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KYBERNETIKA — VOLUME 30 (1994), NUMBER 6, PAGES 585-596 

THE SELECTION OF INPUT AND OUTPUT SCHEMES 
FOR A SYSTEM AND THE MODEL PROJECTION 
PROBLEMS 

Nicos KARCANIAS 

A number of important control theory problems are involved in the selection of input-
output schemes of a given system and one family of such problems is referred to as Model 
Projection Problems (MPP); these problems deal with the selection of effective sets of 
inputs, outputs out of larger potential sets of inputs, outputs respectively. The aim of 
this paper is to classify the different types of MPPs and discuss their relevance in the 
context of integrated system design. The dominant idea running through the present 
treatment of MPPs is that the suggested solutions aim at producing final models with 
inherently "good" control structure characteristics. Central to the present approach are 
problems of transformation of structural invariants. The overall objective of this paper is 
to demonstrate the importance of Control Theory tools in Early Process Design stages, 
which are not traditionally associated with control problems. 

1. INTRODUCTION: PROBLEM MOTIVATION 

The instrumentation of a process, that is the selection of measurement variables (out­
puts) and actuation variables (inputs) has a "micro" (local), as well as a "macro" 
(global) aspect. The "micro" role of instrumentation has been well developed and 
deals with the problem of measuring physical variables, and the implementation 
of action upon given physical variables; instrumentation theory and practice deals 
almost exclusively with the latter problems. The "macro" aspects of instrumentation 
stem from that designing an instrumentation scheme for a given process (classifica­
tion of internal variables and selection of inputs and outputs) expresses the attempt 
of the "observer" (designer) to build bridges with the "internal mechanism" of the 
process, in order to observe it and/or act upon it. What is considered as the final 
system, on which control system design is to be performed, is the object obtained by 
the interaction of the "internal mechanism" and the specified overall instrumentation 
scheme. The internal mechanism, or model is associated with a given internal system 
interconnection and depends on the interconnection graph (topology) and the mod­
els for the subsystems; according to the accuracy and complexity of the subsystem 
models, we derive "progenitor models" of varying complexity and accuracy. The 
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selection of systems of inputs and outputs is the final design decision that shapes 
the structural characteristics of the system model used for control design. 

The selection of systems of inputs and outputs, as well as the shaping of overall 
system by appropriate interconnection of subsystems have been important issues in 
different areas of engineering design such as Electrical, Chemical, Aerospace Engin­
eering etc. The system synthesis has been addressed as a topic in Network theory 
[25] and within the area of Process Synthesis of Chemical Engineering [2], [21], but it 
has not been addressed in generic terms, above the specific application areas; work 
in the area of large scale systems [24], [20] has been focused on analysis of composite 
system properties rather than synthesis methodologies. The problem of selection of 
systems of inputs, outputs has been considered within the area of Chemical Process 
Control [17], [3], [19], but it is still dominated by application area dependent heuris­
tics and lacks any general theory; special issues in this area have been considered in 
[23], [17], but there has been no attempt to consider the overall problem of system 
model shaping as the result of input, output variable selection. This paper aims at 
providing a classification of the various problems arising in process synthesis and 
selection of input-output schemes and suggest a control theory based framework for 
their study. 

The dominant idea running through this paper is that both process synthesis 
and selection of input, output schemes have a significant effect on the formation of 
the internal structural characteristics. Difficulties in control of the final system may 
be expressed in terms of certain structural characteristics of the final system model 
such as right half plane zeros, delays, high order infinite zeros, uncontrollability, 
unobservability etc. [22], [4], [5]. These structural characteristics are formed in an 
evolutionary manner as we go through the various stages of design of a process, which 
lead first to a progenitor model (result of process synthesis) and after selection of 
input, output schemes to a final system model [8], [6]. The aim of this paper is to 
examine a number of problems associated with the effect of selection of input, output 
schemes of a process on the resulting system model and demonstrate the significance 
of control theory based concepts, tools and criteria for directing the system structure 
evolutionary formation, along paths with inherently "good" control characteristics. 
This work is part of the overall effort to see instrumentation in a wider, global sense, 
with a significant role in the design of processes. 

The general types of problems related to the selection of input, output schemes for 
a process may be classified as [8]: (i) Model Orientation Problems (MOP), (ii) Model 
Expansion Problems (MEP) and (iii) Model Projection Problems (MPP). The first 
deals with the classification of internal variables into inputs and outputs [26] and it 
is a problem where issues from implicit systems theory [16] are of relevance-. The 
second family of problems deals with the selection of additional measurements for 
reconstruction of unmeasurable internal variables [18], as well as selection of addi­
tional inputs, outputs which enhance the existing model. The problems considered 
here are those referred to as Model Projection type and they are defined on sys­
tems, where Model Orientation issues have been previously resolved; it is assumed 
that for the given process there is a large number of potential inputs and a large 
dimension input-output model. What it is referred as a Model Projection Problem, 
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is the selection of a subset of process inputs and outputs, which will result in a 
smaller dimension model which will then be used for Control System Design. This 
problem frequently arises in the design of large processes and it is due to the cost of 
the large number of measurements and actuation variables, as well as the fact that 
it may be difficult to use for further analysis such a large dimension input output 
model. Defining a smaller set of effective inputs, outputs which is "adequate" for 
the further control design needs, is an important issue which is addressed here. We 
shall distinguish the family of MPPs into the classes of external and internal types 
of problems and for each family we shall discuss some representative problems and 
issues. In particular, it is shown that the nature of MPPs is closely related to prob­
lems of transformation of structural invariants and in the case of constant MPPs 
these structure transformation issues are formulated in a pencil setting. Of course 
any MPP defined on a given process is governed by practical rules and heuristics 
associated with the nature of the given problem; however, here we shall examine the 
theoretical issues and thus the selection of input, output subsets will be assumed 
to be unconstrained. The aim here is to define issues and problems; a survey of 
relevant results and a more detailed treatment may be found in [7] and the relevant 
references. 

The paper is structured as follows: In Section 2, the different types of the Pro­
cess Progenitor Models are considered and the Model Projection Problems are in­
troduced. The basic properties of Internal Progenitor Models, as far as structural 
characteristics, are considered in Section 3, where the implications of the "complete­
ness" assumption in the formation of interconnections are also discussed. Section 4 
deals with the Model Projection Problems on External Progenitor Models, where it 
is shown that such problems are equivalent to Kronecker structure transformation 
Problems on matrix pencils. The paper provides a framework for the discussion of 
many new problems arising in structuring composite systems and introduces some 
important new concepts and results. 

2. PROCESS PROGENITOR MODELS AND THE FAMILY OF THE MODEL 
PROJECTION PROBLEMS 

Most of the time, a process is synthesised by connecting subprocesses (subsystems) 
and the two fundamental ingredients of the composite system model are: 

(i) The topology (graph) of system interconnections T. 

(ii) The family T of subsystem models. 

It is assumed that each subsystem E* is represented by a proper rational trans­
fer function matrix Gk(s) € Rqk>(pk(s), that is the subsystems Sk are regular state 
space and are both controllable and observable or more generally stabilisable and 
detectable [27], [15]. Furthermore, in forming composite structures we assume that 
there are no loading effects, that is each subsystem transfer function remains un­
changed after the connections. In forming the composite system structure we make 
the following assumptions [1]: 
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Fig. 1. Interconnection structure for subsystem Ejt. 

The completeness Interconnect ion Assumptions. For each subsystem 
^k ( Gk € Rpxpk(s)), k = 1 , . . . , / . we have the interconnection structure shown in 
Figure 1: to each subsystem Tk with input ek and output z_k we associate a summing 
node with the following characteristics: 

(i) its output is the subsystem input ek 

(ii) its inputs are: 
(a) an exogenous input wk (always assignable, or disturbance signal) 

(b) Other inputs, which are feedbacks of the form FkjZ_j,j — l,2,...,p to 
the k-th summing node, where Fkj is assumed to be a real matrix (some 
of them may be zero) 

(c) w_k has as many independent coordinates as those needed to define a basis 
for col.sp{[Fku • • •; Efc/j]} and has subsystem outputs yk = zk, where z_k 

contains all subsystems E^ variables which feed to the other subsystems. 
An interconnected system satisfying the above assumptions will be called a com­

plete composite system and shall be denoted by TC(T, T). In the present study we 
restrict ourselves to the case where all subsystems are represented by proper transfer 
functions; however the above definition of completeness is also valid in the case where 
we have non-proper transfer functions, or singular subsystems. The implications of 
the above assumptions are that 

Łk =Ш + Y2 FkjІj, Łk=Gk (s)ëk, (1) 

where <__)_, Wj_,___. denote the Laplace transforms of the corresponding vector signals. 
If n,- denotes the McMillan degree of Gi(s), then by aggregation we may define the 
global quantities 

q = J2lk> P=_У,Pk> n = Y^' 
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(2) 

where ^ denotes the state vector of the Sk(Ak,Bk,Ck,Dk) minimal realisation of 
Gk(s). Using the aggregate expressions we may express (l).as 

ê = w 4- Fz_, z_ = G(s)ê (3) 

which describes the composite system as a feedback system as shown in Figure 2. 
The matrix F is a representation of the topology T of the interconnections and 

will be called the interconnection matrix of S c ; the aggregate system is denoted by 
Ec and it is represented by the aggregate transfer function G(s). With the composite 
system Ec we define the following two transfer functions 

Hew(s) :w~*e, Hew(s) = (I - FG(s))-1 e R(s)pxp (4) 

Hzw(s):w-+z, H_w(s) = G(s)(I - FG(s))-1 € R(sYxp (5) 

The composite system will be called well formed, if all transfer functions are 
well defined and will be called well- posed, if all closed-loop transfer functions are 
well defined and proper, [15], [1] etc. The complete, well posed composite system 
T,c(G(s);F) which is described as in Figure (2.2), is a mixed internal- external 
composite representation. If all potential inputs and outputs have been used at 
the subsystem level, then the feedback configuration T,c(G(s);F) of Figure (2.2) 
will be called an internal progenitor model (PM) of the composite system. The 
transfer functions Huw(s), or Hyw(s) associated with such a system and where F 
is not explicitly stated (as in the factorisations (4), (5)) will be called an external 
progenitor model (EPM) of the composite system. Internal, or external progenitor 
models represent the degree of modelling (assumed complexity and accuracy) of the 
composite system as a function of the modelling activity at the subsystem level. In 
an ideal design, unconstrained by resources and effort all possible inputs and outputs 
should be used; economic and technical reasons, however, force us frequently to select 
a subset of the potential inputs, outputs as effective, operational inputs, outputs. 
Developing criteria and techniques for selection of an effective input, output scheme 
as projections of the potential input, output vectors of IPM, or EPM is what we 
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define Model Projection Problems of their ideal, unconstrained forms are formally 
defined below. 

Definition 2 .1 . Let Ec(G(s); F), be an IPM, where G(s),F are defined as in (2), 
(3), z_ e Rq, w, e G Rp and let H(s) be the w -+ z transfer function, or EPM. We 
may define: 

(i) An External Model Projection Problem (EMPP) is equivalent to selecting the 
sensor, actuator maps K(s) G Rmxq(s), L(s) G Rpxl(s) (m < q, I < p) such 
that the External Effective Model (EEM), with y G Rm,u G Rl effective input, 
outputs respectively, is described by y = K(s) z, e = L(s)u, z_ = H(s)e or 

y = 0(s) u, 0(s) = K(s) H(s) L(s) (6) 

has a transfer function 0(s) with desirable properties, 
(ii) An Internal Model Projection Problem (IMPP) is defined as an EMPP with 

the additional conditions that the effective inputs, outputs are defined as ag­
gregates of the effective inputs, outputs at the subsystem level i.e. y. = 
Ki(s)li, h = Li(s)ui, y. G !?m',w. G Ru where I<i(s) G Rm'xqi(s), L{(s) G 
Rp-x'-(s) and thus 

y = 9(s) u, 0 ( s ) = bl.diag{A',(s)} H(s) bl.diag{L;(s)} (7) 

In practice, the matrices K(s), L(s) axe not completely free, their structure 
is constrained and their dynamics express those of the actuators, sensors used. 
In this paper we shall assume both K(s), L(s) to be constant and unconstrained 
(apart from the constrained imposed by IMPP); these problems are referred to as 
Constant-EMPP, (CEMPP), -IMPP (CIMPP). Note that MPPs are generalised and 
constrained Model Matching Problems, since a pair (K(s), L(s)) is sought, of con­
strained structure and dynamics, to produce a desirable transfer function 0(s) . The 
solvability of such problems is closely related to what is the desirable 0(s) , and de­
termining the range of properties of 0(s) achieved under various (K(s), L(s)) pairs. 

3. INTERNAL PROGENITOR MODELS, THEIR PROPERTIES AND THE 
STRUCTURAL IMPPs 

In this section we consider the properties of Internal Progenitor Models, in relation 
to those of the aggregate system and examine in particular the effect to total loss 
of subsystem inputs, or outputs on the resulting system properties. This study 
aims at qualifying the effect of deviating from the completeness assumption and 
examines this under structural changes represented by the loss of subsystem inputs 
and/or outputs. By assuming that Sk(Ak,Bk,Ck,Dk) is the state space model of 
the k-th subsystem then we may define the_ aggregate system state equations^ by 
Sa(A,B,C,D) : x =_ Ax + Be, z - Cx + De_ where, A = diag{A, i G p}, B = 
bl.diag{5i,i G fi}, C = bl.diag{G-,; e ji}, D = bl.diag{A,i G £}. Given that 
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the interconnection equations are described by e = w + Fz_ and assuming that the 
system is well posed, i.e. |A| ^ 0, where A = (/ — FD) then the composite system 
state equations are given by 

SC(A,B,C,D) : i = Ax + Bw, y= Cx + Dw (8) 

A = A + BAFC, B = BA, C = (I + DAF)C, D = DA. (9) 

Given that the aggregate and the composite system are output feedback equiva­
lent we have the following result. 

T h e o r e m 3.1 . The aggregate system Sa(A,B,C,D) and the complete compos­
ite system SC(A,B,C,D) have the following relationship between their structural 
characteristics: 

(i) They have the same controllability (observability) properties, as these are de­
fined by the set of controllability (observability) indices and input (output) 
decoupling zeros, 

(ii) They have the same zero structure properties as these are defined by the finite 
zeros, orders of infinite zeros and output nulling column, row minimal indices. 

R e m a r k 3.1. Given that for the aggregate system the above types of Kronecker in­
variants are expressed as a union of the corresponding sets defined on the subsystems, 
the structural characteristics of the complete composite system are independent of 
the underlined interconnection graph, as this is expressed by the interconnection 
matrix F. 

Thus the "completeness" of the interconnection scheme is essential in the transfer­
ence of the subsystem structural characteristics to the composite system structure. 
In the following, it will be shown that breaking of the completeness assumption, 
by loss of inputs, outputs at the subsystem level, makes the nature of the under­
lined graph essential, as far as determining the resulting properties of the composite 
system. 

R e m a r k 3.2. Although the minimal indices and decoupling zeros of the aggregate 
and the complete composite system are the same, the more refined controllability, 
observability properties as those depending on the values of singular values of the 
corresponding controllability, observability Grammians are different. Furthermore, 
the nature of the interconnection matrix F is crucial, as far as determining the sta­
bility properties of the composite, complete system in terms of those of the aggregate 
system. 

An interconnecting structure, represented by F, that results in a stable complete 
composite system will be referred to as stabilising interconnection structure. We 
may thus examine the deviations from completeness as loss of inputs, outputs. To 
examine the effect of loss of inputs, outputs on the complete composite system 
we have to introduce some tools from the matrix pencil characterisation of system 
properties [10], [11] and we shall restrict ourselves to the study of effects on the zero 
structure. 
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Definition 3 .1 . Let S{A,B,C) be a linear system, A G Rnxn, B 6 Rnxl, C G 
Rmxn, rank(J3) = / , rank(C) = m, N G i?("~')x« be a basis matrix for M{B), (left 
annihilator of B) and M 6 i? n x ( " - m ) be a basis matrix for Mr{C) (right annihilator 
of C). We may define the following restricted system pencils: 

(i) The input-state restriction pencil R{s) =sN - NAe # ( n - ' ) x n [ s ] . 

(ii) The state-output restriction pencil T{s) = sM — AM G i?n x(n~m)[s]. 

(iii) The zero pencil Z{s) = sNM - NAM G tf(n-')x ( " " " % ] . 

Remark 3.3 . [10], [11] The pencil R{s), T{s) completely characterise the control­
lability, observability feedback invariant properties whereas Z{s) defines completely 
the zero structure of the system S{A, B, C). 

As far as the zero structure of the systems resulting by loss of inputs, outputs we 
have the following result that may be readily established. 

Theorem 3.2. Let SC(S',- G ji',F), be any complete composite system, where all 
subsystems are strictly proper, i.e. Si = Si{Ai,Bi,d) and let Ri{s) = sTV; — 
NAi, T{s) = sMi-AiMi, Z{ = sNiM{ -TV^.M; , Q,(s) = sI-Ai, i = 1,2,. . . , / i 
be the pencils associated with the ith subsystem. Assuming that total loss of inputs, 
and/or outputs may take at the subsystem level, then for the resulting composite 
system S{A, B, C) the zero pencil Z{s) may be expressed as 

z(s) = b l .d iag{X 1 ( s ) ; . . . ;^ (s ) ; . . . ;X M ( s )} (10) 

where each Xi{s) block is associated with the ith subsystem and it is of the type: 

(i) If all inputs and outputs of the ith subsystem are present, then Xi{s) = z,(s). 

(ii) If all inputs are lost at the ith subsystem, then X,(s) = T{s). 

(iii) If all outputs are lost at the ith subsystem, then X,(s) = Ri{s). 

(iv) If all inputs and all outputs are lost at the ith subsystem, then X({s) = Qi{s). 

The cases considered here are extreme cases of the general IMPP. Graph analysis 
may provide some useful tools for approaching the general IMPP and in particu­
lar the study of deviations from completeness on the controllability, observability 
properties. 

4. MODEL PROJECTION PROBLEMS ON EXTERNAL PROGENITOR 
MODELS AND THE MATRIX PENCIL TRANSFORMATION PROB­
LEM 

In this section we consider problems of the model projection type, which are defined 
on External Progenitor Models represented by a proper transfer function matrix 
H{s) G RI,Xp{s), or by a minimal state space realisation S{A,B,C,D). It should 
be noted that the EPM assumption implies that we make no special assumption 
about an internal natural graph for the system. All problems considered here on 
EPMs may also be stated for IPMs with the only difference that in the latter case 
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the projection matrices have to be block diagonal. The constant EMPP (C-EMPP), 
defined on the system £ with H(s), or S(A, B, C, D) model may be stated as follows: 
Find K G Rmxq, L G Rpx', m < q, I < p, rank(A') = m, rank(L) = / such that 

Q(s) = KH(s)LeRmx,(s)! (11) 

where 0(s) is some "desirable" model to be specified, or equivalently in state space 
terms 

S@(A,B,C,D) : A = A, B = BL, C = KC, D = KDL (12) 

where S@ is a realisation of O(s), or a desirable model. The system Ee obtained from 
E under the (A', L) projecting pair will be referred to as an input-output projected 
system and the whole family of such systems that corresponds to all (A', L) possible 
pairs will be denoted by {E}. The EMPP will be called full, if m < q, I < p and 
will be called left-, right-partial if m = q, I = p respectively; if both m = q and 
/ = p, then it is called trivial. Some typical issues and problems within the overall 
framework of C-EMPP are: 

Ma trix Pencil Transformation Problem . (MPTP) Transform the C-EMPP 
to an equivalent problem of the matrix pencil setup. 

Least Dimension Problems . (LDP) [7] Define the lowest bounds for the number 
of effective inputs and outputs, which are necessary for certain control property to 
hold true in the projected model. 

Zero Assignmen t Problems. (ZAP) [9] Define the conditions on EPM such 
that the projected model has a given zero structure. 

The first of the three problems is examined next, whereas the others are consid­
ered in the references. For the case of strictly proper systems, the full C-EMPP (and 
thus also the partial) may be studied as an equivalent matrix pencil theory prob­
lem. In fact, let us assume that S(A,B,C) is the progenitor model, rank(S) — p, 
rank(C) = q and let (B^, At), (C\ M) be pairs of left inverse, left annihilator for B, 
right inverse, right annihilator for C respectively (B^B = Ip, NB = 0, CC* = Iq, 
CM = 0). We first note: 

Lemma 4 .1 . Let A' G Rmxq, L G Rpxl, rank(A') = m < q, rank(L) = / < p and 
let Q, R be such that 

KR = K[K\KL} = [Im,0], ReRqxq,\R\^0 (13) 

QL = [ f j . ] i = [ J ' ] , gG^ x MQ|#0 . (14) 

For any C = KC, B = BL pair, there exist matrices Q, R € Rnxn, \Q\ ^ 0, 
\R\ ^ 0, such that 

CR = C ,[C tA: t ,C tR-L ,M] = [ / m ,0 4 _ m ,0„- , ] , ReRqXq, \R\?0 (15) 
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Г Etдt " ' I, ' 
L-LjЗt B = Op-i 

N . On-P . 

(16) 

and for any pair C, B defined as above, the (Ct, M), (N, W) pairs are: 

_ t = L t _ t , ot = CrK\ M = [M,C^KL], N = \ L±B] 1 . (17) 

Using the above we may describe the essential pencils of the input-output pro­
jected system Sg(A, B, C) as shown below: 

Proposition 4 .1 . Let S(A,B,C) be a progenitor model, (K,L), a projecting 
pair and let S(A,B,C) be the resulting input-output projecting system. For the 
S(A, B, C) the following properties hold true: 

(i) The pencils R(s) = sN-NA, R(s) = sN-NA of S(A, B), S(A, B) are related 
as: 

R(S>~ sLLB^-LLB^A 
(18) 

(ii) The pencils T(s) = sM - AM, f(s) = sM - AM of S(A,C), S(A,C) are 
related as: 

f(s) = [T(s); sC^KL - ACU<L] . (19) 

(iii) The pencils Z(s) = sNM - NAM, Z(s) = sNM - NAM of S(A,B,C), 
S(A,B,C) are related as: 

7 M - I Z ^ 
I sLLB^M-LLBЫM 

sNCU<L-NAC*KL 

sLLB^CU<L (20) 

Given that R(s), T(s), Z(s) define the controllability, observability, zero proper­
ties of S(A,B,C); Proposition (4.1) implies that that the C-EMPP is equivalent 
to augmentation of existing pencils and thus it is a problem of transformation of 
Kronecker invariants defined below: 

Definition 4 .1 . Let sF — G G Rmxn[s]. Determining the Kronecker structure of 
the pencils 

l"-».W. [ V ] ' sF - G A(s) 
B(s) C(s) 

(21) 

where A(s), B(s) and C(s) are given dimension but otherwise free pencils, as function 
of the Kronecker structure oisF — G, will be called a Kronecker Structure Transform­
ation Problem (KSTP), by column, row augmentation. If the pencils A(s), B(s), 
C(s) are not free, but come from certain families, then the corresponding KSTP are 
called restricted-KSTP (R-KSTP). 
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It should be noted t h a t K S T P , also emerges in t h e s tudy of generalised dynamic 
cover p rob lems of the geometr ic theory [13], [14]; in fact C - E M P P is equivalent to 
a series of generalised dynamic cover problems, or equivalent K S T P s . T h e detai led 
s tudy of K S T P is given in [14]. 

5. C O N C L U S I O N S 

The pape r ha s provided a formulat ion of a number of control problems which arise 
in the selection of effective sets of i npu t s and o u t p u t s out of po ten t ia l sets of inpu t s 
and o u t p u t s . T h i s general a rea of p rob lems is par t of the overall effort to in tegra te 
the Ear ly Process Design Stages wi th the la te , Control Design stage using tools from 
Control Theo ry and Design [17, 3, 19]. In par t icular , these problems refer to the 
general a rea of invest igat ing issues re la ted to the Global In s t rumen ta t i on of a process. 
T h e common t h e m e runn ing th rough all of this work is t h a t of t ransformat ion of 
invar iants ei ther of the s t a t e space framework or the transfer function. In fact 
different types of s t ruc tu ra l invar iants characterise a l ternat ive sys tem proper t ies 
and thus the essence of the present approach is to view the selection of effective sets 
of i n p u t s and o u t p u t s as a process character is ing the evolution of sys tem s t ruc tu re 
and proper t ies , s t a r t i n g from some form of progeni tor model and s t ruc ture . T h e 
m a t r i x pencil t r ans fo rmat ion problem is s tudied in detail in [14]. Al though it has 
been a s sumed t h a t model or ien ta t ion issues [26] have been sorted out before we 
s t a r t ed the present types of invest igat ion, th is problem is by no means t r ivial and 
is current ly unde r invest igat ion. T h e present paper has provided a brief account of 
some of the issues and a more detai led account is given in [7]. 

(Received October 27, 1993.) 
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