Kybernetika

Jif{ Hot'ej$
Recursive functions computable within C' f log f

Kybernetika, Vol. 5 (1969), No. 5, (384)--399

Persistent URL: http://dml.cz/dmlcz/125469

Terms of use:

© Institute of Information Theory and Automation AS CR, 1969

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with
O digital signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/125469
http://project.dml.cz

KYBERNETIKA CISLO 5, ROCNIK 5/1969
Recursive Functions Computable within
Cflog f |

Jiki HoRESS

The class L of functions f(x) computable on classicial (i.e. one-tape, off-line) Turing Machines
within Cf(x) log f(x) steps is dealt (with F(x) = max (x, f(x), 1)). L is shown to be the simplest
class of functions beyond the abilities of finite automata and it turns out to be sufficiently rich
to comprise polynomials, to be closed under addition, multiplication and exponentiation, but
not under substraction and composition.

INTRODUCTION

We shall adopt the model of “classical’” Turing machines, wellknown from the
literature (see e.g. [D]). Every machines is provided with one both-side infinite tape
and is designed for computing the values of a number—theoretic function. As we
shall restrict ourselves to (total, computable — i.e. recursive) functions of one
variable only (a lot of results can be, however, easily generalized, which is left to the
reader), we shall modify the model of [D] by assuming the argument x recorded
by means of x (rather than x -+ 1) succesive 1’s. Thus a machine Z computes a total
function f(x) mapping the set N of all non-negative integers into itself iff, whenever
the word 1* (i.e. 11...1, x-times) is written down on the tape, the head is placed
on the leftmost symbol of this word, and the computation is started, it will finally
halt, leaving f(x) symbols ““1”” printed (not necessarily in adjancet squares) on the tape.

Let T(x) (or, more precisely, T(x) or Ty(x)) denote an upper bound for the number
of steps in which Z computes f(x); i.e. let the length of computation performed by Z
when this starts from the instantaneous description go1* do not exceed T(x), for
x=0,1,2,... Weshall say that in this case f(x) is computable within T(x). It will be of
our main interest the class L of all such functions f, for which Ty(x) = C f{x) log f(x),*

* We shall not explicitly round off the non-integer values of log x; this is supposed to be
performed automatically whenever needed. Also, due to the use of the multiplicative constants,
the base of logarithms need not be specified. Moreover we put log 0 = log1 = 1.

where f(x) = max (x, f(x), 1). Namely, we shall show that the class L comprises
in some sense the “‘simplest” functions (theorem 1); on the other hand, L turns
out to be sufficiently rich (theorems 2, 3) though not closed under all usual
operations (theorem 5). The consideration of more comprehensive classes is post-
poned to another work.)

An important role is played by the notion of the crossing sequence (c.seq.) at
a border between two adjacent squares of the tape, this being defined as a (finite)
sequence of internal states (of a machine Z computing a function f) in which the
machine crosses succesively the given border. Main properties of crossing sequences
are described and utilized both in [H] and in [T] and we shall assume that the reader
is familiar with at least one of these papers.

The present work aims to add some results in the direction of the mentioned
papers for the Turing machines (and their tasks) which seem still to be used most
frequently.

§1.

A function f(x) is called quasi-periodic, if there is a number k = 1 and numbers
Xy ooy Xpgo Aoy ooy dpy Pyy oo ¥y X < X34 for i =1,..., k — 1, such that

1) fe 4+ nd) = f(x) +nr; (i=1,..,k)

and every x > x, can be written in the form x = x; + nd,;foratleastoneie {1,..., k}
and suitable n. For d; = dandr; =0 (i =1,..., k) we obtain an ultimately periodic
function, for k = 1 an ultimately linear step-function.

Quasi-periodic functions are rather special. In spite of their apparently complex
structure, they are easily manageable; they can even be processed by a special sort
of finite automata, e.g. in the following way: Let a quasi-periodic function f(x) from
the definition be given; consider a finite automaton 4 with input sequences of the
form 1¥; A controls the input sequences (i.e. it is permitted to delay accepting the
input 1’s when necessary). The values f(0), ..., f(x,) are remembered in the internal
memory of 4 and are handled separately in a suitable way. For x = x,, the resulting
f(x) is placed on one of k output tapes (which setve for recording the result only,
not as a memory). This is enabled by the following algorithm, which describes the
activity of A: After accepting first x; input signals, 4 prints f(x;) output 1I’s on the
i-th tape, while every next d; steps, r; another 1’s are added on the same tape
(i=1,...,k). For every x Z x,, f(x) is thus written on (at least) one output tape,
the number i of which can be (for given x) specified according to the relation x =
= x; + nd, (i.e. by the d, which was just counted).

" The following theorem shows thus the relative “triviality” of functions which
can be computed “faster” than in C f(x) log f(x):

385

386

Theorem 1. If f(x) is computable within T(x), where

T(x)

f(x) log f(x)

lim =0,
then f(x) is quasi-periodic.

Proof. Let f(x) be computed by a machine Z. Consider the segment S, of the
tape, where 1% is initially written, as pictured on fig. 1. It is]S,‘] =X (for every word
or segment of a tape u, |u| denotes the length of u). Let us denote by L, or R, the

Sy

Ly=Ly S Ri=Ry

)

P di g1 ("'z

[0y NP
oY S

oY S
N

Fig. 1.

actually used parts of the tape to the left or to the right of S,, respectively (i.e. every
square of L, and R, will be visited at least once during the computation of Z). L, or
R, may turn out to be empty.

First of all we prove:

(i) For every x it holds: all c.segs. inside R, are mutually different (it is understood
that we speak about c.seqs at different borders): if there were — for some x — two
of them, say ¢, and g,, such that g, = g,, then there would exist other’ borders
with c.seqs 03, @4, .- such that ¢; = @, and @;4q — 0; =0, — 0y (i =2,3,...)
and this would mean that Z would never halt, which is in contradiction with the
totality of f(x). (0; — ¢; denotes the number of squares between borders, at which
¢; and g; are considered.)

(i) For every x it holds: all c.seqs inside L, are mu;tually different; this is seen
in the same way as (i).

(iii) If f(x) is not quasi-periodic then for infinitely many.x there are at least x/3
mutually different c.seqs in S,.

To prove (iii), consider the following construction. Denote by G the set of all x
such that in S, there occur (during the computation of f(x) by Z) at least two equal
C.5eqs.

Define succesively:

x; =min{y|yeG}.

Let 'S be a subsegment of S, such that: 4

(=) the c.segs at the ends of 'S are equal (during the computation of f(x,)), but
inside 1S, there is no pair of equal c.seqs;

(B) there exists no other segment with the property (o) with its left end to the left
of 'S. Such 'S evidently exists as soon as x; does; denote |IS[= d; and define

X, ={x +nd1|n =0,1,2..}, ¥, =X,
x2=min{y|yeG,y¢Y1}.
Let %S be a subsegment of S,, such that

(=) the c.segs at the ends of %S are equal (during the computation of f(x,)), but
inside 28, there is no pair of equal c.seqs;

(B) there exists no other segment with the property () with its left end to the left
of 2S. Denote IZS| = d, and put

X, ={x,+nd,|n=012,.7},
Y, =Y, uX,,

x;=min{y|yeG, y¢ Y}
Let 'S be a subsegment of S,, such that
(o) the c.seqs at the ends ‘S are equal (during the computation of f(xi)), but inside

IS, there is no pair of equal c.seqs;
([3) there exists no other segment with the property (u) with its left end to the left

of ’S. Denote |'S| = d; and put
p={x +nd|i=0,1,2,..},

Y, =Y, uiX,,

Finally, put 2 = {x;} and Y = UY,. Distinguish now the following cases:

(1) & may turn out to be empty. In this case G is empty and (iii) trivially holds,
as for all x all c.seqs in S, are mutually different.

(2) @ is nonempty, but finite. Three subcases are considered:

(a) Y=N.Let 2 = {x,,..., x,}. In this case every x € N can be expressed in the
form x = x; + nd, forsuitableie {1,..., k},and f(x) = f(x; + nd)) = f(x;) + nr,,
where r; denotes the number of 1’s left - after the computation of f(x) ends - inside
(every copy of) the segment 'S (see fig. 1, where 'S’ denotes the copies of ‘S).
f(x) is thus quasiperiodic.

387

388

(b) N —Y is finite; considerations of (a) apply to every x > x, for some x,
showing that f(x) is quasi-periodic again (note that in (1), the x’s need not be the
minimal ones with the stated properties).

(¢) N — Yis infinite. Hence, there are infinitely many x, for which only mutually
different c.seqs occur in S, during the computation of f(x), so that (iii) is satisfied
again.

(3) % is infinite. Now we shall show that for all x;e Z, there are at least x,[3
mutually different c.seqs in S,,; this will conclude the proof of (iii).

Consider an S,, (ﬁg. 1); denote by ¢; (p(-) the number of squares between the right
(left) end of 'S and the right (left) end of S.,. Logically, there are two possibilities:

* (a) g; < d; so that cither p; = x;/3 or d; = x,;/3. But both to the left of 'S and
inside 'S only mutually different c.seqs occur (see (o) and (B) clauses above) so that
(iif) is established;

(b) g; = d;; consider x; = x; — d;;as ¢; = d,, itis x; € G and due to the definition
of x; further x; e ¥; for some j < i, so that the leftmost pair of equal c.segs of S,
is precisely that of S,. Because S,., and S, have the leftmost pair of equal c.seqs
common again, we conclude that S, and S, have the same ones and hence d; = d;
and x; € Y}; the contradiction with the definition of x; shows that the case (b) cannot
take place.

Having (iii) established, we summarize, that whenever f(x} is not quasiperiodic,
there are infinitely many x such that the number of mutually different c.seqs in S,
is proportional to ISx| = x. The same holds — even unconditionally — for L,, R,.

Put I(x) = |L| + |R] + [S,| and m(x) = max (|L,|, |R.|, |S.])- Trivially, 3m(x) =
= I(x). With respect to the proved inequality of c.seqs it is (see [T]) T(x) = K’ m(x) .
. log m(x) for suitable K’ Z 0 and infinitely many x as soon as f(x) is not quasi-
periodic. Hence, for non-quasiperiodic functions

(3) T(x) = K I(x) log (x)
and because I(x) = f(x), we have T(x) 2 K f(x) log f(x) for suitable K > 0 and
infinitely many x, so that

T
f(x)log f(x)

lim
cannot equal zero. The contradiction concludes the proof.

Theorem 1 shows that the class L splits in two subclasses, one of which is formed
by functions, for which the upper bound Cflog f is overestimated — but these func-
tions can be but quasiperiodic — and the other by functions the computation of which
utilizes the allowed time limit fully. Especially these are dealt with in what follows.
Let us, however, remark to the end of this paragraph that neither of the functions
from L can use too much of the tape. Namely, using (3) we prove:

Lemma 1. Let l(x) denote the length of the tape, actually used during the comput-

ation of f(x), f(x) € L. Then I(x) < L f(x) for suitable L and all x.
(This reminds partially the definition of linear bounded automata by Myhill [M].)

Proof. For a function f which is not quasiperiodic this follows from

] TAx) = K I(x) log I(x) (cf. (3))
T,(x) = C f(x)log f(x) (definition of L).

In the case of a quasiperiodic function f we proceed analogously, but only L, and R,
are utilized and instead of (3) the inequality T/(x) = K(/(x) — x)log (I(x) — x)
is obtained. It suits, however, as well.

Thus, the resulting 1°s cannot be dispersed on the tape too infrequently.

§2.

Now the question arises, what can really be done within Cf log f, which functions
belong to L and which do not. We shall try to give some characterizations in this
direction. First we prove few closure properties of L.

Theorem 2. (a) f(x) = xeL,

(b) f(x) =KeL (KeN),

(¢) if f(x), g(x) € L then f(x) + g(x) e L, .

() if f(x), g(x) € L and f(x). g(x) = f(x) g(x) for all x, then f(x) g(x) € L.

Note. The additional assumption f(x), g(x) = f(x) g(x) is not too restrictive. It is satisfied if
f(x) = g(x) = 0 whenever f(x)g(x) = 0 (especially for f(x) = x™, g(x) = x", m, n = 0). Yet
it may be weakened a little more by supposing that it holds for almost all x.

Corollary. Polynomials over N (with nonnegative coeﬁcients!) belong to L.

Proof. (a) and (b) is evident. Before the proof of (c) and (d), we shall prove three
lemmas, which express the properties of the “unary” coding of numbers, underlying
following considerations. Let us note the fact that an arbitrary working alphabet
is at our disposal; it is often useful to consider the tape divided into a fixed number
of tracks along the length of the tape, and, correspondingly, the term: “a symbol is
written on the tape (in the square)” may mean “a symbol is written in a track of the
tape (in a place where a track meets a column of the tape)”.

Lemma 2. (“Encoding” lemma). Let S denote a marked (by suitable markers
placed on both ends) segment of the tape, such that it contains precisely s symbols
“1” (s 2 0) and the head is scanning some square of S. Then the words §, represent-
ing a binary code of s can be written down on a prescribed (by pointing out its
first or last square) place in S within E |S] log |S]| steps.

389

3%

The proof is not difficult and for the special case, when all squares contain the
symbol 1, was already described elsewhere. Let us therefore mention the rough idea
only. The head moves repeatedly through S from its leftmost symbol to its rightmost
symbol and back, crossing out in any such movement from the left to the right
every even 1; if the last 1 (the rightmost one) is not crossed out according to this
rule, it is crossed subsequently and the symbol 1 is attached to the § which is being

[
[
Tt
Jo—
=
[l
P
-
o=

— =

0
t

prescribed last square of ¥

Fig. 2.

formed; in the other case, the symbol 0 is added. The process goes on as far as there
are some of the original 1’s on the tape; it is repeated at most log, [S| times and every
single move lasts 2|S| steps; the assertion follows. Fig. 2 illustrates the case s = 14,
S| = 17.

From lemma 1 and lemma 2 it follows:

Lemma 3. If f(x) € L, then within C;’@logf_(;cj steps the result of computation
of f(x) can be printed on the tape (not only in the form of f(x) symbols “1”* spread

over the tape but even) in the form f(x).

Lemma 4. (“Decoding” lemma). Let a marked word § be written down on the
tape and the head scan its leftmost symbol equal to 1. Then the marked word 1°
can be printed on the tape within D.slog s steps such that the left (the right) ends
of both words coincide.

Proof. Let a “loop” consist of the performance of the following two activities:

(1) shift of a given (marked) word p (over the alphabet {0, 1}) one square to the
right and inserting 1 in the released square; .

(2) transformation of the newly placed word p into the marked word §, where
g=p~-1, |q| = [ﬁl At the end, the word § is considered as “‘given”. One loop
can be performed in 2’13[steps (see fig. (3)). Now let us perform successive loops,
starting with the word § (and the head scanning its leftmost symbol) and repeating
them until the word § is obtained with s’ = 0. In this case the head is s squares
far from its initial position and this number of 1’s remains between its original and
present position. The time spent equals 2[5| . s steps, which does not exceed Ds log s,
for s = 21171,

Let us return to the proof of (c). According to the lemma 3, f(x) can be printed

on the tape within C fj(_x)logj@) steps, and g(x) can be printed within another

C, 9(x) log g(x) steps for suitable C, and C,. Both words can be supposed to have
common right end and to be written on different tracks of the tape (see fig. 4). During

the next C max (| fzc)\ ‘g’(\x')‘) steps the word f(x) + g(x) can be obtained (simply
P
- e[]o
b
]
(1)-shift, insertion I 1o I ! | [0 } ! 1 0

DEIOOGE

by means of the binary adding algorithm) and during next D(f(x) -+ g(x)).
log (f(x) + g(x)) steps, according to the lemma 4, the word 1/&*9% results. (In
the fig. 4 this word is printed only in one track of the tape.)

]

(2)~transfm‘mui(-c;n] 1o
Fig. 3. A

[Tl —v s
\ B f(‘;) B

B 2(x) B
E ERS) B

(
Fig. 4. L5 IJ 1 | e 1) +e0x) 1 I—ITIB I\

The total time spent by a machine following the outlined algorithms and com-
puting thus the function f(x) + g(x) does not exceed

() €, (%) log f(%) + C, g(x) log g(x) + C max (|f(x)] ,
G + D) + g(x)) log (f(x) + g(x)) <

because 17(_x) §f—(>5’+—g(—x), 9‘(‘5 = m, \fr(\;»n §fﬁ(x) §T(X)+ﬁg(x) =

< (f(x) + g(x)) log (f(x) + 9(x)) and similarly for \grac)‘, and f(x) + g(x) <
< f(x) + g(x). Thus, f(x) + g(x) e L.

391

392

The proof for (d) proceeds analogously, it takes only a bit more time to obtain
word f(x) g(x). The well known algorithm for binary multiplication is to be slightly
adapted here: the words, resulting from successive shifts of one operand are added
as soon as they are created because only a limited number of tracks of the tape is at
our disposal (see fig. 5, where f(x) = 11, g(x) = 46). The needed time for it does

not exceed C|f§)[(ff?c)' + [g(Nx/)D (in the parantheses, the length of the product

Fig. 5.

is expressed). Taking C,, C, and D in the sense of the previous part, the inequality “
now converts to:

6 Cf)loef() + C,9(x) log g(x) + C | ()] + o)) +
+ D(f(x) g(x) log (f(x) (x)) £ (C; + C, + C" + D)f(x) g(x) log £(x) g(x)

for suitable C’ because f(x) < f(x) g(x) and g(x) < 7(x) g(x) (here the assumption

f(x), g(x) £ f(x) g(x) is utilized); further]fzc)| = Cylogf(x) = C, f(x), [g6)| <
< Cylogg(x) and hence Clf(x)] (If(x)] + |9()]) = €C1f(x) (Cy logf(x) + C; -
-log g(x)) £ C'f(x) (log /(x) + log g(x)) = C' f(x) log (f(x) 9(x)) = C"f(x) 9(x).
. log f(x) g(x) and finally, f(x) g(x) < f(x) 9(x).

A generalization of the idea involved in the proof of lemma 4 will enable us to prove

the part (a) of the following theorem, which in turn shows that the class L is not
exhausted by polynomials:

Theorem 3. (a) If f(x), g(x)eL and f(x) > 1 and g(x) = 1 for all x, then
f(x)a(X) el;

(b) if f(x), g(x) € L and g(x) = x for every x, then g(f(x))€ L.

Note. The requirement f(x) >1 and g(x) = 1 is (analogously as similar assumption
in theorem 2) not too restrictive and it may be weakened again by assuming that it holds for
almost all x.

Proof. (a) According to the lemma 3, fz‘) can be printed within t,(x) £ C; f(_x) .
.log f(x) and g(x) can be printed within £,(x) < C, g(x) log g(x) for suitable C,
and C,. Together with f(x), the word 1¥™! can be easily generated and within

T~

another 1,(x) steps the word u = | %C)l can be written down (on a suitable track

[I- o \
\ 5] &

\ = &

\ . | g
Ia

Fig. 6.

—

N L - i KR ER A

5 | & [1 7® B)

lw|w| W
3
—

as seen from fig 6), where t;(x) < Cs|f(x)|log |f(x)| for suitable C, according
to lemma 2. The word u gives a binary representation of the length of the binary

representation of the value f(x). Our next task is to construct the word v = f(x)**

(ie. f(x) f(x), ... f(x), f(x) concatenated g(x)-times), which represents the value
f(x)’™ — 1 in a f(x)-adic system, the numerals of which are 00...1, 00... 10,
00...11,..., f(x) (these numerals — as words in the alphabet {0, 1} — have the
same length; we can suppose that their ends are suitably marked so that by a juxta-
position of them, a representation of a number in the f(x)-adic system is obtained).

Let us find out the length of v: |v| = ‘f’a)l . g(x). According to theorem 2 part (d)

(note that both g(x) and [f(x)] belong to L, the first according to the assumption,
the second due to the estimation of #,(x) above) the word 1!/ can be obtained within

C’ g(x) !]}\(:c){ log(g(x)- [%c)i) As]f’(wx)| < €’ log f(x), the word 1"} can be printed
within t,(x) £ C, g(x) log f(x) log [g(x) log f(x)].
The word 1! being established, v itself can be constructed by succesive adding

~ ~

of copies of the word f(x) to the right of the initially written f(x) (the process is
repeated as far as the right end of 1! is not reached). Because an arbitrary word
can be copied in a time proportional to the square of its length, this process can

393

394

be completed within ts(x) £ C”|f(x)]? . g(x) £ Cs g(x) log® f(x) steps. By this
construction of the word v, the first stage of the computation ends; let us call it
preparatory stage (only this stage is pictured on fig. 6).

Now let a “loop” (cf. the proof of lemma 4) consist of the performance of the
following two activities over two words: v and a given word p, which both are placed
in the same columns of the tape (but, of course, in different tracks), both consisting
of g(x) adjacent numerals, i.e. words in {0, 1} of the length |f(x)|

(1) shift of the words » and p one squarc right and inserting 1 in the released
square (now in the whole square — auxiliary division into tracks vanishes for this
square);

(2) transformation of the newly placed word p as follows: the numerals of p are

succesively scanned from the right to the left; those which are of the form 00... 01
~

are replaced by f(x) (which is, for this purpose, at disposal in the word written above
p), while the first one from the right not of this form is considered as binary code
of a number, which is in turn diminished by 1. Other numerals remain during the loop
untouched. The resulting word is considered as “given”. One loop can be performed
in no more than C*[o| = C*|f(x)| g(x) £ C** g(x) log f(x) steps.

The proper computation (aftcr the preparatory stage) consists now of succesive
performances of loops, starting with p = v and ending with p = 00...01¢%),
The described construction ensures that exactly f(x)°™ steps will be performed
and this number of 1's will be left on the tape (the other auxiliary 1’s may be left,
as they are written in some tracks of the tape only, and do not represent the ‘“‘true”
1’s). With respect to the estimation above, this part of computation can be accom-
plished within t5(x) £ Cg f(x)*™ g(x) log f(x) steps.

The proof of the part (a) of our theorem will be concluded as soon as it will be

6
shown that the total time spent, Y 1x) £ C f(x)"(’g) log (f(x)™) = C o(x).
i=1
This will be done by showing that for all i = 1,...,6: t(x) £ C, ¢(x) and putting
6
C=73C,
i=1

(1) t(x) £ C, f(x) log f(x) £ C, o(x) because f(x) = f(x)'™ (as g(x) is supposed
to be =1);

(2) ty(x) £ C, g(x) log g(x) £ C, p(x) because g(x) < F(x)*™ (as f(x) is sup-
posed to be = 2);

(3) 1s(x) = Col) 1og |f9] = €4 7(x) g 1) £ €5 p(x);

(4) 14(x) = C, g(x) log f(x) log [g(x) log f(x)] < C, @(x), because g(x) log f(x) <
< f(x)"™ (recall that the case f(x) = 0, which could be suspected of making troubles
because we put log 0 = 1, cannot appear, as f(x) = 2);

(5) ts(x) = Cs g(x) log? f(x) = Cs log f(x) log f(x)*® = Cs ¢(x), because
log £(x) = £(x)";

I

(6) tefx) = Co f(x)'® g(x) log f(x) = Cs ()™ log f(x)P™ < Cs 9(x).

(b) According to lemma 3 and 4, 1/ can be printed within C, f(x) log f(x)
steps. Put y = f (x). Starting from 17, the word 19%? can be similarly obtained within
another C, 4(») log g(y) steps. Let us compare g(y) with g(f(x)) (=g = (f(x)); it is
g9(v) = max (v, g(v), 1) = max (f(x), g(f(x)), 1) while g(f(x)) = max (x, g(f(x)), 1).

We see that in the assumed case, when

O] a(f(x) = f(x),

it is g(y) = ;(f(y))‘ilnd the total time spent does not exceed C f(x) longx) +

+ C, g(f(x)) log g(/(x)), which in turn ~ due to (6) again — is less or equal to
2C,g(f(x)) log g(f(x)). This concludes the proof.

§3.

Now we give some negative results, especially by showing that the class L is not
closed under substraction and composition. Let us stress that the additional assump-
tions required for the theorems 2, part (d) and (3), part (a) hold, are not substantial
and could be removed by suitable changes in definitions of corresponding operations,
which would not destroy the character of the operations. On the other hand, it
does not seem possible to “save” in such a way the operations of substraction
and nonrestricted composition {cf. theorem 3, part (b)); their anticlosure proper-
ties seem to be inherent.

We begin by applying the diagonal method to construct a function not belonging
to L; its special form is utilized subsequently.

Theorem 4. There exists a total computable function f(x), f(N) = {0, 1}, such
that f(x) ¢ L.

Proof. Let Zy, Z,, Z,, ... be a sequence of all classical Turing machines and let
(N zy=2y, zy=2%, 2y=25, Zi,=12}, Zs=23, Zy=12% ..

represent an effective enumeration, in which every of the machines from the pre-
ceding sequence occurs infinite many times: Z; as Z}, Z2, Z3, ...

Consider a machine Z, which computes a function f(x) in the following way:
for a given j it produces (i.c. prints in a suitable track of its tape) the code (e.g. the
set of quadruples) of the machine Z; = Z¥, which in turn computes some function
fi(x). Z subsequently simulates the activity of Z; in its computation of the value
fi(j) and this simulation lasts until

either (a) Z; would stop leaving on its tape (simulated of course by a suitable
part of the tape of Z again) f,-(j) symbols “1”

395

396

or (b) the number of steps of Z; would exceed Kj log j; this value is computed
by Z beforehand and after the simulation of a step of Z this number is decreased
by 1 so that the comparison can be effectively performed.

In the case (a), Z finds out, whether f,(j) + 0; if so, Z puts f(j) = 0 (i.e. erases
all I's from the tape); otherwise it puts f(j) = 1. Thus, f(j) * f;(j).
In the case (b) there are two subcases (which are, however, treated by Z in the same

way):

either (ba) f,(x) is not computable within K f(x) log f;(x) (this does not automatic-
ally imply f;¢ L as f; can be computable within K’ f(x)logfy(x) for suitable
K' > K),

or (bb) f,(x) is computable within K f(x) log f;(x), but in this case necessarily
Fx) > j (for K £(x) log f,(x) to be greater than Kj log). In both subcases, Z puts
f(j) = 0, which ensures that f(j) + f{j) (note that in the case (bb) f(j) > j > 01).

The construction ensures f(x)e,é L; indeed, every function from L is computed
by a suitable machine {even by infinite number ones) from the list (7). But the function
f{x) computed by Z] differs from f(x) at least in one point: f(j) % f,(j) for all j.
By construction, f(x) = 0 or 1 for all x.

Utilizing the just proved result, the following one can be derived:

Theorem 5. There exist functions f,(x), g,(x), f2(x), 92(x) € L such that:

(a) fi(x) = gi(x) £ L,
() ga(f2(x) ¢ L,
(x=y=x—-yforxzy x=y=0forx<y).

Proof. Let us take a total computable function h(x) ¢ L, h(x) = 0 or 1 (theorem 4).
Further, consider a function H(x), which determines the number of steps, in which
a fixed machine Z, (computing /) will compute the value h(x). H(x) is of course
computable as well. Consider the machine Z, which computes H(x) in the following
way: Zy simulates the computation of Z, in one of its tracks, but after every one
simulated step it marks the position of the simulated head, performs some additional
movement —. let us call it a “loop” (to be described immediately) — and returns
to the marked square to perform the simulation of the next step of Z,. The mentioned
additional movement enables to note the required number of steps of Z,: in the loop
in which the n-th step of Z, is simulated, the head (of Zy) runs to the right until
the n-th square of the tape is reached and marked (the squares being counted from
the zero square, which was scanned by the machine at the beginning); then it retuns
to the left until the (—n)-th square is reached and marked, changes the direction

again and finally comes to the marked square (see fig. 7; the symbols] and [mark
the n-th and (—n)-th square, respectively, to enable proper behaviour of Zy during
the next loop). In this way the distance of the right (as well as of the left) marked
square from the 0’th square determines the number of hitherto simulated steps
of Z,. Note that the simulated head always remains within the markers. The simul-

position of simulated head at the end of
the n-th sim. step of Z,
-n -n+l -1 0 1 v n-1 n

[lc = » +- 1]

the head of Z, moves in the (n + 1)-st step
of Z, one square left
-n~1 - —n+l -1 0 1 v n=1 n n+l

—

J Ly
[C Y 0]
————-= move belonging to the n-th loop
m——— (n + 1)-st simulated step
—_— (n + 1)-st loop
Fig. 7.

ation of the n-th step of Z, requires 4n steps of the machine Zj,, so that during the
simulation of first n steps of Z, the number of steps performed by Z; makes

1=

®)

4i =2n(n +1).

i=1

Consider now the function g,(x) = 27*); we shall prove that g, € L (note that
theorem 3 (a) cannot be applied directly as it is not ensured H(x)eL). g,(x) can
be computed in the following way: first, 17 is established, which requires 2H(x).
. (H(x) + 1) steps according to (8). Having 1"™ written down on the tape, g,(x)
can be computed — now according to theorem 3 — within next C . 27®}jog 2™
steps; thus the total time spent does not exceed 2H(x)(H(x) + 1) + C.2"™.
CH(x)log2 £ C,.27® log 2% steps for suitable C,, so that really g,(x)ek
(g1 grows so “rapidly” that the preparatory computation of H(x) can not influence
the fact g,(x) € L even that H(x) itself need not belong to L}.

397

398

Consider further the function
® Fi(x) = 29 + h(x);

again, fi(x) e L. f; is computed in the same manner as g, with the only exception
that h(x) (which can be easily remembered by the machine, as h(x) = 0 or 1) is
added to the result. Evidently f;(x) e L.
The proof of (a) is now at hand, as fi(x) = g,(x) = fi{x) — g.(x) = h(x) ¢ L.
To prove the part (b), put f,(x) = f1(x) and note that f,(x) is even (odd) if h(x) = 0
(h(x) = 1) (see (9)). Let further g,(x) = 0 for x even and g,(x) = 1 for x odd.
Evidently, g,(x) € L. But g,(f5(x)) = h(x) ¢ L, what was to be proved.

Acknowledgment. I wish to express my gratitude to P. Strnad for his helpful criticism.

(Received November 25th, 1968.)

REFERENCES

{D] Davis M.: Computability and Unsolvability, New York 1958.

[H] Hennie F. C.: One-tape, Off-line Turing computations. Inf. Control & (1965), 553—578.

{M] Myhill J.: Linear bounded automata. Wright Air Development Division Ohio, Report
(1960), 60— 22.

[T] Tpaxren6por B. A.: TbIOPHHTOBBI BLIYHCIEHHS C JIOTAf
u noruka 3 (1964), 33—48.

ey

KM 3aMel Anredpa

VYTAH

Rekurzivni funkce vy&islitelné v Cf log f

J1kf HORES

V prdci je uvaZovan klasicky model Turingova stroje pro vypodet funkce f(x)
jedné proménné zobrazujici mnoZinu pfirozenych &isel do sebe (viz napf. [D]).
Hodnota argumentu x resp. funkéni hodnota f(x) je zapsdna pomoci x resp. f(x)
jednotek. VySetiuji se funkce, které mohou byt vy¢isleny vhodnym Turingovym
strojem uvaZovaného typu bghem C f(x)logf(x) krokii stroje, kde f(x) =
= max (x, f(x), 1). Ukazuje se, Ze tfida L funkci této vlastnosti je v jistém smyslu
nejjednodussi tfida funkei leZicich mimo schopnost konednjych automatd (véta 1
a definice quasi-periodickych funkci), Ze vSak je jiz dosti bohatd; obsahuje napf.
polynomy, je uzaviend vzhledem k operacim soudtu, soudinu, umociiovani, (véty 2, 3),
ne viak vzhledem k odgitdni a superpozici (véta 5). PHi dikazu pozitivnich tvrzeni
se tu vyuZivd lemat ukazujicich na moZnost pomérné ,,rychlého* pfevodu mezi
g-adickymi zdpisy Cisel, negativni tvrzeni se opiraji o metodu pfechodovych po-
sloupnosti (crossing sequence z [H] resp. ,,sled z [T]) a diagondlni metodu.

Doc. RNDr Jiff Hofej$, CSc., Katedra matematickych strojit University J. E. Purkyné, Janddé-
kovo ndm. 2a, Brno.

399

		webmaster@dml.cz
	2012-06-04T18:32:24+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

