the first of these equations will be 
proved. To prove (2.10) we transform the rectangular coordinates z1z2,...,zn 

of the vector z (the subscripts exeptionally do not indicate the time, as in all other 
parts of the paper, but the coordinates) to the polar coordinates Q, au a2,..., a„_i 

i - i 

(2.13) z, = Q cos (a,) . ]1 sin (ak); i = 1, 2 , . . . , n - 1 
fc=i 

n - l 
z„ = Q . J ] sin (ak) 

k = i 

where Q ̂  0, 0 < a ; < n for i = 1, 2, . .„ n - 2, 0 < a„_x < 2K. From (2.13) 
it follows (can be proved by induction): 

(2.14) zTz = Q2 

n-l 

dz. dz2 . . . dz„ = Q"~ * &Q F | (sin"-*'-'l (ak) dafc) 
k=l 

Our aim is to determine the mean value 

(2-15) E $i -LL -L^d^r(^z)dzi 4z' •"dz- • 
Introducing (2.14) into (2.15) we get 

(2.16) 

E £ } - (_£..]>"' ->{$ deS (Isin'"""' w S I > -
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Using substitution Q2\2o\ = x we have for the first integral in (2.16) 

(2.17) f V 3 ™p(~) tQ = 2("/2)~2 <-2 rx«»/2'-1)-1exp(-x)dx = 

= 2 W 2 ) - 2 _ r 2 r j _ _ 1 \ 

Note that the gamma function in (2.17) is defined only for n > 2. The others integrals 

in (2.16) can also be expressed using the gamma function 

In - k\ 

rsin-fc-^da^Vfo) / \ 
Jo Y\n ~ 

V 2 

( 2 Л 8 ) - - t + i 

Substituting (2.17), (2.18) into (2.16) and using elementary properties of the gamma 

function equation (2.10) can be obtained after some transformations. 

3. CONTROL OF THE ESTIMATION PROCESS 

We choose the gain xt as the control variable of the estimation process. Similarly 

the mean value of the squared distance between the vector b (object) and its estimate 

b ( (model) is chosen as the state variable of the estimation process, i.e. 

(3.1) S ( = E K _ ( } = E { ( _ - b ( ) T ( _ - b ( ) } 

The mean value in (3.1) is taken over all random variables z., z2, ...,zt and nu n2,... 

..., nt. The sequence 

(3.2) {S,;t = 0,1,2,...} 

is called the trajectory of the estimation process (or briefly the process) and the 

sequence 

(3.3) {*,;.-= 1,2,...} 

the control of the estimation process. Providing the initial state and the control 

(3.3) is given, the trajectory of the estimation process is uniquely determined by the 

state equation 

(3.4) St=f(St_uxt) 

To compare two trajectories {S(} and {S't} with the common initial state S0, we 

introduce the following notions. We say that the process {S(} has a better initial 

convergence than the process {S(} if there exists f0 _ 1 such that 

(3.5) St<S't 

holds for 0 < f _ f0. If the inequality (3.5) holds for all t _ t0, we say that the pro-
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cess {S(} has a better final convergence than {S(}. If the inequality S( = S't holds 
for all t = 0,1,2. ... and the strict inequality is valid for at least one t, then we say 
that the process {SJ has a better global convergence than the process {S't}. 

Our main goal is to find such a control that gives the best global convergence, i.e. 
infimal trajectory of the estimation process. Such a control will be called the globally 
optimal control. The control {x*} defined for all f = 1, 2, ... by the relation 

(3.6) / ( S ( _ 1 , ^ ) = min/(S ( _ 1 ,x ( ) 

is called the locally optimal control (control optimal at each time instant). Note 
that the locally optimal control need not be globally optimal and that globally 
optimal control need not exist at all. The following lemma states the condition that 
guarantees existence of the globally optimal control. 

Lemma 3.1. Let the implication 

(3.7) S < S' _> f(S, x) < f(S', x) 

be true for all admissible values of the control variable x. Then the locally optimal 
control is also globally optimal. 

Proof. Let us compare the process {Sf} corresponding to locally optimal control 
{x*} with the process {S(} corresponding to any other control {xt} + {%*}. Suppose 
S*_, < S,_.. Then from (3.7) and (3.6) it follows 

Sf = /(S(*_ i x*) < /(S,_ l f x*) < /(S (_., xt) = St, 

and consequently Sf ^ S( (the equality Sf = S( holds if and only if contemporarily 
Sf_, = S,_x and x* = xt). Let us denote t0 = min {t\xt + x*}. Since S0 = S0, 
we get 

Si = Sj , s2 = S2,..., S(o_i = St0_x , sto < s t o , s , o + 1 < S ( 0 + 1 , . . . 

i.e. the locally optimal control is globally optimal • 

Now, we turn our attention to the estimation processes generated by the estimators 
SSA (2.2) and NSA (2.3). 

Theorem 3.1. Assume the external conditions of estimation to be the same as 
in Section 2. Then the state equation (3.4) for the estimation processes generated 
by the estimators SSA (?? arbitrary) and NSA (n > 2) has the following forms 

(3.8) St = / S S A ( S ( - i , xt) = [1 - 2a\xt + (n + 2) *•*?] S,_t + na2<r2x2 

n — 2 az 

Proof. We rewrite recursions (2.2) and (2.3) for estimates bt in terms of the 

(3.9) S, = / N Ѕ A ( S ( _ 1 ; xt) = I 1 - - xt + - x] Ѕ ř_x + 
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estimation errors d, — b - b,. Using (2.1) we get 

(3.10) d, = (I - xtztzj)dt_x - xtt,,z, for SSA 

(3.11) d, = (\ - x, Z ^ ] d,_, - x, - ^ - z, for NSA 
\ Z , V z , z r 

and hence after some calculations 

(3.12) djd, = dj_ld,_1 - 2xtdJ_iz,zJd,_l + x2dj_x(z,zjf d,_, -

- 2xtf,zjd,_1 + 2x2^,dJ_lz,zJz, + x2n)zjzt for SSA 

(3.13) djd, = dj_xdt_, - x,(2 - xţdj_x Ҷ- l d,_. + 

J T _. . 

+ 2x,(x, - 1) n, -¥-* + x)n) -—- for NSA 
z, z, z' z, 

The mean value S, = E{d^d,} can be calculated using the well-known rule of prob­
ability theory 

_{g(x,y)} = E{E{g(x,y)\x}}. 
x,y x y 

Following this rule we apply the operator of conditional mean E{- | d,_ t} (the 
expectation is considered for z„ r/t) on the equations (3.12), (3.13) at first .By Lemma 
2.1, assumptions (2.6), (2.7) and the independence of random sequences {z,}, {>;,} 
we obtain 

(3.14) E ' ^ d , | d,_,} = [1 - 2a2
zxt + (n + 2) a\x)_ dj_1d,_l + na\a\x2 

for SSA 

(3+5) E{dJdt\dt_1} = \ l - 2 x t + -x)\dJ_ldt_i+^~a\xt for NSA 
n n n — 2 a2 

Finally, applying the operator E{-} (the expectation is considered for d(_j) on 
(3.14), (3.15) we get the state equations (3.8), (3.9). • 

Theorem 3.2. Let the external conditions of estimation are the same as in Section 2. 
Then the locally optimal control of estimation by SSA or NSA (n > 2) is also 
globally optimal. 

Proof. According to Lemma 3.2, we have to prove the implication (3.7) for 
/ = /SSA and / = /NSA. From (3.8), (3.9) it follows that this implication is equivalent 
to the following inequality 

(3.16) 1 - 2a2
zx + (n + 2) a\x2 > 0 for SSA 

(3.17) 1 —-x + -x2 > 0 for NSA 
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It is easy to see that the inequality (3.16) holds for arbitrary n and the inequality 
(3.17) holds for n > 1 and hence also for n > 2 as demanded. • 

The just proven theorem enables us to omit the adverbs "locally" and "globally" 
and to speak simply about optimal control. 

4. THE CONSTANT CONTROL 

In this section we shall study the estimation process in the trivial case when the 
control variable is chosen constant, i.e. xt = x. 

Theorem 4.1. Assume the same external conditions of estimation as in Section 2. 
The estimation processes generated by the estimator SSA (dimension n arbitrary) 
and NSA (dimension n > 2) with the constant gain xt = x are described by the 
formula 

(4.1) S, = (S0 - R)Q' + R; t = \, 2 , . . . 

where quantities Q and R are constants specified for SSA and NSA respectively 
as follows 

(4.2) 2 = 1 - 2alx + (n + 2) a\x2 

nalx !> for SSA 
(4.3) R = 

2 + (n + 2) a\x 

(4.4) ß = 1 - - и + -x2 

(4.5) R = 
2 ał 2 - x 

for NSA 

Proof. If xt s x then the state equations (3.8) for SSA and (3.9) for NSA have 
the form of a simple difference equation 

(4.6) s, = e s r _ x + P 

with constant coefficients Q, P. The solution of (4.6) is 

(4.7) S, = (s0 - -?-A Q' + 
l-QJ 1 - G 

If we substitute for P, Q into (4.7) in accordance with (3.8) or (3.9) we obtain the 
formulas (4.1), (4.2), (4.3) or (4.1), (4.4), (4.5) respectively. • 

From equation (4.1) it follows: if \Q\ < 1 then the sequence {S,} converges and 
has a limit R (the so called residual or stationary error of estimation). 

Simple analysis of formulas (4.2), (4.3) gives the following conclusions for the 
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SSA estimator. The estimation process converges for 

(4.8) xefo; ? — 
V > + 2) o\ 

The function Q = 6ssA(^) given by (4.2) is decreasing (the rate of convergence 
increasing) for x e (0; l/((/i + 2) a2)) and increasing (the rate of convergence de­
creasing) for x e (l/((n + 2) a2); 2/((n + 2) a2)). Providing a2 > 0, the function 
R = RSSA(x) given by (4.3) increases (the stationary accuracy of estimation decreases) 
in the whole interval of convergence (4.8). Every reasonable choice of a constant 
gain x is therefore from the interval 

(4.9) xefo; 
(n + 2) a2 

and it always represents a compromise between the contradictional requirements 
for rate and for accuracy of estimation. 

Quite similar results can be derived for the estimator NSA by the analysis of 
formulas (4.4), (4.5). The estimation process converges for 

(4.10) %e(0;2) 

but the reasonable choice of a constant gain (balancing the contradictory require­
ments for rate and accuracy) is from the interval 

(4.11) x e ( 0 ; l ) . 

5. THE OPTIMAL CONTROL 

From the theory of stochastic approximation it is well known that the exact 
estimates will be reached if we apply time-variant control satisfying the conditions 

(5.1) xt > 0 , £ xt = oo , ]T x2 < oo 
t = l r = l 

The most frequently used control is the following standard control 

(5.2) x, = —, oc > 0 
at 

which evidently satisfies conditions (5.1). It is easy to verify that the recursive form 
of (5.2) is 

(5.3) x,= * ' - ' ; t = 2,3,... 
1 + ax^x 

In this section the recursive law of the optimal control is derived and it is shown 
that the standard control just mentioned does not produce an optimal estimation. 
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Theorem 5.1. Suppose the same external conditions of estimation as in Section 2. 
Then the optimal control of the estimation process generated by the estimator SSA 
is given by 

(5.4) x* = il 
1 ' (n+2)a2

zS0 + na2 

(5.5) x* = — - ^ x* ,; t = 2, 3, . . . 
1 -(n + 2)atx*_x 

For the estimator NSA (n > 2) we have the following formulas 

(5 6) x* = (" ~ 2) a_S0 

' (n - 2) a\ So + nal 

(s.i) ** = 'L:i4r*f-1; * = 2,3,.... 
n — x*_j 

Proof. To prove the theorem we shall find the optimal control at an arbitrary 
time instant t (in an arbitrary state S,_i), i.e. we shall solve the optimization problem 
(3.6) where j = j s S A or j = j N S A - see (3.8) or (3.9). By the differential calculus 
we get the solution 

(5.8) x* = - J j i - i for SSA 
(n + 2)a2S,_l+na2 

(5.9) ** = - ( " - 2 ) ^ , - i f o r N S A 
V ' (n -2)a2

zS,_l + na; 

Hence, for t = 1, we get (5.4) for SSA or (5.6) for NSA. Combining relation (5.8) 
resp. (5.9) with (3.8) resp. (3.9) we obtain the recursion (5.5) resp. (5.7) after some 
calculations. • 

The mappings x*_t -> x* defined by the relations (5.5) or (5.7) respectively have 
the following interesting properties: 

1) The end-points of the resonable intervals (4.9) or (4.11) are the fixed points of the 
mappings: the points 0 and l/((« + 2) a2) for the mapping (5.5) and the points 0 
and 1 for the mapping (5.7). 

2) If a2 = 0, then for SSA from (5.4) it follows x* = l/((n + 2) a2) and hence 
from the first property x* = l/((n + 2) <r2) for all t. Similarly for the estimator 
NSA from (5.6) it follows x* = 1, and hence, since x* = 1 is a fixed point of (5.7), 
x* = 1 for all t. Thus, for deterministic systems the optimal control is the constant 
control. 

3) Let a2 + 0 and x* e (0; l/((n + 2) a2)) for SSA or x* e (0; l) for NSA. Then the 
following inequalities 

0 < x* < x*_ i 
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are valid and the sequences {%*}, {S*} converge to zero (the formal proof of this 
property is based on the fixed point theorem). 

In practice, we do not know the exact values of quantities S0, a2 contained in 
formulas (5.4), (5.6) and that is why these formulas are not suitable for practical 
determination of the initial value of an optimal control. Luckilly, the run of estima­
tion is not too much sensitive to the error of determination of the first control action 
x*. Moreover, in the majority of real estimation problems we can assume (n + 2) . 
. a2S0 P na2 for SSA, or (n — 2) alS0 >̂ na2 for NSA, and therefore it is reasonable 
to choose the first control action nearly equal to l/((rc + 2) a2

z) for SSA or 1 for NSA, 
but always a little lesser that these values. We can also employ the following theorem. 

Theorem 5.2. Let us denote Rx = lim S, the residual error of estimation provided 
r->oo 

the constant control xt = x is applied. The first optimal control action for the initial 
state So = R„ of the estimation process is given by the formula 

(5.10) A = * 

The formulas (5.10) is valid both for the estimator SSA and NSA. 

Proof. Substitute into (5.4) for S0 the R according to (4.3) (for the estimator SSA) 
or into (5.6) according to (4.5) (for the estimator NSA). In both cases we obtain 
(5A0). • 

In practice we can use Theorem 5.2 in such a way. We apply constant control 
y.t = x first and after some time when it is possible to assume that stationary state 
is reached, we switch on optimal control given by (5.5) or (5.7) and with the initial 
value of control variable stated by (5.10). 

Now we compare the estimation processes generated by the optimally controlled 
estimators SSA and NSA. 

Theorem 5.3. Assume the same experimental conditions of estimation as in Section 
2 and consider the estimation process generated by the estimator SSA (2.2) with 
optimal control (5.4), (5.5) and the estimation process generated by the estimator 
NSA (2.3) with optimal control (5.6), (5.7). Then for n > 2, S0 > 0, a2

z > 0 the 
following assertions are true: 

1) If a2 = 0 (deterministic case) then the estimation process generated by NSA 
has always (independently of S0, n, a]) a better global convergence that the 
estimation process generated by SSA. 

2) If a2 > 0 (stochastic case) then the algorithm SSA provides always (regardless 
of the values of S0, n, a2, a2) a better final convergence than NSA. If the inequality 

(5-11) * o < ^ - i 
n — 2a; 
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is valid then the algorithm SSA has also a better initial convergence than the 
NSA and, consequently, a better global convergence too. If the converse of (5.11) 
is true then the algorithm NSA exhibits a better initial convergence than the SSA. 

Proof. The runs of the two optimal controlled estimation processes are described 
by the state equations 

- . - / < £ A ( - . - I ) -jsSA(st-1,xrsA(S(_1)) 

S , = - / N V ( S , - I ) = jNsA(S (_1 ,^N S A(S (_1)) 

where the functions j s S A , j N S A are defined by formulas (3.8), (3.9) and the quantities 
x*SSA(S(_!), x*NSA(S(_!) by the equations (5.8) and (5.9) respectively. Inserting (5.8) 
into (3.8) resp. (5.9) into (3.9) we finally get (the time indexes are omitted): 

(5.12) /*A(S) = S ( l - a\ 
(n + 2) a\ S + na\ 

(5-13) fUS) = s(l-i ("-%f , 
\ n (n - 2)a\S + naf, 

The assertions of the theorem follow from the relations 

/^)jjJ&(s)-S j j}^| 
that can be easily verified on the basis of (5.12), (5.13). Q 

Remark, that l) the real conditions of estimation are mostly such that the inequality 
(5.11) is false and the NSA estimator has better initial convergence than SSA, 2) 
the difference between the rates of final convergence of both estimators is practically 
negligible, 3) the convergence interval and the recursive law of optimal control 
for the NSA estimation does not depend on the input variance a\ (in contrast to the 
SSA estimation). For all these reasons we generally prefer the NSA estimator to the 
SSA one. 

Finally, we make some comments regarding the standard control of estimation 
(5.2) or (5.3). The comparison of the recursions (5.5), (5.7) with (5.3) shows that the 
standard control can never be globally optimal (by no choice of parameter a). Never­
theless, we try to find such standard control x( that implies asymptotically optimal 
behaviour. For this purpose assume ?<f_1 = x (_ t and divide (5.5) or (5.7) by (5.3). 
Neglecting the terms of second order we get respectively 

x* 
(5.14) — = 1 - (a - a\)x,_1 for SSA 

x, 

(5.15) - 1 = 1 + ( a - -\ x ( _, for NSA 
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The standard control {x,} will be asymptotically the same as the optimal control 

K ) if 

(5+6) lim ^ = 1 
í-xю x, 

From (5.14), (5.15) it follows that (5.16) will be satisfied if a = a\ for SSA and 
a = 1/n for NSA. Consequently the standard controls 

(5.17) x, = — for SSA 
aЪ 

(5.18) xt = - for NSA 
ř 

are asymptotically optimal for estimation conditions stated in Section 2. The formula 
(5.17) can also be derived from the more general results contained in [3]. Never­
theless we cannot recommend the controls (5.17), (5.18) for practical use because 
of their divergence at the very beginning of the estimation. To improve the initial 
behaviour it is reasonable to restrict the possible values of control actions to intervals 
(4.9), (4.11) as follows 

1 

(5.19) 
(« + 2) a\ 

\_ 
olt 

for 

t < n + 2 

t > n + 2 

(SSA) 

(5.20) for 
t > n 

(NSA) 

6. SOME GENERALISATIONS 

The results presented in the previous section can be extended in several directions. 
We briefly mention two of such generalisations. 

1) The assumption of gaussian distribution of the inputs is not essential. The 
optimal control of the SSA estimator (formulas (5.4), (5.5)) can be generalised as 
follows 

(6.1) 

(6.2) 

S 0 

(« + ß) a\S0 + na2 

1 - ^ Г - x ..* . t = 2, 3, ... 
1 + ( n + p)a\S0x*_1 

where the parameter /? depends on the type of input's distribution. The value p = 2 
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corresponds to the normal distribution, the value /? = \ to the uniform distribution 
and the value p = 0 to the binary distribution (the random variable takes on only 
two values a., —a, with the same probability {). The assertion was proved for normal 
distribution (see Theorem 5.1, Theorem 3.1, Lemma 2.1 and their proofs), the proofs 
for uniform and binary distribution are quite similar. 

The optimal control of the NSA estimator for binary distributed inputs is given 
by the formulas 

(6-3) x* = - r ^ - ° — , 
a]S0 + a-

(6.4) xf = ' L ^ % i x ^ ) ; . - 2 , 3 . . . . 
n — x,2t 

Note that the recursive law (6.4) of optimal control is the same as that for normally 
distributed inputs — see (5.7). The optimal control of the NSA estimator seems to be 
much less sensitive to the type of input's distribution than the optimal control of 
the SSA estimator. 

2) The second extension generalizes the model of the system to be identified. 
In this generalization the estimated system can be not only stochastic but also time-
variant. Equation (2.1), describing the system, is replaced by the following more 
general equation 

(6.5) y, = zjb, + „ , 

where b, is the time-variant vector of the system parameters. The evolution of this 
vector is described by 

b, = - V J + g, 

where {g,} is a random sequence with the statistics 

~{g,} - o 

The sequence {g,} is assumed to be independent of the input and noise random 
sequences {z,}, {n,}. All assumptions on {z,}, {ijt} made in Section 2 remain 
unchanged. 

We shall consider only the estimator NSA because it is more convenient for 
estimation of nonstationary systems (the results for SSA are similar). For generalized 
model we can formulate the following theorems: 

Theorem 6.1. Suppose the generalised external conditions of estimation as stated 
above. Then for n > 2 the estimation process generated by the estimator NSA with 
constant control x, = x is described by the formulas: 

S, = (S0 - R)Q' + R; ( = 1 , 2 , ... 

284 



0 = 1 - - x + - x2 

R = R. + R7 

_ » . _ . - - I 

и - 2 _ ŕ 2 - и 

R2 = 1 tr G 
\x{2 - x) ) 

Observe that the stationary error R consists of two components Ru R2, the first 

of which depends on the noise-to-signal ratio (o2\a2) and the second on the degree 

of the time variability (tr G). A simpe analysis shows that with the control parameter 

x growing from 0 to 1 the first component is growing too, but the second is decreasing. 

Such a value x* e(0; 1) exists for which the overall stationary error R — R_ + R2 

has the minimal value R* = R(x*) = min R(x). 

Theorem 6.2. Suppose « > 2 and the generalised external conditions of the estima­

tion. Then the optimal control of the estimator NSA is given by the formulas 

, * __ (H - 2) a2(S0 + tr G) 

(и - 2) aг

z(S0 + tr G) + na2 

(n - кf-.K-i + ( - - < - , ) Д. ř = 2 ) 3 ) 
n - x*l, + (1 - %f_.) D 

where 

D _ { n - 2) a2
z t r G 

If we apply the optimal control according to Theorem 6.2, then we reach the 
minimal value of the stationary error R* along the optimal (infimal) trajectory of the 
estimation process, i.e. with the maximal possible rate. If nonstationarity occurs 
(tr G =|= 0) then the sequences {x*}, {S'f} do not tend to zero, as in the stationary 
case, but to the non-zero values x*, R* mentioned above. 

7. CONCLUSION 

In this paper new stochastic approximation algorithms for system identification 
have been presented. In contrast to the well-known standard stochastic approxim­
ation, they possess the property of overall (global) optimality. However, it should be 
stressed that the assumed external conditions of identification are the most simple 
ones. In practice we always meet more difficult external conditions. The presented 
algorithms can be applied also under these conditions but without pretension to 
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optimality. Nevertheless, the experience shows that regardless of the external condi­

tions the presented algorithms exhibit better convergence than the standard ones. 

For practical use the generalisation of NSA estimator, proposed in [6], that 

radically accelerates the initial convergence, can be recommended. The recursive 

law of the gain evolution derived in this paper can be used for the generalised 

algorithm too; naturally again without pretension to optimality. 

(Received June 18, 1984.) 
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