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K Y B E R N E T I K A - V O L U M E 20 (1984), N U M B E R 3 

A POLYNOMIAL SOLUTION TO REGULATION 
AND TRACKING 

Part I. Deterministic Problem 

VLADIMÍR KUČERA, MICHAEL ŠEBEK 

Recent results on polynomial techniques in solving the discrete-time linear-quadratic regula­
tion and/or tracking problems are presented. Both deterministic and stochastic problems are 
considered in order to let appear their formal similarity and to contrast the inherent differences. 
The analysis is based on external polynomial models and the construction of the optimal con­
troller or control sequence is reduced to the solution of linear polynomial equations, combined 
with spectral factorization. The existence of admissible controls that yield a finite performance 
index is studied and all such controls are specified in a parametric form. The optimal control 
then corresponds to the zero parameter and is shown to be recurrent, i.e. realizable by a linear 
finite dimensional system. 

The paper is divided into two parts. Part I is concerned with the deterministic 
problem, i.e. with the existence of open-loop control strategies and their realization 
by various feedback schemes. Part II investigates the stochastic problem, i.e. the 
existence of closed-loop control strategies including the constraints of causality and 
stability. 

1. INTRODUCTION 

1.1. General 

Polynomial techniques have been successfully applied to solve various problems 
of linear control theory. Basic ideas and numerous results can be found in the books 
by Volgin [13], Astrom [ l ] , Rosenbrock [10], Wolovich [14], Kucera [4], [5] and 
Kailath [2]. 

The aim of this paper is to present, in a compact and unified way, the recent 
results concerning the polynomial solution to the discrete-time linear-quadratic 
regulation andjor tracking problems. Such problems were considered by Volgin [13], 
Astrom [1], Peterka [8], [9], Kucera [4], [5], [6], [7], Sebek [10], [11] and Sebek 
and Kucera [12]. Different techniques were used depending on the author and 
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on the particular problem at hand. The unifying idea, however, was to make use 
of input-output polynomial models and reduce the synthesis of the optimal control 
to the solution of linear polynomial equations, possibly in conjunction with the 
spectral factorization. 

The results presented here are much deeper, however. A detailed analysis of the 
problem is given for single-input single-output linear systems and infinite control 
horizon. The analysis results in a necessary and sufficient condition for the existence 
of admissible controls that make the given performance criterion finite, and all such 
controls are specified in a parametric form. The optimal control is then obtained 
by setting the parameter to zero. The requirements of stability and optimality are 
treated separately where appropriate. This provides further insight as to the best 
attainable performance and to realizability of the optimal control via state feedback. 
Finally the effect of initial conditions is considered in order to let appear the inherent 
differences between the deterministic and the stochastic problems. 

1.2. Sequences and Polynomials 

Discrete-time signals are represented by (two-sided) real sequences s = { s j , 
where t ranges over integers; they are denoted by lower case letters throughout 
the paper. If s, = 0 for t < T, where T is an integer (either negative, or positive, 
or zero), then we speak of a one-sided sequence s. The set of all one-sided sequences 
forms a field under the usual elementwise addition and convolutory multiplication. 
A sequence s is said to be causal if st = 0 for t < 0 and bi-causal if it is causal 

together with its inverse l/s. Furthermore, s is an l2-sequence if £ sf < co; 
t = - C O 

it is stable if lim s, = 0; and it is Hurwitz if there exist a real a and integers p 2: 0, 
T! such that \st\ < at" for all t < 7_. 

Two-sided sequences can be added in the usual way; multiplication of sequences 
w = uv is defined by the convolution formula wt = Y, U;Vj whenever the sum 

i+j = t 

converges absolutely (it always does for l2-sequences). The conjugate sequence s# 
of s is defined by s#t = s_f. The symbol <s> is used to denote s0, the zero-position 

element of s. For l2-sequences u, v the sum £ utvt is finite and can be written 
in terms of the inner product «•=-« 

__ ut", = < " * ^ > • 
t = -oo 

In particular, 

£ u] = <„*«> . 
t = - o o 

The delay operator d : s, —> sr_j is introduced for any sequence s. By means 
of it, and of the inverse operator d~l, every sequence can be thought of as a formal 
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power series s — £ s,d'. A one-sided sequence s is called recurrent if there exist 

integers n > 0, T2 and reals a0, au ..., a„ such that £ a(s(+,- = 0 for all t < T2. 
i = 0 

A recurrent sequence is an l2-sequence if and only if it is stable. Finite causal se­
quences (i.e. polynomials in d) are of special importance; they are denoted by upper 
case letters. Every recurrent sequence can be expressed as a ratio of two polynomials. 
A polynomial P(d) is said to be causal, Hurwitz, and stable if the recurrent sequence 
1/P (obtained by long division into ascending powers of d) is respectively causal, 
Hurwitz, and stable. 

2. DETERMINISTIC REGULATION AND TRACKING 

2.1. Formulation 

Consider the plant 

(2.1a) xt+1 = Axt + But 

yt = Cxt + Dut 

and the reference generator 

(2.2a) zt+1=Fzt 

yi, =Hzt 

for the discrete times t = 0, 1, .... Here ut e R is the control input, xt e R" is the plant 
state, yt e R is the output and z t e R'" is the generator state, yRt e R is the reference. 
Denote u, x, y and z, yK the causal sequences formed respectively from ut, xt, y, and 
z ( , j R , f o U > 0 . 

Given the initial states x0 and z0 at t = 0, the problem is to find a causal control 
sequence u such that the cost 

(2.3a) J = t^f + fi(yRt- y,)2 

t = 0 

is finite and attains its minimum. Here X > 0 and ;t > 0 are real constants, not both 
zero. 

This is the standard formulation of the infinite-horizon linear-quadratic tracking 
problem and yR - y is the tracking error. The special case when yK = 0 is called 
the regulation problem. The interpretation of J depends on actual values of X and 
/*: If X = 0 the output y is to follow the reference j R as closely as possible; if /t = 0 
the control effort is to be minimized; and if Xfi > 0 a compromise of the two is to be 
found with X and p weighting the relative importance of both requirements. 

In addition to the internal models (2.1a) and (2.2a) it is convenient to introduce 
the external model of the plant 

(2.1b) Ay = Bu + C 
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where A, B, and C are relatively prime polynomials in d defined by 

^ = D + C(In- AdY'Bd 
A(d) y ' 

and the external model of the reference generator 

(2.2b) FyR = G 

where E and G are relatively prime polynomials in d defined by 

Note that both A and E are causal polynomials. To avoid trivia, it is assumed that 
B + 0. 

The cost J is finite if and only if hi and fi(yR — y) are both l2-sequences. Then 
(2.3a) can be written as 

(2.3b) J = (U*AU + (yR - y)* n(yR - y)> . 

2.2. Solution 

For further reference we define relatively prime polynomials A0 and E0 such that 

(2.4) do . 6 
E0 E 

and denote 

E = A0G — E0C . 

Write D for the greatest common divisor of A and B, i.e. 

A = A'D, B = B'D 

where A' and B' are relatively prime. Let B be the greatest causal factor of B', i.e. 

(2.5) B' = dkB 

for some k S: 0 and let A be the greatest causal factor of A', i.e. 

(2.6) A' = A 

as A' itself is causal. Also let H be a causal Hurwitz polynomial such that 

(2.7J A'*XA' + B'tiiW = H*H . 

Such an H is called the spectral factor; it exists and is unique up to the sign. 
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Theorem 1. Define 

Ufa)B if X = 0 
(2.8) H = U{X) A if /. = 0 

[ B if Xfi > 0. 

Let P, Q, and Tbe the polynomial solution of the equations 

(2.9a) H*P - T*BF0 = A'^kE 

H*Q + T*AT0 = 5 * J " £ 

that satisfies <T> = 0. 

Then 

a) there exists a causal sequence u which makes J finite if and only if XiiE\DF0 is 
a stable sequence; 

b) the set of all causal w's that yield finite J is generated by the formula 

(2.10) u = ^ Z L ^ o W 
DHF0 

where w is any causal l2-sequence; 

c) the causal u which minimizes J is unique and given by 

(2.11) u = — £ -
DHF0 

i.e. it corresponds to w = 0 and is recurrent. The associated error is 

(112) »~fm mr0 
and the associated minimal cost 

(2.13) j=/A^ M_\ + A M 
\H*H F0*D*DF0/ \H*H 

Proof. We shall manipulate the cost so as to make our claims evident. Substitute 

(2.14) yK-y = ±--lu 

AF0 A 

in (2.3b). Make use of (2.5) —(2.8) and complete the squares to obtain 

(2.15) J = J, + <*..,*»,> 

where 
j _ , Xfl E*E 

HJH F0*D*DFoj 
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and 

B'*nE H 

#*AEo A' 

Use equation (2.9b) to decompose the first term of w2 as follows 

(2.16) ^ I i = ^ + _e_. 

H*AF0 //* AE0 

Then 

<Wi*Wi> = J2 - 2 / — w ) + <w*w> 

where 

and 

Л = 
T*Ţ 
я я 

(2.17) - = — - ! : " • 

AE0 A' 

For a causal sequence u the sequence w is also causal. Then <T> = 0 entails 

£ • > -
and we finally get 
(2.18) J = A + J 2 + ^ ^ . 

Claim a) is evident for X\i = 0. To prove it for A/t > 0 suppose that / is finite 
for some causal u. Then both u and yR — y are l2-sequences. According to (2.14) 
these sequences are coupled by the equation 

(2A9) A'(yR-y) + B'u = - £ - . 
DE0 

Hence E]DF0 is an l2-sequence and as it is recurrent, it is stable. Conversely let EjDF0 

be stable. Then the greatest common divisor of'//* and DE0 is contained in E. 
As a result, equations (2.9) are solvable. Define u = Q//)//E0. This M is causal and 
yields w = 0, see (2.17). Hence J = Jt + J2 by (2.18). As E//>E0 is an l2-sequence, 
J i is finite. As AA' and /^B' are relatively prime, H = / / is not merely Hurwitz but 
stable and J2 is finite, too. Therefore J is finite. 

Claim b) follows immediately from (2.17) on taking into account that w is to be 
causal (so that u may be causal) and 12 (so that J may be finite). 

Claim c) is proved simply by noting that Jt and J2 in (2.18) are independent 
of the control sequence u. The best one can do to minimize J is put to w = 0 whence 

182 



(2.11) results. Then insert (2.11) into (2.14) to get 

HE - B'Q 
УR - У = 

A'DHFn 

On multiplying equation (2.9a) by A', equation (2.9b) by B' and adding them up, 

one verifies that 

A'P + B'Q = HE 

whence (2.12) follows. As w = 0, the associated cost is J = J x + J2. Q 

The idea underlying the proof is simple: to separate the cost into two parts of which 

only one depends on the control. This part is then set to zero in order to obtain the 

optimal control; the remaining part identifies the minimal cost. This is accomplished 

by completing the squares (by means of H) in several stages. The first completion 

results in (2.15). It is temping to minimize J by setting w1 = 0 but it would yield 

a non-causal u. Therefore we isolate the non-causal part of wt; it is done through 

the decomposition (2.16).The requirement <T> = 0 is crucial in obtaining the final 

complete square (2.18). Here w = 0 already yields a causal u. Thus J can be reduced 

to Jj by non-causal controls only, the minimum atteinable by causal controls is 

Jj + J2. 

Theorem 1 covers the "regular" case of X\i > 0 as well as the "singular" cases 

characterized by X = 0 and p, = 0. This is made possible through the way H is 

defined. In the regular case we just take H to be H of (2.7). When X = 0 the synthesis 

of optimal control simplifies. In view of (2.5) and (2.8) equations (2.9) reduce to the 

single equation 

dkQ' + T'AF0 = E 

where deg T' < k, and 

P' = BDF0T . 

The relationships 

P = ^)P', Q = MQ', T*=txB'*T 
then yield 

a = ^ r r . }'R- 9=T', J = < T ^ r > . 
BDF0 

When fj, = 0 the problem becomes trivial. Now (2.6) and (2.8) result in 

P = V(^) E, Q = 0, T* = 0 

whence 

a = o , >>R - p = JL, j = o . 
AF0 

It is important to note that the singular cases are not obtained as limit for X -* 0 

or \x -> 0 of the regular case. The difference stems from the fact that u need not be 
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an l2-sequence when X = 0 and similarly for >'R — y when /z = 0. For positive X and 

fi, no matter how small, both u and >R — y must be l2-sequences. This discontinuity 

is embodied in the definition (2.8) of H. The limit cases would correspond to taking 

H = H for any X and \i. 

In any case, however, it is seen that the optimal control sequence u is recurrent 

while the family of controls that yield finite cost is much broader. As a consequence, 

it can be generated by a linear finite-dimensional system. 

2.3. Feedback Realization 

It is worthwhile to note that the solution of the deterministic problem is an open-

loop one. The optimal control strategy is obtained in the form of a sequence that 

depends on the given data including the initial states x0 and z 0 . There is no need 

for feedback control when x0 and z 0 are known. 

The optimal control sequence u can nevertheless be realized via state feedback 

of the form 

(2.20) ut=Lixt+L2zt. 

The major advantage of this realization is that the matrices L t and L2 are independent 

of x0 and z 0, hence they generate the optimal control sequence for every x0 and z 0. 

On the other hand, the resulting system 

ђ:i\'[AYLí^Ш 
is not practicable unless it is stable in some sense. The reference generator is fixed 

and not stable in most applications; we can do nothing about F. But A + BLU 

the matrix governing the closed-loop part of the system, should be as stable as pos­

sible. 

It is therefore of interest to identify the spectrum of A + BL^. First of all, it 

contains the unreachable eigenvalues of the plant. In particular, the unreachable 

but observable eigenvalues are associated with the roots of D. In the regular case 

of X/i > 0 it is the spectral factor H that determines the nonzero reachable eigen­

values of the closed-loop system, see Kucera [7]. For X = 0 we obtain in fact the 

deadbeat strategy studied by Kucera [3]. The closed-loop eigenvalues are those of the 

causal inverse of the plant. When p = 0, no control is applied and the closed-loop 

eigenvalues are simply those of the plant. To summarize, we have 

Theorem 2. The spectrum of A + BLX is the union of 

1) the unreachable eigenvalues of {A, B) 

2) the roots of H 

3) the zeros to complete the spectrum to n items. 
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Let us illustrate the results by a simple example. Consider plant (2.1) with 

A = [ l ] , * = [0] 

C - [ l ] , D = [ l ] 

and reference generator (2.2) with 

F - [ l ] 

/ / = [ ! ] . 

Let the cost (2.3) be specified by X = 0 and /* — 1. 

The plant and the reference generator give rise to the polynomials 

A = \ - d, B = 1 - d, C = x 0 

and 

F = l _ d, G = z 0 

where x 0 and z 0 are the initial states, arbitrary but fixed. 

We calculate 

A0 = 1 , F 0 = 1 

Z> = 1 - d , B' = 1, fl = 1 

E = z 0 — x 0 

and solve equations (2.9) to get 

P = 0, Q = z 0 - x 0 , T=0. 

Then all causal control sequences that yield finite cost are given by (2.10) as 

u = Z-^^° + w 
1 - d 

where vv is any causal l2-sequence. The associated tracking error is 

yR- y = w 

and hence J = <w#w>. The optimal control sequence results on setting w = 0, i.e. 

(2.21) u = Z-±ZJ^ 
y ' 1 -d 

and J = 0. 

This control sequence can be realized by the state feedback (2.20) where 

L . = [ - i ] , L2 = \i\. 

The resulting system is governed by the equation 

fc]=Ш 
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and its closed-loop part fails to be stable. Its spectrum is given by D = 1 — d, i.e. 
by the unstable common factor of A and B. For fixed initial states x 0 and z0, however, 
the control sequence (2.21) is easy to realize. 

2.4. Observer-Based Controller 

The complete information on the system, namely on its initial state, makes an 
open loop strategy possible. The situation is drastically different if the initial state 
x0 or z0 is not available. Then we have to resort to output feedback. However, 
the optimal feedback control law does depend on x 0 and z0 and hence it cannot 
be found. It is only the state feedback law in which the x 0 and z 0 enter in a non-para­
metric way. 

This impass is usually obviated by state reconstruction. The state sequences x 
and z are reconstructed by means of (Luenberger) observers and these approxima­
tions are used in place of the true states in (2.20). This observer-based control law 
is by no means optimal but it is a reasonable solution frequently used in practice. 

The whole problem is best illustrated by an example. Consider plant (2.1) given by 

•Cři] B = 

C = [1 0] D = [0] 

and solve the regulation problem (i.e. zero reference) for X = 1 and n = 2 in (2.3). 
Let us first suppose that the initial state 

-Й 
is known and find the open-loop optimal control strategy. The polynomial descrip­

tion of the plant is 

A = 1, B = d + d2 , C = x 1 0 + x20d 

and we calculate 

h = — x 1 0 — x20d 

H = 2 + d. 

Equations (2.9) are satisfied by 

P = - 2 x 1 0 - (x 1 0 + x 2 0 ) d 

Q = - *20 

R = - ( 2 x 1 0 + x 2 0 ) d - 2 x 1 0 d 2 . 

The optimal control sequence (2.11) is therefore given by 

(2.22) u = - ^ 2 - . 
V ' 2 + d 
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The associated cost is 

(2.23) J = x?0 + x\0 . 

The optimal control sequence (2.22) can be realized by the state feedback u, = 
= L1x, where 

L1 = [0 -0-5] . 

The closed loop system is then described by the equation 

fxlí+1"| = [o o-5-| rXiti 
L*2,+J L° -o-sJL^J' 

Note that the feedback matrix Lx is independent of x1 0 and x20 , hence it is able 
to generate the optimal control sequence for every initial state. 

Suppose now that the initial state x2 0 is not available. Then the optimal control 
sequence (2.22) cannot be realized by a controller that processes the available infor­
mation, namely y. We therefore set up the Luenberger observer for i^x with arbitrary 
dynamics, described by 

w.+i = Awt + Bty, + B2ut 

vt = Cwt + Dyt 

where, see e.g. Kucera [7], 

A = [ a ] , B^l-a2], B2 = [ l + a] C = [ -0-5] , 

D = [0-5a] 

and a is a real number such that — 1 < a < 1. The observer output v, then approxim­
ates u, = L^x, with the reconstruction error 

e, = wt — xxu — x2t. 

When v, is used to replace u„ the overall system obeys the equation 

Ч í + i 
C 2 Г + 1 

0 0-5 -0-5" ~*к 
0 -0-5 -0-5 * 2 Г 

0 0 a J>' _ 

The resulting control sequence is given by 

u, = [0 -0-5 0] 

namely 

--2-X20 + (i*2o + 4C0) d - ( | x 2 0 + | e 0 - ia.e0) d2 + 

+ (rš*2o + T6eo - i<*eo + We0) d3 - .... 
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The associated cost equals 
J = J + Ja 

where J is given by (2.23) and Ja depends on x20, e0 and a. The observer-based 
controller is seen to be optimal only for e0 = 0, an unrealistic situation when x20 

is not known. Moreover, the minimum of Ja with respect to a depends on x20 and e0; 
hence there is no observer which would minimize J. 

(Received December 30, 1982.) 
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