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K Y B E R N E T I K A - V O L U M E 23 (1987), N U M B E R 3  

PREDICTION IN STOCHASTIC LINEAR PROGRAMMING 

TOMÁŠ CIPRA 

If random values in a linear program with random coefficients can be predicted using previous 
observations on them, one can utilize this prediction and construct the optimal decision before 
observing the appropriate coefficients of the program. Various theoretical and practical aspects 
of this statistical approach to random linear programs are discussed mainly in the situation when 
we use prediction regions. The results are demonstrated by means of a numerical example. 

1. INTRODUCTION 

The methods of stochastic programming which can be characterized as the sta­
tistical approach start to be applied recently (see e.g. [3], [4], [7]). This trend is 
comprehensible because it is important to treat correctly and in suitable way from 
the statistical point of view the data which we have at our disposal for particular 
stochastic programs. The first phase of the investigation (in which we treat the given 
observations, calculate the appropriate probability characteristics of the cor­
responding distributions or make some conjectures on their behaviour) is not less 
important than the following phase of optimization. The final results depend from 
the practical point of view not only on the quality of the used optimization procedure 
but also on the quality of the treatment of the statistical input. 

This paper concentrates on the situation in which the observations for a linear 
program with random coefficients have the form of mutually dependent values, e.g. 
they form statistical time series. Statistical data of this type are common in many 
practical disciplines, e.g. in economy, hydrology, biology, social sciences and others 
because in these cases the dynamic movement in time is mostly important. Moreover, 
there exists rich statistical methodology including easily acceptable computer software 
how to treat such data. It is clear that such type of data cannot avoid stochastic 
programming and it has motivated this contribution. 
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Let us consider the following linear program 

(1.1) {min c'x: Ax = b, x jg 0} 

the coefficients of which form (multivariate) time series {AJ, {bt}, {c,} of dimensions 
(m, n), (m, 1), (n, 1), respectively. Better to say, we have finite realizations A1, ..., AT, 
bu ..., bT, cx, ...,cT at our disposal as the data for this program. The statistical 
dependency of time series values enables to construct predictions of future values 
(it is one of the basic aims of time series analysis) and therefore the natural approach 
to the previous program is to work with predicted coefficients. If e.g. the decision 
for time T + 1 is to be constructed at time T before we observe the values at time 
T+ 1 we shall construct this decision xT+1 = xT+1(AT+1,BT+1,£T+1) from the 
predicted coefficients AT+1, BT+1, cT+1 for time T + 1 (or from predictions for more 
steps ahead). 

This procedure can be applied sequentially in time. In sequential treatment (or 
on-line treatment) we get the data gradually for particular times and at the actual 
time we exploit all information we have by this time at our disposal. Some tricks of 
postoptimization are possible to simplify the necessary calculations. If e.g. a periodical 
pattern with a period d is recognizable in the data we can examine before solving 
the program (1.1) at time T + 1 whether possibly the same position of the basis as 
the position of the optimal basis at time T + 1 - d is also optimal for time T + 1. 
In the case of a mild linear trend we can try the same trick but for the previous time 
(T + 1) - 1 = T etc. Practical experiences [5] show that such procedure may be 
successful even using very simple prediction methods as the simple and double 
exponential smoothing, Holt-Winters seasonal method and others (see e.g. [2], [13]). 

As the prediction is concerned practitioners prefer sometimes so called prediction 
regions to the above mentioned point predictions ((l - a) prediction region is the set 
in which the predicted value lies with probability 1 — a where 0 < a < 1 is a given 
constant usually near to zero). The reason for this preference is that e.g. for an airline 
company it is more interesting to find that the number of passengers in the future 
month will not be lower than 100 000 with 95 per cent certainty than to give some 
exact prediction number without any probability description. 

The remaining parts of the paper suggest how to utilize such prediction regions 
in the program (1.1). We confine ourselves for simplicity to the case when the right-
hand side b of (1.1) is random only (i.e. A and c are deterministic) but extension to the 
general case with full randomness is possible and is referred to in the text (the case 
with random c only is covered at once due to duality). 

If we have constructed the appropriate prediction region for b (we shall show in 
Section 2 that such prediction region is frequently an elipsoid in practice) we should 
investigate at first whether this prediction region is the subset of such region for b in 
which the program (1.1) is solvable (so called solvability region). This problem is 
discussed in Section 3 while Section 4 is devoted to various possibilities how to exploit 
the prediction region for b when solving (1.1). The methods of parametric program-
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ming are used in Sections 3 and 4 which enable to obtain exact analytical results. The 
disadvantage of parametric programming algorithms is that they are elaborate and 
therefore Section 5 offers application of so called bunching method which provides 
comparable results and is more convenient for practical calculations. A simple 
example in Section 6 demonstrates the suggested procedures numerically. 

2. CONSTRUCTION OF PREDICTION REGIONS IN PRACTICE 

There are various possibilities how to construct the prediction regions in practice. 
The following two methods which are frequent in practical applications demonstrate 
that we can confine ourselves to prediction regions in the form of elipsoids: 

a) Prediction based on econometric modeling (see e.g. [11, p. 406]) is a general 
method which includes as a special case e.g. the prediction based on the classical 
regression analysis. If using this method we must e.g. have at our disposal the 
estimated model of simultaneous equations in the reduced form 

(2.1) yt = nxt+vt, t=l,...,T. 

Here v, = (ylt, ...,ymt)' is a vector of endogenous variables at time t which is 
explained by a vector of predetermined variables x, = (xlt,..., xkt)' at time t (the 
object of the prediction are the endogenous variables), It is an (m, k) matrix of para­
meters and vt = (vlt,..., vmt)' is a vector of disturbances at time t. One assumes 
that vt are normally distributed with Et>, = 0, Evtv't = Ivv (a positive-definite matrix) 
and Evsv't = 0 for s + t. The model can be summarized for all t as 

(2.2) Y= xn' + V, 

where Y= (yu ..., vT)', X = (xlt.... xT)' and V = (vu ..., vT)'. The classical 
OLS (Ordinary Least Squares) estimator of 77 has the form 

(2.3) 77 = Y'X(X'X)~1 . 

Let xT+h be a vector of predicted predetermined variables for time T + h which 
can be obtained in some way outside the model, see discussion in [9, p. 196] (e.g. 
in a simple regression situation it can be xit = t so that xUT+h = T + h). Then 
under general assumptions on the stochastic behavior of the model at time T + h 
(there must not be a change in the specification of the model at this time) the optimal 
point prediction for the endogenous variable at time T + h can be constructed as 

(2-4) yT+h = mT+h 

with the (1 - a) prediction region of the form 

(2-5) (vr+;, - yT+h)' STlh<T+h(yT+h - pT+h) ^ 

T — k — m + 1 
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Here 

(2.6) ST+luT+h = -~X~ [1 + %'T+h(X'X)-' *T+h] (TY-flX'Y) 
T — k 

is the estimated convariance matrix of the error yT+h — 9T+I, of the prediction and 
Em>T_t_m+1(a) is the tabulated critical value of Fisher's distribution with the ap­
propriate degrees of freedom and the level of significance a (e.g. (2.5) is the 95% 
prediction region for a = 0-05). So called Hotelling's statistic has been used to derive 
(2.5). The assumption of normality for v, can be replaced by more general assumptions 
under which (2.5) holds asymptotically (see e.g. [6, p. 161]). 

Remark 1. Various multivariate trends can be modeled by means of (2.1). E.g. 
the multivariate polynomial trend is modeled as 

(2.7) yu=fi(t) + vu, i = \,...,m, t=l,...,T, 

where ft{t) is a polynomial of order p ; (it means that the predetermined variables 
are chosen as powers of time t). 

Remark 2. Hymans [10] suggested (1 — a) joint prediction intervals for particular 
components of yT+i, in the form 

(2.8) (yi<T+h - V ( « H ) , PI.T+H + V(c%)) • i = 1 , . . . . m , 

where su is the ith diagonal element of the matrix (Y'Y - flX'Y)\(T - k) and 

(2.9) c = -&~— - [1 + - W - r * ) - 1 xT+h] E,„,r-,-ra+1(a) . 
T - k - m + 1 

b) Prediction in the framework of Box-Jenkins approach (see [ l ] , [9]) is exploited 
by many statisticians and econometricians as a very flexible and fruitful prediction 
method. Similarly as in the econometric modeling one must construct an appropriate 
model at first. Box-Jenkins methodology utilizes so called ARMA (p, q) models 
(or their various modifications) of the form 

(2.10) yt + Atyt-t + ... + Apyt-P = 8, + B.e.__ + ... + fl,e._9, 

where yt is the modeled /n-dimensional process, Ai,...,Ap and B1,...,Bq are 
(m, m) matrices of parameters and e, is the m-dimensional normal white noise, i.e. 
Ee, = 0, Ee,e[ = I (a positive-definite matrix), EeseJ = 0 for s =f= t. Then under 
general conditions the optimal point prediction for time T + h can be written as 

(2.11) 9T+h = t CJ+heT_j, 
j = o 

where the (m, m) matrices C; fulfill the following power series equation 

(2.12) (/ + Atz + ... + Apz
p)(l + C,z + C2z

2 + ...) = / + Btz + ... + Bqz". 

The corresponding (1 - a) Prediction region has the form 

(2.13) (yT+h - 9T+H)' V(h)-\yT+h - pT+h) g £(a) , 
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where 

(2.14) V^-lCjZC'j 
j'=o 

is the covariance matrix of the error yT+h — yT+h of the prediction and xm(a) is t n e 

tabulated critical value of chi-squared distribution with m degrees of freedom and 
the level of significance a. 

The following conclusion can be drawn from the previous text. In both prediction 
methods (and also in other less important ones) the appropriate (1 — a) prediction 
region has the geometric form of an elipsoid. This elipsoid can be written generally 
for the program (l.l) as 

(2.15) (b - b)1 V(b -$)£ k(a) , 

where B is a known vector (the center of the elipsoid), Vis a known positive-definite 
matrix and k(a) is a known constant. Let us denote this region as 

(2.16) P(a) = {b e Rm: (b - 5)' V(b - b) S k(a)} . 

3. PROBLEM OF SOLVABILITY 

Let us denote the region of solvability of the program (IT) with the random right-
hand side as 
(3.1) S = {b e Rm: (IT) has an optimal solution} 

(i.e. the program (1.1) is feasible and bounded for all b e S) and assume that S is 
nonempty. Then in our context the problem of solvability consists in the investigation 
of the inclusion P(a) c S. 

Wets [18] deals with a general problem of this type when he investigates feasibility 
of stochastic programs with fixed recourse. Using theory of polar matrices and cone 
ordering he can treat cases with very general regions P(a). In our case we make use 
of the special elipsoid shape of the prediction region P(a) and proceed in the following 
way. 

The solvability region S is a convex polyhedral cone with the vertex in the origin 
(see e.g. [16], [17]), i.e. 

(3.2) S = {b e Rm: h',b ^ 0, i = 1,...,N} . 

The explicit numerical form of this cone (i.e. the vectors h1, ..., hN) can be found 
by means of various algorithmic procedures (e.g. [8], [14, p. 276]). 

In order to simplify the solution of our problem let us transform the coordinate 
system in Rm so that the elipsoid (2.16) transfers to a sphere in Rm. The positive-
definite matrix Vfrom (2.16) can be decomposed as 

(3.3) V=C'C, 

where C is an upper triangular matrix with positive elements on the main diagonal 
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(so called Cholesky decomposition). If we define the transformation of the space Rra as 

(3.4) x -> x* = Cx , xeRm 

(the asterisk will always denote transformed value) then the elipsoid P(a) will be 
obviously transformed to the form 

(3.5) P*(a) = {b*E Rm: (b* - b*)' (b* - $*) ^ k(a)} , 

which is an m-dimensional sphere with the center b* and the radius ^/(k(aj). The 
transformed solvability region S has the form 

(3.6) S* = {b* e Rm: E'tb* g 0, i = 1,...,N} , 

where 
(3.7) ^ - ( C " 1 ) ' * , , i=l,...,N. 

If the interior of the elipsoid P(a) (denoted as int P(a)) contains the zero vector 0 
(or equivalently if the zero vector 0 lies in int P*(a)) then the problem discussed in 
this section has the following simple solution. 

Lemma 1. Let 0 e int P(a). Then the inclusion P(a) <= S is true if and only if 
S = Rra. 

Proof. The lemma is obvious since S is a cone with the vertex in 0 and P(a) is an 
elipsoid. • 

General solution of the considered problem is given in the following theorem. 

Theorem 1. The inclusion P(a) <= S is true if and only if it holds 

(3.8) S ; fS*_4M/; \ ;>o , i = l,...,N, 
\ IN / 

where || || is the usual Eucleidian norm in Rra. 
Proof. P(a) <= S is equivalent to P*(a) <= S* and this last inclusion holds iff the 

sphere P*(a) with the center b* and the radius ^/(^(a)) lies in all half-spaces [b* e Rm: 
h\b* ^ 0}, i = 1, ...,N. This last condition is obviously equivalent to (3.8). • 

Remark 3. The inequalities (3.8) can be written in the equivalent form 

(3.9) Atf - v W ) IN -?°. * = i,...,jv 
or 
(3.10) h't6-y/(k(a)k'tV-%)^0, i = l,...,N. 

4. OPTIMAL DECISIONS AND PREDICTION REGIONS 

In this section some conclusions concerning the optimal decision in (1.1) with the 
random right-hand side will be shown which one can obtain from the prediction 
region for b using methods of parametric programming. 
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Let us denote 
(4.1) <p(b) = min {c'x: Ax = b, x ^ 0} 

for b e S. The function <p is convex, continuous and piecewise linear on S. More 
explicitly, there exist vectors gu ..., gr e Rm such that 

(4.2) (p(b) = max {g'jb:j = 1, . . . , r} . 

According to the basis decomposition theorem (see [16]) the definition region S 
of the function <p can be decomposed to a finite number of convex polyhedral cones Sj 
with the vertices in the origin 0 such that the interiors of S,- are mutually disjunct and 
<P(b) = g'jb on Sj for j = 1, ..., r. These cones correspond to particular bases Bj 
in A such that c'jBJ XA g c (cj is the subvector of c corresponding to £,.) and have 
the form 

Sj = {beRm:BJlb ^ 0 } . 

The cones Sj and the function 9) can be found explicitly by means of the algorithms 
mentioned in [8] or [14]. 

a) First one can construct (1 - a) prediction interval for the optimal decision: 

Theorem 2. Let P(a) c S. Then it holds 

(4.3) max {<p(b): b e P(a)} = max \g) (b* + ^ ^ Sj)\ , 

;=> ' I V IN I /J 
and 

(4.4) min {cp(b): b e P(a)} £ max ^ fe f V - ^ l ) ^ J , 

where 

(4.5) ^ - ( C " 1 ) ' ^ . j=l.->t* 

and for ĝ - = ^ = 0 we put 

V Nl / 
Proof. We can write 

max {<p(b): b e P{a)} = max { max {g'jb}} = 
fcePOz) y - i ... r 

= max { max {g'jb*}} = max { max {g'jb*}} . 
6*sP*((t) .'"=1 ... r j ' = l ... c fc*eP*(a) 

Now the relation (4.3) is proved since it obviously holds 

(4.6) max{g-ib*}=g-^S* + Mfg\ 

w w V INI / 
(we maximize the linear function g'jb* over the sphere with the center b* and the 
radius N/(/c(a)); the maximal value is achieved in the point where the vector directed 
from 6* as the gradient §j of the function g'jb* crosses the surface of the sphere, i.e. 
in the point B* + (VW°0)/INI) 9j)-
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As the relation (4.4) is concerned we have 

min {q>(b): b e P(a)} = min { max {g'jb*}} ^ max { min g'jb*}} . 
fc*eP*(ct) j ' = l r j=l,...,r b*eP*(x) 

The last inequality holds since it is 

(4.7) max {g'jb*} ^ max { min {g'jb*}} 
j=1 r j ' = l r J>*eP*(a) 

for each b* e R*(a) so that we can replace the left-hand side of (4.7) by its minimal 
value over b* e P*(a). The proof is finished because one can derive in the same way 
as (4.6) that 

(4.8) min {g'jb*} = g) ( V - ^ f Sj) . • 

Corollary. Let P(a) cz S. Then the optimal value of the objective function lies in 
the following interval 

with probability at least 1 — a. 

Remark 4. The interval (4.9) can be written again in the equivalent form 

(4.10) [ max {g'jS - V(/c(a) g'jV^gj)} , max {g'jb + J(k(ct) ^ V - 1 ^ ) } ] . 
J '=l , . . . , r J '= l , . . . , r 

Remark 5. Since the function cp(b) attains the value + oo outside the set S (see e.g. 
[18]) one can omit the assumption P(a) a S in the previous corollary and formulate 
it in such a way that the optimal objective value lies in the interval (4.9) or is equal 
to + co with the probability at least 1 — a. 

Remark 6. This work is not the first one dealing with probability regions for optimal 
objective values in linear programs with random coefficients. E.g., results have been 
obtained by means of projection of rectangulars in which the values (A, B, c) lie 
with a given probability (see [12, Section 13.1] or [15]). These rectangulars are 
defined by means of the mean values and standard deviations of the random com­
ponents of (A, b, c) and do not make use of the correlation structure (relations among 
particular random components) how it is the case when projecting elipsoids. 

b) Further one can construct (l — a) prediction region for the optimal decision: 

According to (2.16) and the discussion from the beginning of this section it is 
obvious that (l — a) prediction region for the optimal decision can be taken in the 
form 

(4.11) U {x e R": (xj - BJlB)' B'JVBJ(XJ - BJ*S) ^ k(a), Xj ^ 0, xj = 0} , 
J = I 

where Xj denotes such subvector of the vector x e R" which corresponds to the 
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basis Bj and Xj contains the remaining components of x (it follows from (2.16) 
applied for particular optimal bases). 

c) The approach based on (1 — a) prediction regions offers to define the following 
concept of (1 — a) decisions: 

The vector w ^ 0 in R" is called (l — a) decision if it fulfills the following two 
conditions 

(i) AweP(a); 

(ii) Prob { min c'x < c'w] ^ a. 
Ax = b,xiO 

The probability condition (ii) means that a decision better than w may exist in our 
program with probability not higher than a. 

The following obvious assertion suggests how to find (1 — a) decision if we know 
P(«). 

Theorem 3. Let 

(4.12) w = argmin {c'x: Ax e P(a), x = 0} . 

Then w is (l — a) decision. 

5. APPLICATION OF BUNCHING METHOD 

The practical applicability of the parametric programming methods from Sections 3 
and 4 is limited if the dimensions of the problem are large and therefore more 
effective procedures are desirable which can be of an approximate character. One of 
such potential procedures based on so called bunching method is sketched in this 
section. 

The method of bunching [19] and especially its trickling down modification in 
combination with Schur-complement bases updates [20] is the efficient tool for 
solving linear programs with variable right-hand sides (a bunch is such subset of 
a given set of right-hand side vectors which corresponds to the same optimal basis 
of the program). 

In our case the bunching method will enable to solve in an efficient way a lot of 
problems of the type 

(5.1) (min c'x: Ax = z \ x ^ 0} , k = l,...,K 

(the points z* are chosen from the elipsoid P(a)) without performing explicitly the 
decomposition of the solvability region S to the cones Sj. 

As the choice of the points z is concerned one can use various strategies. E. g., 
it is possible to choose the points zk randomly from the surface of the elipsoid P(a). 
If we transform the coordinates according to (3.4) then we can generate these points 
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uniformly from the surface of the sphere (3.5) taking 

(5.2) z* = B* + - / ( % ) ) cos 9t cos 92 cos 93 ... cos £>__ x 

z* = fi* + y/(k(a))sin 9 i cos S>2 cos 93 ... cos Sm_1 

z* = £* + - / ( % ) ) sin ,92 cos 93 cos 94 ... cos _>„,_, 

z* = 6* + y/(k(ct))sin 53 cos 5 4 cos 85 ... cos _•„,_, 

Z*_, = £*_, + N /W a ) ) s i n 9 m-2 c <>s3m _j 

-2 = -5 + V(%))sin9.-1' 
where 0 < 5j __ 2re, — TT/2 ^ 92 ^ re/2,..., -re/2 ^ #__., < re/2 are independent 
random variables with uniform distributions on their ranges. 

The trickling down procedure can be started in the point B* (the center of the 
sphere P*(a)). Let B(l) be the optimal basis for this point B* (it holds obviously 
_?*i) = CB(1), where B(1) is the optimal basis for the point B before the transformation 
(3.4) since the problem (1.1) can be written equivalently as {min c'x: CAx = Cb, 
x ^ 0}). Let z1* = (_•}*, . . . ,zm*)' be the first point generated according to (5.2). 
By using trickling down procedure (i.e. the proper sequence of dual simplex steps 
exploiting Schur-complement updates) one will find the corresponding sequence 
_?(*),..., _.(*) of the bases which is ended by the basis B*s) optimal for the point z1*. 
Let us calculate the values 

(5 3) Z1 - a (B* - ^{k{^ a \ u1 - _' (B* + ^ ( a ) ) a \ 
(5.3) / - g(s) b ——- g(s) , u - g(s) b + g(s) , 

\ Ikwll / V Ikwll / 
where 

(5-4) g(s) = (Bt^)'c(s) 

(c(s) is the subvector of c corresponding to the basis B(s)). The same procedure will 
be performed with the second generated point z2* producing the values I2 and u2, 
etc. If proceeding in this way we obtain a tree rooted at the basis B(1) (see [20]) the 
paths of which are ended by the couples (ll, u1), (I2, u2),..., (ZK, uK). The (1 - a) 
prediction interval for the optimal objective value can be then approximated by 
the interval 
(5.5) [ max lk, max u*] . 

fc=l K k=l K 

If it is 0 6 P(a) then zero must be supplied to the numbers /* for the calculation of the 
lower bound of the interval (5.5). The stopping rule by means of which number K 
is found can be prescribed in such a way that the last L couples(ZK~L+1,uK~ i '+1), . . . 
...,(lK,uK) will satisfy 
(5.6) max lk — max lk < s, 

k=l K k = l,...,L-K 

max uk — max uk < e , 
k=l,...,K fc-1 L-K 

where an integer Land a sufficiently small e > 0 are chosen apriori. 
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More complicated strategies can be suggested but the previous one seems to be 
suitable in spite of its simplicity. The inaccuracies which can originate when using 
the generating formulas (5.2) do not reduce the efficiency of the method since the 
points z1*, z2*, . . . are used only to determine the corresponding optimal bases and 
these bases do not usually vary in the neighborhoods of particular right-hand side 
vectors. Moreover, when the components of the vector B are large (as it is frequent 
in practice) then usually only small number of the cones Sj from the decomposition 
of S have nonempty intersections with the elipsoid P(x) so that the mentioned tree 
from the trickling down procedure has small number of paths which reduces the com­
puting effort. 

Remark 5. We have described the construction of the prediction interval (5.5) for 
the optimal objective value. The method from this section also allows to construct 
approximate (1 — a) decisions defined in Section 4 and is applicable in many other 
situations. E.g. the prediction region P(a) may be rectangular of the form 

P(x) = {be Rm: xt = bt g p„ i = 1, .... m} 

(see Remark 2) or some coefficients of A and c may be also random (in this case we 
must have at our disposal a joint prediction region for all random coefficients). 

6. NUMERICAL EXAMPLE 

The authors of [14] investigated the following problem 

(6.1) min {x2 + x3 + 3x4} 

s.t. xt — 2x2 + x3 - x4 + x5 = bt 

2x t + 3x2 — x3 + 2x4 + x6 = b2 

— x2 + 2x2 + 3x3 — 3x4 + x7 = b3 

xu ...,x1 ^ 0 
In this case it is 

(6.2) S = {b ER3: 3bt + 2b2 = 0, 3b2 + b3 = 0, bL + b2 ^ 0 , 

I3bl + 8b2 + b3 = 0, 3b2 + 2b3 = 0} 
and 

(6.3) cp(b) = max {0, - # . , -b2, -£&. - $b3, -%bt - \b3, -\b2 - \b3\ 

for b e S. Table 1 contains the description of all cones S; from the decomposition 
of S including the corresponding forms of cp and the optimal bases Bj. 

Let the 95 per cent prediction region (2.16) have the following form 

/&« - l -2\ ' /6-25 - 3 0-75\ lbx - l-2\ 
(6.4) \b2 - 8-4 - 3 19-93 -9-39 \\b2 - 8-4 g 6-76, 

\b3 + 7-6/ \0-75 -9-39 17-46/ \b3 + 7-6/ 
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Table 1. The analysis of the linear parametric problem (6.1). 

1 5, Ç>(/j) 
BJ 

(numbers of columns of Л) 

1 Ъx Ž 0, bг > 0, bъ > 0 0 (5, 6, 7) 

2 - Ь 3 > 0, />! + i 3 ž 0, 
b2 + 2/33 > 0 

0 (1, 5, 6) 

3 - * ! ^ 0, Ъbv + 2Ѓ>2 ž 0, 
/j t + č>3 ^ 0 

- ł * l (2, 6, 7) 

4 -/j2 è o, г>t + ь2 > o, 
з*2 + ъъ >, 0 

- * 2 (3, 5, 7) 

5 - Ь ^ - i j ž O , Зćҷ - i>3 > 
- Ь t + Ь2 + è3 ř; 0 

0; - 4 * 1 - 4*3 (1, 4, 6) 

6 - * i - Ь 3 > 0, -З/Зj + ь 3 

13/^ + 8ö2 + /J3 è 0 

ă 0, - 1 * 1 - 1*3 (2, 4, 6) 

7 - Ь 2 - 2Ѓ3 è 0, Ъbг + 2/33 

í > , - i 2 - 6 3 Ž O 
ž 0, - 4 * 2 - 1*3 (1, 4, 5) 

l-2\ /6-25 - 3 0-75\ !2-5 -1-2 0-3\ 
.5) 5 = 8 - 4 , V= - 3 19-93 -9-39 , C = 0 4 - 3 - 2 - 1 

-7-6/ \o-75 -9-39 17-46/ \o 0 3-6/ 

According to (6.2) the vectors h* from (3.2) are 

M *--©- *--©• *--@. ^-Cf): *--© 
and according to Table 1 the vectors gj from (4.2) are 

(,7) . . - . . - ( J . ..-("J). ,.-(-?), „ - ( 1 ) , 
,.-(1),„-(4). 

The left-hand sides of the inequalities (3.8) (or equivalently of (3.9) or (3.10)) are 

(6.8) 14-48, 13-71, 7-40, 49.70, 5-27. 

Since each of these values is non-negative the elipsoid (6.4) is the subset of the 
solvability region (6.2). The corresponding 95 per cent prediction interval for the 
optimal value of the objective function is according to (4.9) or (4.10) 

(6.9) [3-256, 7-274] . 

If using the bunching method 300 points generated according to (5.2) gave the 
following 95 per cent prediction interval for the optimal objective value (see (5.5)) 

(6.10) [3-338, 7-271] 
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which is comparable with the exact interval (6.9). Moreover, we have obtained 95 
per cent decision of the form 

(6.11) xx = 3-403 , x4 = 1-113 , x6 = 0-101 , x2 = x3 = x5 = x7 = 0 . 

(Received October 6. 1986.) 
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