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KYBERNETIKA- VOLUME 18 (1982), NUMBER 1 

INTEGRAL NETS AND FUZZY RELATIONS 
IN DETERMINISTIC AUTOMATA 

M. W. WARNER 

A net structure is placed on the state set Q of an automaton A = (X, Q) by counting, for any 
ordered pair qt, q2e Q the number of elementary inputs x e X which send qx to q2. For homo­
geneous automata this structure is used to obtain a net isomorphism theorem between Q and 
a group quotient, thus, by displaying more information, improving on a previous theorem of 
the author's in which the action of X simply defines a relation on Q. In fact dividing the number 
of elementary inputs taking qt to q2 by the cardinality of X transforms the net structure into 
a fuzzy relation on Q. Composition of fuzzy relations is discussed in this context. 

An illustrative example is constructed. 

1. INTRODUCTION 

1.1. Attempts to formulate a notion of continuity in the theory of finite automata 
have led to the introduction of a tolerance (reflexive symmetric relation) in the state 
space (Arbib [1]). This was later refined by Warner [5] into a relation which is not in 
general symmetric or even reflexive. 

1.2. We assume an automaton A to be a pair (X, Q) where X, the finite input set, 
acts on Q, the finite state set, by right translation q -> q . x, qe Q, xeX. This is 
sometimes called a semi-automaton (Ginzburg [2]), but since we are not concerned 
here with outputs we shall, for brevity and convenience, simply use the term auto­
maton. 

1.3. The inertial tolerance g introduced by Arbibs is defined for q, q' in Q by q Q q' 
iff there exists xeX such that q' = q . x or q = q'. x. Warner's modification 
introduces an inertial relation v given by q v q' iff there exists xeX such that q' = 
= q . x. This is clearly not in general either symmetric or reflexive. The empty (or 
identity) input is deemed to be in X. 

1.4. Both these structures have proved useful in studying automata (Arbib [1], 
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Muir and Warner [4], Warner [5]). However the gains in insight afforded by the 
imposition of a mathematical structure on the state space are accompanied, inevitably 
it would seem, by loss of information. More specifically, if it is known that q v q', 
q, q' € Q, there is no clue about which input x sends q to q', nor is it known how 
many inputs have this property. The aim of this paper is to rectify the latter deficiency. 

1.5. A function <£ : Q x Q -» Z - ° from ordered pairs of elements of Q to the 
set of non-negative integers is defined by letting <I>(q, q') be the number of different 
elementary inputs (elements x of X) such that q' = q . x. If <P(q, q') is divided by 
the cardinality of X it may be regarded as the probability that the machine in the 
state q will achieve the state q' by the action of one elementary input selected at 
random. Finite sets Q with real valued connectivity functions <P : Q x Q -> R were 
considered by Muir [3] in the context of neural nets. Our input-count function 
<& : Q x Q -> Z - ° will therefore be called an integral connectivity function, and 
(Q, $) an integral net. We shall not at first replace the range by the rationals in 
[0, 1] by conversion to a probability function. 

1.6. The second section is devoted to establishing the necessary tools of net theory 
to apply to the study of automata. It should be noted that some of the definitions, for 
example of function space connectivity, are imposed by the context and are neither 
unique nor necessarily the most suitable in other circumstances. Some alternative 
definitions will be referred to at the appropriate times. 

1.1. In Section 3 we study net structures on groups, in order to equip the group 
of isomorphisms generated by the permutation inputs with a function space con­
nectivity. Such a group is used to establish in Section 4 a group quotient isomorphism 
theorem for homogeneous automata. This is the appropriate version of the cor­
responding theorem for automata with the inertial relation established in Warner [5]. 

1.8. It will not have escaped attention that the probability function of Section 1.5, 
p : (q, q') -> &(q, q')j[X~\, defines a fuzzy subset of Q x Q, or, more relevantly, 
a fuzzy relation on Q. We have thus simply passed from a relation v on Q to a fuzzy 
relation p. Section 5 is devoted to a brief discussion of fuzziness, with particular 
reference to the formulation of a two-stage version of the main theorem in terms of 
the composition of fuzzy relations. 

It should be noted that we are not dealing with a fuzzy automaton in the usual 
sense (Wee and Fu [6]). In such a case the fuzzy relation is a fuzzy subset of X x 
x Q x Q representing the probability that a given input and given state will give 
rise to a given new state. Thus the next-state function is itself fuzzy, in contrast to 
our fuzzy relation which arises from a non-fuzzy next-state function in a deterministic 
automaton. 

1.9. We conclude in Section 6 with a simple example of a homogeneous auto­
maton with its connectivities and group quotient isomorphism. 
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2. INTEGRAL NETS 

2.1. Definition. An integral net is a finite set Q with a non-negative integer valued 
function $ : Q x Q -* Z > 0 called the integral connectivity function of the net. 

2.2. Definition. A homomorphism from (Q, <P) to (Q', <P') is a function j : Q -» Q' 
such that for all qu q2e Q 

*u"(?i),/(«-)) = <K«i. 42) 

Thus, in the automaton example of § 1.5 if g. and a2 are linked by n elementary 
inputs, then j(a ,) and j(g2) are also linked by at least n elementary inputs. 

2.3. Definition. If a homomorphism j is bijective and its inverse function j " l is 
also a homomorphism then j is an isomorphism. 

Two nets are therefore isomorphic if corresponding pairs of points have the same 
connectivity. 

2.4. We consider henceforth only integral nets which arise from automata as 
described in § 1.5, i.e. in A = (X, Q), $(q, q') is the number of different elementary 
inputs x such that q' = q . x. 

Let A = (X, Q), A' = (X', Q') be two automata. 

Definition. A homomorphism from A to A' is a pair (/?, y), /? : Q -+ Q', y : X -» X' 
such that jS(cj) . y(x) = /?(a . x) for allxeX, qe Q. 

Lemma. In a homomorphism (/?, 7) from A to A'. /? induces a net homomorphism 
from (Q, <P) to (Q', $') if y is injective. 

Proof. g H-* o . x => jS(̂ r) i-> fi(q) . y(x). Thus the number of inputs taking qx to 
q2 ^ the number of inputs taking P(qt) to fi(q2), since different inputs x correspond 
to differing y(x). Q 

2.5. Definition. If j , gf : (Q, 4>) -> (g ' , $'), define the connectivity function aA(f, g) 
to be the number of elementary inputs x' e X' such that x'f = g. When Q= Q' and j 
is itself a string of inputs we shall write j . x' = g. 

The function a^ is called the automata connectivity function on the set of functions, 
or sometimes less generally homomorphisms, from Q to Q'. In general it may well 
be that aA(f, g) is zero. 

2.6. In Muir's net theory aM(f, g) is defined to be min $'(f(q), g(q)), which, 
1 

interpreted in terms of automata, means that aM(f, g) is computed by observing the 
number of elementary inputs taking f(q) to. g(q) for each q in Q, then selecting the 
minimum such number. 
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2.7. Definition. Given connectivities a, a' on a set X, then a is said to be finer 
than a' (a' coarser than a) if a(x1, x2) ^ a'(x1; x2) for all xlt x2 eX. 

Lemma. For automata A = (X, Q), A' = (X', Q') the automata connectivity 
function aA is finer than aM in the function set Q'Q. 

Proof. aM(f, g) = min (number of elementary inputs taking ./(g) to g(q)) ^ num-
q 

ber of elementary inputs taking f(q) to g(q) for all q = aA(f, g). • 

When A' = A we note that the roles of aA and aM correspond to those of the 
inertial and coarse function space relations respectively in the semi-group generated 
by X. (Warner [5]). 

3. GROUP NETS 

3.1. Let A = (X, Q) be a permutation automaton, viz one all of whose elementary 
inputs are permutations. Let (Q, <&) be its integral net structure, and let G be the 
group of strings of elements of X and their inverses. It is straightforward to verify 
that G is in fact a group under composition. Assume henceforth that G, like X, 
acts by right translation on Q, so that g composed with g' is written gg'. 

Lemma. (G, aA) is an integral net whose range I m $ c {o, 1} c / = ° . 

Proof. aA(g, g') = 1 if g~lg' eX, i.e. there exists xeX such that gx = g'. Such 
an x is of course unique. The only alternative is that aA(g, g') = 0. • 

3.2. Lemma. aA is invariant under left translations by elements of G. 

Proof. Let g,g',geG. aA(gg,gg')= 1 iff (gg)"1 (gg')eX, i.e. g~lg~lgg' = 
= g~lg' eXoaA(g,g') = 1. • 

3.3. Lemma. If X is closed under conjugation by elements of G, aA is invariant 
under right translations. 

Proof. Let g,g',geG. Then aA(gg,g'g) = 1 iff g~xg'lg'g ~X, i.e. g'^g' eX, 
and this is so iff uA(g, g') =- 1. • 

3.4. Closure under conjugation by elements of G is in fact equivalent to closure 
under conjugation by elements of X and their inverses. Such a set X is said to be 
normal in G. 

Lemma. If the set X is normal in G then the inputs of X and their inverses are iso­
morphisms of the integral net (Q, <P). 

Proof. The inputs are assumed to be permutations, so we need only check preser­
vation of connectivity. 
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Assume X normal in G, and consider the pair q, q' e Q. 

Let o' = q . x, representing one "join" from q to o'. Then VxeX, (q, q.x)-> 
-> (q . x, q . x(x~xxx)). Thus the join represented by x gives rise to a unique join 
between q . x and q . xx, represented by x-15oc. Since the same holds for x _ 1 eX, 
it follows that x is an isomorphism, and further that x~x is also an isomorphism. • 

3.5. Definition. An integral group net is a group G, together with an integer-valued 
function a : G x G -+ Z-° which is left and right translation invariant. 

Lemma. In a permutation automaton A = (X, Q), if X is a normal subset of G, 
then (G, aA) is an integral group net. 

Proof. This follows immediately from Definition 3.5 and Lemmas 3.2 and 3.3. 

4. HOMOGENEITY 

4.1. Let q0 e Q be a fixed base-point in the state-space. Define t// : G -> Q by 

Hs) = 9(~o) = <7o • &• 

Lemma. \ji. is a homomorphism from (G, a j to (<2, <P). 

Proof. $(il/(g),ij/(g')) = $(q0.g, q0 . g') =- no. of elements x e X such that 
q0 . g' = q0 . gx ^. no. of elements x e l such that ox = g'. • 

4.2. Let H be the subgroup of G which fixes q0 i.e. g e H iff g0 . o = g0, and 
let G/H be the set of right cosets of H in G. A coset with representative o will be 
denoted [g]. 

Then g ~ g' iff gg ' " 1 e H. 

Note that in general H is not normal in G so GJH need not be a group. 

Definition. Let ^ ( [ g ] , [g']) be the number of elements g' e [g'] such that a(g, g') = 
= 1. Thus we require the number of x e X such that gx ~ g', i.e. gxg'"1 e H. 

Lemma. aA : GJH x G/H -» Z - ° is a well-defined integral connectivity function 
on GJH. 

Proof. Let gv ~ g, i.e. g t = hg. Then gxg'~1eH iff (hg)xg'~1 e H, and d^ 
is well defined. 

4.3. Let i? : GJH -> g be defined by <A[g] = q0.g. 

Lemma. ^ is a well-defined injective homomorphism from (G/Tf, aA) to (Q, ^ ) . 

Proof. If [g] = [a ' ] , then g' = hfir, and q0 . g' = q0 . hg = g0 . g. Thus i/^ is 
well-defined. D 
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And $A is (1 - 1) since >p([g]) =Ji([g']) => q0 . g = q0 . g' => g . g' * e H => 
=> [g] = [g'] . It remains to verify that \j/ is a homomorphism. Now <P($[g], '/'[g']) = 
= $(g0 -0 . ?o • g) = (the number of elements xeX such that g0g' = g0 . gx) = 
= (number of elements x e X such that gxg'~l e H) = aA([g], [g']). 

Definition. The permutation automaton (X, Q) is said to be homogeneous if for 
all q, q' e Q, there exists g e G such that q . g = q'. 

Theorem. In a homogeneous automaton, \Jt defines an isomorphism from (GJH, aA) 
to (Q, <P). 

Proof. Homogeneity ensures that \J/ is onto, since for q e Q, let g e G such that 
q0.g = q. Then $([g]) = q. 

We have already observed that $(t/>[g], iA[g']) = aA([g], [g']), so i//"1 is a homo­
morphism, and the theorem is proved. • 

Corollary. If the input set X of a homogeneous automaton (X, Q) is a normal 
subset of the group G generated by it, then (Q, <P) is isomorphic to a group-quotient 
automaton (GJH, dA) whose group G is an integral group net. 

4.4. We have already described an alternative function space connectivity aM. 
This is used by Muir [3] in conjunction with the equivalence class connectivity 
function aM([g], [g']) = max aM(hg, g') to show that for a general net (Q, <P) 

heH 

with isomorphism group G, x// is a bijective homomorphism when Q is homogeneous. 
But it does not follow that »/y_1 is a homomorphism unless an extra condition, 
(very homogeneous) is imposed on (Q, <P), namely that for all q, q', there exists 
g e G such q . g = g' and ®(q, q') = min 4>(q, q . g). Interpreting this in terms of 

qeQ 

elementary inputs, assume that there exist n elements x e X such that q . x = q'. 
Then we require g e G such that q . g = q' and the number of elementary inputs 
taking q to q . g is ^ n for all q e Q. Even if g is taken to be one of the nx's there 
would seem to be no reason built into the automaton why it should possess this 
property. 

We therefore argue that aA, aA are more suitable for automata theory despite the 
possible loss in generality occasioned by defining aA directly from the automaton 
rather than from $. 

For a permutation automaton, aA simply defines a relation, (gaAg' iff aA(g, g') = 1), 
while <P, otA may be thought of as 'sums of relations'. In the classical theory (cf. 
Warner [5]) the identification relation aA would be defined from aA by [g] aA [g'] 
iff there exist g e [g], g' e [g'] such that g aA g'. In our case we have not merely 
sought for a g' e [g'] a^-related to g, but have counted the number of such g', thus 
gaining more information from the identification made in taking equivalence 
classes. We cannot threfore expect the relation group quotient theorem of (Warner 
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[5]) to be a special case of Theorem 4.3, — a point which is highlighted by observing 
that aA is not the coarse function space relation on G. It is in fact the inertial relation 
for the automaton (X, G). 

4.5. A semi-group quotient theorem also exists for connectivities just as for rela­
tions, but there would seem to be little virtue in undertaking the obvious formalities 
involved in adapting the proof. We merely observe that care should be taken in 
defining semi-group nets since invariance under right and left translation does not 
follow exactly as for groups. 

5. FUZZY RELATIONS 

5.1. Let (Q, <P) be the integral net of the automaton A = (X, Q), and let N be the 
number of elements in the set X. Then p : Q x Q -» / (the closed unit interval), 
where p(q, q') = <P(q, q')\N, is a fuzzy relation on Q. (Zadeh [7]). Similarly (G/H, aA) 
receives a fuzzy relation on division by N. 

5.2. We consider the situation arising from the application of strings of inputs. 
Intuitively, after two successive inputs chosen at random, we are interested in the 
probability that the state q has become q2. This motivates our definition of the com­
position of two fuzzy relations (or connectivity functions). 

Definition. Let p : Q x Qi -> / , p' : Qt x Q2 -*• / be fuzzy relations. The com­
position of p and p' is given by p" : Q x Q2 -> /, (q, q2) i-> £ p(q, qx). p'(qu q2), 
qeQ, qieQu q2eQ2. ' «« 

Thus for the automaton A we define the two-stage fuzzy relation p" : Q x Q -* I 
by composing p with itself. 

Definition. The two-stage fuzzy relation p" : Q x Q -> / is defined for the automa­
ton A by p"(q, q') = £ p(q, q) . p(q, q'), q, q' e Q. 

qeQ 

Clearly the composition of <P with itself is similarly defined by <P"(q, q') = 
= £ 0(q, q) . <P(q, q'). 

qsQ 

5.3. We may now expect a two-stage group quotient theorem by taking analogous 
two-stage definitions in G and G/7^. The details are not presented here since they are 
formally the same as for the one input case. Further extensions to longer strings are 
obvious. 

5.4. Observe that the definition of composition of fuzzy relations is not that given 
by Zadeh [7], who defines p"(q, q2) to be max (min (p(q, q^), p'(qx, q2)). This could 

9ieQl 

be interpreted as taking a simultaneous couple of random inputs, taking the pes­
simistic view of the likelihood of going from q to q2 via qu then maximising this by 
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choosing the best qt for the purpose. Such an interpretation would seem to be 
inappropriate here. The same objection holds for the similar composition relation 
of Wee and Fu [6], namely p"(q, q2) = ruin (max(p(g, q^), p'(q{, q2)). 

5.5. Let A = (X, Q) be a fuzzy automaton. Then the fuzzy input action is a func­
tion / from Q x Q x X to /. A deterministic automaton is then a special case in 
which the range off is restricted to the set {0, 1}. A net structure can be defined on Q 
by ^>(qlt q2) = £)f(<h, q2, x), and the integral connectivity for the automaton 

xeX 

of § 2 is the appropriate special case. The remaining theory has however no obvious 
extension to fuzziness since an input set X can only be accused of consisting exclusive­
ly of permutations if the automaton is deterministic. 

6. EXAMPLE 

with action xl = ( ^ 0 , J, x2 = ( ^ ~ ~ ). Thus xt is a cycle, while x2 is a transposi-

6.1. Let A = (X, Q) have state set Q = {1, 2, 3} and input set X = {xt, x2 

_ ^1 2 3> 
^2 3 I f *2 " ^2 1 3y 

tion. The group G generated by X is the dihedral group D6. A is homogeneous. 
The connectivities in Q and in G are exhibited in diagrams 1 and 2. 

( G , « A ) 

Diagram 1 

Now choose q0 = 1. Then g ~ g' 
iff l . a = 1 . 0 ' . Thus xl ~ x2, 
x\ ~ x2x1 and x\ ~ x2x\. Diagram 3 
illustrates (GJH, aA) with its struc­
ture isomorphic to (Q, <P) under $. 
Here i / ^ ] = 2, <fi\x\~\ = 3, 
$[id] = 1. 

{x^.XгX,} 
ч_У 

Diagram 3 
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The set X is not normal in G, so G is not an integral group net. For example x2x\aAxt, 
but x2x\aAx\. 

The subgroup H of G is {id, x2x\] which is also not normal, so G\H is not a group. 

(Received April 2, 1981.) 
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