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K Y B E R N E T I K A - V O L U M E 23 (1987), N U M B E R 3 

ON THE PERFORMANCE AND STABILITY 
OF A SIMPLE GATED CONFLICT 
RESOLUTION ALGORITHM 

K. SOHRABY, A. N. VENETSANOPOULOS, M. L. MOLLE 

A simple "gated" conflict resolution algorithm is described that is simpler than the well-
known tree conflict resolution algorithm due to Capetanakis, Tsybakov and Mikhailov. Here 
each cycle begins with the estimation of the number of contending users to select the number 
of slots in a frame. Then each contending user transmits its packet in one of those slots, chosen 
at random. Performance analysis based on Markov chain theory together with the region of 
stability of the protocol is provided. It is shown that the capacity of this algorithm is slightly 
less than that of Capetanakis' static algorithm. 

1. INTRODUCTION 

Multiple access protocols are used to schedule the transmission of packets over 
a broadcast communication channel that is shared by a distributed population of 
stations. We assume the channel to be a resource that can transmit successfully only 
one packet at a time. 

Several factors need to be considered in the selection of a multiple access protocol. 
While at first it might seem that the most efficient multiple access protocol that yet 
has been devised must be used, one must keep in mind that achieving maximum 
capacity is by no means the only goal in choosing a protocol for a network. Simplicity, 
long term stability, robustness to errors in feedback information and good delay 
characteristics are also important. 

Slotted Aloha is among the simplest multiple access protocols for communication 
systems, and a viable access technique in certain applications (e.g., a system support­
ing a large number of lightly loaded users). However, as many authors have pointed 
out [1—3], it is not stable, even for small traffic intensities, unless it is very carefully 
controlled. 
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Protocols based on the tree algorithms are more advanced and take advantage 
of the feedback that a collision occurred sometimes in the past [ 4 - 6 ] . Such protocols 
are stable, but suffer two major problems from a practical point of view. The first 
is failure due to incorrect or inconsistent feedback (e.g., deadlock), the second is that 
the current "state" of the protocol encodes the channel activity for a long term in the 
past, so that stations may have difficulty entering or leaving the network. 

In this paper we analyze a variation of a simple multiple access protocol introduced 
by Greenberg [7]. Some numerical results are obtained, along with the region of 
stability of the protocol. In Section 2 we present the model and description of the 
protocol. Throughput analysis is presented in Section 3. Finally discussion of results 
and conclusions are presented in Sections 4 and 5 respectively. 

2. THE MODEL AND DESCRIPTION OF THE PROTOCOL 

We assume the standard slotted Aloha channel model. The channel is divided 
into slots of length equal to one packet transmission time and all the terminals are 
synchronized to the channel time. Furthermore at the end of each slot, all users 
can determine whether zero, one or multiple packet transmission took place in that 
slot. Multiple packets per slot correspond to a collision and under such circum­
stances none of the packets is successful. The source model is assumed to be Poisson, 
i.e., an infinite number of independent users that collectively generate n packets 
per slot, where n is a Poisson random variable with mean X. 

The operation of the protocol consists of a sequence of "cycles" and each cycle 
is composed of two phases. New messages are only permitted to join the protocol 
at the start of a cycle. Phase I is used to estimate k, the number of contending users 
participating in the protocol during that cycle, and phase II is used for transmission 
of those packets. In the first slot of phase I (slot 0) all the contending users transmit 
their packets with probability 1/2° = 1 to signal their participation in the protocol. 
If zero or one packet is transmitted in this slot, then the cycle is terminated. Other-

C , C , C . S Em , S i C , C i S , Em , S 
0 1 2 3 1 1 2 3 4 5 6 7 

C: Collision Slot, Em: Empty Slot and S: Successful Slot 

Fig. 1. Example of 4 successful transmissions in a cycle of duration 11 slots. 
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wise a collision occurred and phase I continues with each of the contending users 
transmitting with probability 1/21 in the following slot (slot l) and so on until 
slot u (where each of the contending users transmitted with probability 1/2") which 
is collision free for the first time. In phase I we found an estimate of log2 k, namely u. 
Thus in phase II, we allocate 2" — {number of packets successfully transmitted in the 
wth slot}, and each of the remaining contending users transmitt its packet in any 
of those slots with equal probability. Those users who due to a collision do not 
succeed in phase II, will join the protocol at the beginning of the next cycle together 
with new arrivals in the present cycle. The protocol is examplified for a typical 
cycle in Figures 1 and 2. 

C , C 

0 1 

Cycle 

Fig. 2. Structure of a cycle. 

3. ANALYSIS OF THE PROTOCOL 

In this section we derive an expression for the throughput. First we obtain the 
conditional throughput, given the number of ready users at the beginning of a cycle. 
Then we use the Markov property to obtain the average throughput. For this deriva­
tions we use the following notations: 

k: Number of contending users at the beginning of a cycle 
Pk(j): Pr (u = j | k), distribution of phase I, given k 
fk(i): Pr(0 or 1 transmission in slot i of phase I, given k) 
j8(s \n,m): Pr (5 successful transmission in phase II of given duration m slots, 

where the number of packets participating in this phase is given to be n) 
yk: Conditional throughput, i.e., the ratio of the average number of success­

ful transmission in a cycle to the average duration of a cycle, given k 
Pr (j I k): Transition probability of number of contending users at the beginning 

of a cycle 
IJk: Stationary probability of having k contending users at the beginning 

of a cycle. 

Now we have (see Figure 2) 
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In phase I, each user transmits with probability 1/2J' in slot j until zero or one 
transmission takes place. Thus 

(2) P f c ( / + l ) = f l [ l - A ( l ) ] A ( j + l ) Vfc, 7 = 1,2,.... 
i = i 

which gives the following recursion: 

(3) P„(l) = (fc + l ) i Vfc 

pk(j +1) = pk(j)
 l-^pm + i) v/c, j = i,2,... 

fk(j) 

where fk(j) is given by (1). Then it can be shown that 

(4) y* = 

_ y{ ( ' - i^H- -r+d^H0 -^^ l}^ 
^•^( '"irki ) ]** 

fc__2 
y. = 0 

?o = 0 

The number of contending users at the beginning of a cycle is Markovian. To find 
the transition probabilities, we note the following occupancy problem [8], take 
Pys | n, m) as the probability that exactly s cells, each having exactly 1 object when n 
unlike objects are distributed randomly into m unlike cells, then we have [8] 

(5) 

n> m) = ~ I ( - 1 ) i = 7 A". (m ~ s ~ 0 

m ; = o \ l / (n — s — i)\ 

Conditioning on u, the conditional transition probability becomes 

(<0 

*(,|M -j)- X [ ( ' - F ^ * 1 ^ * ^ * - 1 1 * - 1 - * . -
U(2^+7 + i )y- t + 5 e -A ( 2/ + i + i ) 

(i - fc + s)! 

where 
/ 3 ( - l | ' , - ) = 0 
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and then the transition probability becomes 

(7) Pr( i | fc) = XPr( . | f c ,«~= j )P t ( j ) 
j 

where Pk(j) is obtained by the recursion (3). 
To find the stationary probability distribution of the number of contending users 

at the beginning of a cycle, we solve the matrix equation II = IIP when IT = 
= (II0, Ttu Tl2, . . .)and the ki element of matrix Pis given by Pr(i1 k). The stationary 
probabilities exist, provided that the chain is ergodic [9]. Then the average throughput 
can be easily found. 

In what follows we show that for X < X* = -3123 the chain is ergodic. To accom­
plish this we use the following lemma. 

Pake's Lemma (cf. [10]). Let [jV,]™ be an irreducible aperiodic Markov chain 
whose state space is the set of nonnegative integers. The following conditions are 
sufficient for the chain to be ergodic: 

(8a) \£{Ni+l-Ni\Ni = k}\< ca Vfc finite 
and 
(8b) lim sup E{At;+, - Nt | iV, = k] < 0 

where E{* | •} denotes the conditional expectation. 
Denote Nt to be the number of contending users at the beginning of ith cycle, 

it can be shown that 

IV;) (9) E{N!+ , - JV; 17V; = fc} = £(A - yk) j"(2' + /) + ( l - —" 2 V r ^ ) 

k^2 

and for (8a) and (8b) to hold it is sufficient that 

X < X* = lim yk 

k-»oo 

where yk is the conditional throughput and is given by (4). Numerical results (see 
Fig. 5) shows that X* up to four digits accuracy is given by -3123. 

4. DISCUSSION OF RESULTS 

Numerical results show that phase I gives a good estimate of log2 k where k is 
the number of contending users. This can be seen from Figures 3 and 4 where mean 
and coefficient of variation C (C = ^/(variance)/mean) of phase II vs. k are plotted 
respectively. For all range of k, C is less than 1 and it approaches rather quickly 
to -689. Figure 5 displays the throughput vs. k. Under heavy loading which results 
in large k with high probability, yk approaches to -3123 which as it was shown in 
Section 3 is the upper bound on the capacity of the protocol. The same figure also 
shows the performance in the case of perfect estimate with no cost. 

Figure 6 depicts the conditional throughput as a function of k when minislots 
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of duration a, a ^ 1, instead of whole slots are used in phase I. It is evident that 
asymptotically no gain in throughput is obtained. This is to be expected since the 

10 100 1000 10000 

NUMBER 0E CONTENDING USERS 
Fig. 3. The estimate vs. the number of contending users. 

NUMBER 0E CONTENDING USERS 

Fig. 4. Coefficient of variation of phase II vs. number of contending users. 
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NUMBER OF CONTENDING USERS 
Fig. 5. Conditional throughput of the protocol compare achievable performance with perfect 

estimate. 

NUMBER OF CONTENDING USERS 
Fig. 6. Conditional throughput of the protocol with estimation phase composed of minislots. 

average duration of phase I is of the order of log£, which is asymptotically negligible 
compared to phase II. 
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5. CONCLUSIONS 

In this paper we analyzed a simple multiple access protocol which allocates the 

channel capacity by estimating the number of contending users. We showed that 

stability is achieved with only a slight degradation in the capacity (-3123 compare 

to 1/e of the unstable slotted Aloha). 

Finally as a source of improvement we remark that if in phase II the stations were 

to monitor the proportion of idle, successful and collision slots, the estimate of the 

number of contending users could be improved: by having too many idle or collision 

slots, the stations might conclude that their estimate is high or too low respectively 

and accordingly shorten or expand the remainder of phase II. One algorithm for 

doing this was given by Hajek and Van Loon [3]. The idea of using an estimation 

process is also useful in more complicated algorithms. For example, Schoute [11] 

has been able to achieve a capacity of -426 using a more complex estimation process 

and a slightly different cycle structure. 

(Received November 18, 1985.) 
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