Maciej Wygralak
A supplement to Gottwald's note on fuzzy cardinals

Persistent URL: http://dml.cz/dmlcz/125583
We supplement the review of fuzzy cardinality definitions placed in [3]. To be exact, we present approaches in which cardinality of a finite fuzzy subset is expressed by a fuzzy natural number and indicate the most appropriate one.

S. Gottwald placed in [3] a comparative review of approaches to the problem how to define fuzzy cardinality, i.e. how to count elements of a universe which are in its fuzzy subset. In accordance with the concepts presented in [3], cardinality of a fuzzy subset was defined either as a non-negative real number or as a family of usual cardinals. In this note we shall present and compare such approaches in which cardinality of finite fuzzy subset is expressed by means of a fuzzy number. To this end, we must introduce some notation and terminology.

Throughout this note, by a fuzzy subset A of some fixed universal set U we shall mean a function $A : U \to I$, where $I := [0, 1]$ with $=$ standing for “equals by the definition”. Membership grade of an element $x \in U$ in A will be denoted by $A(x)$. The classical subset $\{x : A(x) > 0\}$ will be called support of A and denoted $\text{supp}(A)$. If support of a fuzzy subset is finite, then that subset is called finite, too. Throughout the paper we shall assume that A is finite and $\text{card}(\text{supp}(A)) = n$, where $\text{card}(M)$ denotes the usual cardinality of a classical subset M of U. The subset $A_i := \{x : A(x) \geq i\}$, where $i \in I_0$ and $I_0 := (0, 1]$, is called i-level set of A. The sequence $a_0 \geq a_1 \geq a_2 \geq \ldots \geq a_n > a_{n+1} = a_{n+2} = \ldots$ is defined in the following way: $a_0 := 1$, $a_i (1 \leq i \leq n)$ denotes the ith element in descending sequence consisting of positive membership grades in A, $a_i := 0$ for $i > n$.

Let $N := \{0, 1, 2, \ldots\}$. If $F : N \to I$ (i.e. $U := N$), the F will be called fuzzy natural number (in short, fn-number). F is said to be convex iff $F(j) \geq \min(F(i), F(j+1))$ for all $i, j \in N$. Each fn-number F has a decreasing sequence of positive membership grades $a_i (1 \leq i \leq n)$.

A SUPPLEMENT TO GOTTWALD'S NOTE ON FUZZY CARDINALS

MACIEJ WYGRALAK
$F(k)$ for each triplet $i \leq j \leq k$ (cf. [4]). Let \oplus denote addition of fn-numbers. Then the fn-number $F \oplus G$ is defined by membership grades

$$(F \oplus G)(k) := \sup_{i+j=k} \min (F(i), G(j)).$$

As a chronologically first fuzzy approach to cardinality of finite fuzzy subsets, we shall consider the fn-number $FG\text{Count}^\circ$ (see [1, 7]) with membership grades

$$FG\text{Count}^\circ(k) := \begin{cases} \max \{ t \in I_0 : \text{card} (A_t) = k \} , \\ 0 \text{ if card} (A_t) < k \text{ for each } t . \end{cases}$$

The values $FG\text{Count}^\circ(k)$ may be considered degrees to which cardinality of A equals k. One can easily notice (see [1]) that $FG\text{Count}^\circ(k)$

(a) is always normalized, i.e. there exists a natural number h such that $FG\text{Count}^\circ(h) = 1$,

(b) is strictly decreasing on its support,

(c) is a non-convex fn-number,

(d) does not fulfill the additivity property

$$FG\text{Count}^\circ \oplus FG\text{Count}^\circ = FG\text{Count}^\circ_{nB} \oplus FG\text{Count}^\circ_{uB},$$

where $A \cap B$ and $A \cup B$ denote (resp.) intersection and union of A and B, i.e.

$$(A \cap B)(x) := \min (A(x), B(x)), (A \cup B)(x) := \max (A(x), B(x)).$$

In order to avoid the lack of convexity, an important modification of the definition of $FG\text{Count}^\circ$ was proposed in [2] and [8]. As a consequence, we get then a new fn-number defining fuzzy cardinality, namely the $FG\text{Count}_A$ where

$$FG\text{Count}_A(k) := \begin{cases} \max \{ t \in I_0 : \text{card} (A_t) \geq k \} , \\ 0 \text{ if card} (A_t) < k \text{ for each } t . \end{cases}$$

Let T be a finite fn-number such that $T(0) = g_0$, $T(1) = g_1$, ..., $T(s) = g_s$, and $T(r) = 0$ for $r = s + 1, s + 2, ...$. In such a case we shall use the following "vectorial" notation $T = (g_0, g_1, ..., g_s)$.

It is easy to prove (see e.g. [2], [6], [8]) that the following propositions are valid:

(a) $FG\text{Count}_A(k) = \max_{j \leq k} FG\text{Count}^\circ(j)$,

(b) $FG\text{Count}_A = (a_0, a_1, ..., a_s)$. Hence $FG\text{Count}_A$ is convex.

(c) If $A \subseteq B$, then $FG\text{Count}_A \subseteq FG\text{Count}_B$ (monotonicity).

Remark. $Y \subseteq Z := (Y(x) \leq Z(x) \text{ for all } x \in U)$.

(d) $FG\text{Count}_A \oplus FG\text{Count}_B = FG\text{Count}_{A \cap B} \oplus FG\text{Count}_{A \cup B}$ (additivity).

Let D denote a classical n-element subset of U. Then, contrary to expectation, we get $FG\text{Count}_D = (1, 1, ..., 1)$ with support of $FG\text{Count}_D$ consisting of $n + 1$ elements. This result is sensible provided that $FG\text{Count}_A(k)$ defines degree to which A has at least rather than exactly k elements. Thus $FG\text{Count}_A$ as definition of fuzzy cardinality, is unsatisfactory. Namely, for classical subsets it does not collapse to
usual cardinal number. That is why a new definition of fuzzy cardinality was introduced in [2]. To be exact, the new definition is again a simple modification of the previous one.

Let $\mathcal{F}_k(A)$ denote the family of k-element classical subsets of \mathcal{U} containing A. Then fuzzy cardinality of A will be defined by the finite fn-number $\text{Crd}_A(k)$ with membership grades

$$\text{Crd}_A(k) := \max \left\{ \min_{x \in A} A(x) \right\},$$

where A is empty, what implies $\mathcal{F}_0(A) = \{\emptyset\}$, we additionally put $\min \{A(x) := 1\}$.

One can consider $\text{Crd}_A(k)$ to be degree to which cardinality of A equals k. It is easy to verify that (cf. [2], [6])

(a) $\text{Crd}_A = (0, 0, \ldots, 0, 1, a_{m+1}, a_{m+2}, \ldots, a_m)$, where $m := \text{card}(A)$ and the constant sequence composed of zeros is m-element one. Thus Crd_A is always convex.

(b) $\text{Crd}_A = (0, \ldots, 0, 1)$ with the figure one placed at the $(n + 1)$th position and D as previously.

(c) $\text{Crd}_A \oplus \text{Crd}_B = \text{Crd}_{A \cup B} \oplus \text{Crd}_B$.

(d) $\text{Crd}_A = \text{FGCount}_A$ iff $\text{card}(A) = 0$.

Unfortunately, the monotonicity does not hold for Crd-cardinality. But it is quite obvious that property (b) excludes, in principle, monotonicity. On the other hand, property (b) is, from the practical as well set-theoretical points of view, more important than monotonicity.

This is well-known that the theory of fuzzy subsets is closely connected with the Łukasiewicz many-valued logic (see e.g. [5]). Indeed, it suffices to interpret each membership grade $A(x)$ as representing the truth-value of the statement "x is in $A". Therefore, the next approach is based on that logic.

Let $\mathcal{P}_k(A)$ denote the family of all the k-element classical subsets of $\text{supp}(A)$. Moreover, let $p \rightarrow q := \min(1, 1 - p + q)$ (Łukasiewicz implication operator) and $\Leftrightarrow q := \min(p \rightarrow q, q \rightarrow p)$ for $p, q \in I$. Then $\text{deg}(R, S) := \inf_{x \in U} (R(x) \Leftrightarrow S(x))$ for arbitrary fuzzy subsets R and S of U. One can consider $\text{deg}(R, S)$ to be degree to which R equals S. Let us define finite fn-number $\text{Cd}_A(k)$ by means of membership grades

$$\text{Cd}_A(k) := \max \left\{ \text{deg}(A, Y) \right\} : Y \in \mathcal{P}_k(A),$$

$$\left\{ \begin{array}{ll}
0 & \text{if } \mathcal{P}_k(A) \text{ is empty.}
\end{array} \right.$$
(c) \(Cd_A = (1 - a_1, 1 - a_2, \ldots, 1 - a_p, a_{p+1}, \ldots, a_n)\), where \(p := \min \{i : a_i + a_{i+1} \leq 1\}\). Hence \(Cd_A\) is always convex.

(d) At most one cardinal number is "favoured", i.e., there exists at most one natural number \(k_f\) such that \(Cd_A(k_f) > 0.5\).

(e) \(FGCount^A = 2Cd_{0,5A}\), where membership grades in \(0.5A\) and \(2Cd_{0,5A}\) are defined as follows: \((0.5A)(x) := 0.5A(x)\) and \((2Cd_{0,5A})(k) := \min (1, 2Cd_{0,5A}(k))\).

(f) \(Cd_A \oplus Cd_B = Cd_{A \cup B} \oplus Cd_{A \cap B}\).

(g) Let \(A'\) denote the complement of \(A\), i.e., \(A'(x) := 1 - A(x)\). If \(U\) is finite and \(\text{card}(U) = m\), then \(Cd_A(j) = Cd_B(m - j)\) for \(j = 0, 1, \ldots, m\).

One can easily give counterexamples that both the important properties (d) and (g) do not hold for \(FGCount^A\) and \(Cr_{m, A}\). Obviously (g) is a counterpart of the elementary law \(\text{card}(D^c) = m - \text{card}(D)\), where \(D\) denotes now a classical subset of \(m\)-element universe.

To summarize the discussion, it seems to be more suitable to define cardinality of a finite fuzzy subset as a fuzzy natural rather than positive real number (or a family consisting of usual cardinals). Then the fn-number \(Cd_A\) is, from the set-theoretical point of view, defined in a most natural way and fulfills many natural postulates (see e.g. properties (b), (f), (g)) except the monotonicity (what is, however, explicable).

(Received March 3, 1983.)

REFERENCES

Dr. Maciej Wygralak, Institute of Mathematics, A. Mickiewicz University, Matejki 48/49, 60—769 Poznań, Poland.