Sunil Kumar Muttoo; Shankar Lal
A reversible code over $GF(q)$
A REVERSIBLE CODE OVER $GF(q)$

SUNIL KUMAR MUTTOO*, SHANKAR LAL

This paper deals with the construction of codes over $GF(q)$, q prime, by annexing two triangular matrices, one upper triangular and the other lower triangular. The error-correction capabilities of such codes are also studied.

0. INTRODUCTION

An (n, k) linear code C of length n over $GF(q) = \mathbb{F}_q$, a Galios field of order q, where q is a prime, is a k-dimensional linear subspace of \mathbb{F}_q^n, where \mathbb{F}_q^n denotes the space of all n-tuples over $GF(q)$. A generator matrix G of this code is a $k \times n$ matrix whose rows form a basis of C. The parity-check matrix H of this code is an $(n - k) \times n$ matrix such that $Hv^T = 0$ for all vectors $v \in C$. The row space of $(n - k) \times n$ matrix H is an $(n, n - k)$ linear code C^\perp called dual code of C. The Hamming weight of a vector is the number of non-zero elements in it. A code word in C consists of some k symbols as message or information symbols and the remaining symbols as check-digits [2].

A class of codes called 'reversible codes' introduced by Massey [3] is defined as follows:

Definition. A linear code C is called reversible if a vector obtained by reversing the order of the digits of a code word in C result in a code word in C, i.e., $(v_0, v_1, ..., v_{n-1}) \in C$ implies that $(v_{n-1}, v_{n-2}, ..., v_1, v_0) \in C$.

Consider a $(k+1) \times (2k+1)$ matrix H_k over $GF(q)$ (q prime) formed by annexing two square triangular matrices, one upper triangular and the other lower triangular such that the last column of the first is the first column of the second, where the

* The author carried out this research work under a minor research project sponsored by U.G.C., India.
entries are chosen in a well-defined way viz. consider H_k of the type

$$H_k = \begin{bmatrix}
 x_1 & x_2 & \cdots & x_{k-1} & x_k & y & 0 & 0 & \cdots & 0 & 0 & 0 \\
 0 & x_2 & \cdots & x_{k-1} & x_k & y & x_k & 0 & \cdots & 0 & 0 & 0 \\
 0 & 0 & \cdots & x_{k-1} & x_k & y & x_k & x_{k-1} & 0 & \cdots & 0 & 0 & 0 \\
 0 & 0 & \cdots & x_{k-1} & x_k & y & x_k & x_{k-1} & x_{k-2} & \cdots & 0 & 0 & 0 \\
 0 & 0 & \cdots & 0 & x_k & y & x_k & x_{k-1} & x_{k-2} & \cdots & x_3 & x_2 & 0 \\
 0 & 0 & \cdots & 0 & 0 & y & x_k & x_{k-1} & x_{k-2} & \cdots & x_3 & x_2 & x_1
\end{bmatrix}$$

where $y, x_i \in \{1, 2, \ldots, q-1\}$ and $(x_i, y) = 1$ and $(x_i, x_j) = 1$ for $i \neq j$, $i, j = 1, 2, \ldots, k$.

The code obtained by considering H_k as the parity-check matrix will be a $(2k + 1, k)$ linear code C_k. It will be shown that the code C_k which is the null space of H_k turns out to be reversible, as defined by Massey [3] and for further work one may refer to Tzeng and Hartmann [6]. It is also shown that such codes are capable of correcting a well-defined class of solid burst errors. Codes correcting solid bursts have also been studied by Shiva and Sheng [5].

In what follows, by a solid burst of length b we shall mean an n-tuple whose all b non-zero components are among some b adjacent positions.

1. CHARACTERIZATION

In the following theorem we prove that the code C_k is a reversible code. We first prove a lemma.

Lemma 1. The number of non-zero components in any code word of C_k, in the first k-positions and in the last k-positions is same.

Proof. Let $h_1, h_2, \ldots, h_{2k+1}$ denote the columns of H_k, h_i denoting the ith column. The formation of the last k-columns of H_k may be stated as

$$h_{k+2} = a_1 h_{k+1} + b_1 h_1$$

$$\vdots$$

$$h_{2k+1} = a_k h_{k+1} + b_k h_k$$

or

$$h_{k+i+1} = a_i h_{k+1} + b_i h_1, \quad i = 1, 2, \ldots, k$$

where $0 < a_i \leq q - 1, \quad 0 < b_i \leq q - 1$.

Let there be a code word with s non-zero components at the i_1th, i_2th, ..., i_sth place
in the last \(k \) positions. Then

\[
(1) \quad h_{k+1+i} + h_{k+1+i} + \ldots + h_{k+1+i} = \\
= (a_{i_1} + a_{i_2} + \ldots + a_{i_s}) h_{k+1} + (b_i h_1 + b_i h_2 + \ldots + b_i h_{s}).
\]

Case I. When \(a_{i_1} + a_{i_2} + \ldots + a_{i_s} = 0. \)

The R.H.S. of (1) is clearly a sum of exactly \(s \) columns from the first \(k \)-columns, \(h_1, h_2, \ldots, h_k \) of \(H_k \), thus there are exactly \(s \) non-zero components in the first and in the last \(k \) positions of the code word under discussion.

Case II. When \(0 < a_{i_1} + a_{i_2} + \ldots + a_{i_s} \leq q - 1. \)

In this case, the R.H.S. of (1) is a sum of the \((k + 1)\)th column \(h_{k+1} \) and exactly \(s \) columns from the first \(k \) columns \(h_1, h_2, \ldots, h_k \) of \(H_k \), showing that there are exactly \(s \) non-zero components in the first \(k \) positions and the last \(k \) positions.

Note that we have proved more than what has been stated in the lemma in view of the following corollary:

Corollary 2. A one-to-one correspondence between the non-zero components in the first \(k \) positions and the non-zero components in the last \(k \) positions exist, viz. the \(i \)th component \(1 \leq i \leq k \) is related to the \((k + i + 1)\)th component.

Theorem 3. \(C_k \) is reversible.

Proof. Let \(\bar{v} = (v_1, v_2, \ldots, v_{2k+1}) \) be a code word of \(C_k \). Then

\[
(2) \quad \sum_{i=1}^{2k+1} v_i h_i = 0.
\]

We have

\[
(3) \quad h_{k+1+i} = a_i h_{k+1} + b_i h_i,
\]

where

\[
(4) \quad b_i^{-1} = b_{k-i+1} \quad \text{and} \quad -a_i b_{k-i+1} = a_{k-i+1}
\]

\(i = 1, 2, 3, \ldots, k; a_i, b_i \in GF(q). \)

Equivalently,

\[
(5) \quad h_i = b_i^{-1} h_{k+1+i} - (a_i b_i^{-1}) h_{k+1} = b_{k-i+1} h_{k+1+i} + a_{k-i+1} h_{k+1}.
\]

Then (2) gives

\[
\sum_{i=1}^{k} v_i h_i + v_{k+1} h_{k+1} + \sum_{i=1}^{k} v_{k+1+i} h_{k+1+i} = 0,
\]

(using (3))

\[
\Rightarrow \sum_{i=1}^{k} (v_i + b_i v_{k+1+i}) h_i + \sum_{i=1}^{k} (a_i v_{k+1+i} + v_{k+1}) h_{k+1} = 0.
\]

87
Therefore, we must have
\[v_i + b_j v_{k+i+1} = 0, \]
\[\sum_{i=1}^{k} a_i v_{k+i+1} + v_{k+1} = 0, \quad i = 1, 2, \ldots, k. \]

Consider the vector \(\tilde{v} = (v_{2k+1}, v_{2k}, \ldots, v_{k+1}, \ldots, v_2, v_1). \) Then
\[\tilde{v}^T H = S = v_{2k+1} h_{k+1} + v_{2k} h_{k-1} + \cdots + v_{k+3} h_{k-2} + v_{k+2} h_k + \]
\[+ v_{k+1} h_{k+1} + v_k h_{k+2} + \cdots + v_3 h_{2k-1} + v_2 h_{2k} + v_1 h_{2k+1}. \]

Using (5) and then (4), we get
\[S = (b_k v_{2k+1} + v_1) h_{k+1} + (b_{k-1} v_{2k} + v_1) h_{k-1} + \cdots + (b_1 v_{2} + v_1) h_{2k+1} + \]
\[+ [a_{k+1} v_{2k+1} + a_{k-1} v_{2k} + a_{k-2} v_{2k-1} + \cdots + a_1 v_{2} + v_1] h_{k+1}. \]

which on using (6) gives
\[S = 0. \]

Thus \(\tilde{v} \) is a code of \(C_k. \) Hence \(C_k \) is reversible. \(\square \)

Remark. Taking \(a_i = 1, b_j = 1, i = 1, 2, \ldots, k, \) we have the relations
\[h_{k+1+i} = h_{k+i} + h_1. \]

The codes generated by the matrix satisfying the above conditions in the binary case i.e. over GF(2) have been studied by Dass and Muttoo [1].

Theorem 4. The dual, \(C_k^\perp, \) of the reversible code \(C_k \) is reversible.

Proof. A parity check matrix of the code \(C_k \) is a generator matrix for the code \(C_k^\perp. \)

The code words of \(C_k^\perp \) are various linear combinations of the rows of \(H_k \) and the rows of \(H_k \) are such that the reverse of any row of \(H_k \) is again a row of \(H_k. \) Therefore, the reverse of a code word of \(C_k^\perp \) is a code word of \(C_k \).

This completes the proof of the theorem. \(\square \)

2. **ERROR CORRECTION CAPABILITIES**

The following result determines the error-correction capabilities of the reversible codes considered in this paper.

Theorem 5. An \((n, k)\) linear code \(C_n, n = 2k + 1, \) whose parity check matrix is \(H_n, \) is capable to correct,
(i) all solids bursts of odd lengths upto \(2k - 1, \) if \(n - k \) is even, i.e. if \(k \) is odd,
(ii) all solids bursts of odd lengths upto \(k - 1, \) if \(n - k \) is odd, i.e. if \(k \) is even.

Proof. Firstly, we shall derive an upper bound on the sufficient number of parity-check digits for the existence of a code that is capable to correct a solid burst of odd length, say \(b, \) by constructing a suitable parity-check matrix. The procedure involves
suitable modifications of the technique used in deriving Varshamov-Gilbert-Sacks bound [4].

After having selected the first \((j - l)\) columns \(h_1, h_2, \ldots, h_{j-l}\) of the parity-check matrix, the \(j\)th column \(h_j\) to be added to the matrix should be such that

\[
h_j = (a_{j-1} + h_{j-1}h_{j-2} + \cdots + a_{j-2}h_{j-3} + b_{j}h_1 + b_{j-1}h_{j-1} + \cdots + b_{j+1}h_{j+1}),
\]

where the columns \(h_i\) are any \(b\)-consecutive columns among the first \((j - i - l)\) columns, \(i = 0, 2, 4, \ldots, b - 1\), and all the coefficients \(a_i\) and \(b_i\) are non-zero.

Thus, the coefficients \(a_i\) form a solid burst of even length \(b - 1\) or less and the coefficients \(b_i\) form a solid burst of odd length \(b\) or less in a \((j - i - 1)\)-tuple.

The number of choices of these coefficients can be calculated as follows:

If a solid burst of even length is of length \((b - 1)\) then the number of solid bursts of odd length \(b\) or less in a \((j - b - 1)\)-tuple is

\[
(j - b)(q - 1) + (j - b - 2)(q - 1)^3 + \cdots + (j - b - b + 1)(q - 1)^b.
\]

If a solid burst of even length is of length \((b - 3)\) then the number of solid bursts of odd length \(b\) or less in a \((j - b + 2)\)-tuple is

\[
(j - b + 2)(q - 1) + (j - b)(q - 1)^3 + \cdots + (j - b + 2 - b + 1)(q - 1)^b.
\]

If the solid burst of even length is of length zero, then the number of solid bursts of odd length \(b\) or less in a \((j - 1)\)-tuple is

\[
(j - 1)(q - 1) + (j - 3)(q - 1)^3 + \cdots + (j - b)(q - 1)^b.
\]

Therefore, the total number of possible choices of the coefficients \(a_i\) and \(b_i\) are

\[
(q - 1)^{b - 1}(7_{b-1}) + (q - 1)^{b - 3}(7_{b-3}) + \cdots + (7_0)
\]

which on simplification gives

\[
q^{-k} > (8).
\]

At worst, if all the linear combinations yield a distinct sum, then the \(j\)th column \(h_j\) can be added to \(H_k\) if

\[
q^{-k} > (8).
\]

But for an \((n, k)\) linear code to exist, the inequality in (9) should hold for \(j = n\), and we get

\[
q^{-k} > \left[\sum_{i=1}^{(b+1)/2} (n - 2i + 1)(q - 1)^{2i-1} - \sum_{i=1}^{(b-1)/2} 2i(q - 1)^{2i+1} \right].
\]

We now prove the main result.
Case (i). Let \(k \) be odd.

The solid bursts of odd lengths up to \(2k - 1 \) are the solid bursts of lengths \(2k - 1, 2k - 3, \ldots, 1 \). For these values of \(k \), the inequality in (10) has the form

\[
q^{k+1} > [2 \sum A_i - 2 \sum B_i] [\sum C_i]
\]

where \(A_i = (k - i + 1) (q - 1)^{2i-1} \), \(B_i = (q - 1)^{2i+1} \), \(C_i = (q - 1)^{2i} \), \(s = 0, 1, 2, \ldots, k \).

To prove the above claim, we employ induction technique. We wish to prove that

\[
q^{k+3} > [2 \sum A_i - 2 \sum B_i] [\sum C_i].
\]

Now

\[
q^{k+1} > [2 \sum A_i - 2 \sum B_i] [\sum C_i] = [X - 2(A_{k-s+1} + A_{k-s+2} - B_{k-s} - B_{k-s+1})] [Y - C_{k-s} - C_{k-s+1}]
\]

where \(X = 2 \sum A_i - 2 \sum B_i \), \(Y = \sum C_i \), \(s = 0, 1, 2, \ldots, (k-2)/2 \).

\[
q^{k+3} > [XY - X(C_s + C_{k-s+1}) - 2Y(A_{k-s+1} + A_{k-s+2} - B_{k-s} - B_{k-s+1}) + 2(C_{k-s} + C_{k-s+1})(A_{k-s+1} + A_{k-s+2} - B_{k-s} - B_{k-s+1})].
\]

As \(k - s \geq 1, s + 1 \geq 1 \), therefore

\[
q^{k+3} > q^{k+1} + X(C_s + C_{k-s+1}) + 2Y(A_{k-s+1} + A_{k-s+2} - B_{k-s} - B_{k-s+1}) - 2(C_{k-s} + C_{k-s+1})(A_{k-s+1} + A_{k-s+2} - B_{k-s} - B_{k-s+1}) > XY.
\]

Thus the inequality in (10) is true for all odd values of \(k \). Hence the case (i).

Case (ii). Let \(k \) be even.

The solid bursts of odd lengths up to \(k \) are the bursts of lengths \(k - 1, k - 3, \ldots, 3, 1 \). For these values of \(b \) the bound in (10) has the form

\[
q^{k+1} > [2 \sum A_i - 2 \sum B_i] [\sum C_i], \quad s = 0, 1, 2, \ldots, (k-2)/2,
\]

where \(A_i, B_i \) and \(C_i \) are as in (11). To prove that this is true, we shall use the induction technique. We wish to prove that

\[
q^{k+3} > [2 \sum A_i - 2 \sum B_i] [\sum C_i].
\]

Using the technique of case (i), the result follows. \(\square \)
Example. Consider the following (4×7) matrix H_3 over $GF(5)$:

$$H_3 = \begin{bmatrix}
1 & 3 & 3 & 4 & 0 & 0 & 0 \\
0 & 3 & 3 & 4 & 3 & 0 & 0 \\
0 & 0 & 3 & 4 & 3 & 3 & 0 \\
0 & 0 & 0 & 4 & 3 & 3 & 1
\end{bmatrix}$$

The columns of this matrix satisfy the relations

$$h_{k+1} = a_i h_{k+1} + b_i h_1, \quad i = 1, 2, 3$$

where

$$a_1 = 2, \quad b_1 = 2,$$

$$a_2 = 2, \quad b_2 = 4,$$

$$a_3 = 4, \quad b_3 = 3.$$

It can be seen that the null space of H_3, is a reversible code and corrects all solid bursts of lengths 1, 3, 5.

ACKNOWLEDGEMENT

The authors are thankful to Dr. B. K. Dass, Department of Mathematics, P. G. D. A. V. College, (University of Delhi), for his fruitful suggestions.

(Received June 14, 1984.)

REFERENCES

Dr. Sunil Kumar Muttoo, Department of Mathematics, S. G. T. B. Khasa College, University of Delhi, Delhi-110007, India. Shankar Lal, Department of Mathematics, Zakir Hussain College (E), University of Delhi, Delhi-110006, India.