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K Y B E R N E T I K A — V O L U M E 29 ( 1 9 9 3 ) , N U M B E R 4, P A G E S 3 8 9 - 4 0 0 

MOVING WINDOW ESTIMATION PROCEDURES 
FOR ADDITIVE REGRESSION FUNCTION1 

P E T R VOLF 

The general additive regression function b(x) = J j &>(*>) is considered and subjected 
to nonparametric estimation. The method of estimation is inspired by the regressogram 
approximations to the components of regression function. The procedure using the moving 
window is then derived, it naturally generalizes to a kernel approach. The method can 
be applied to the likelihood-based models, in which the value of regression function is a 
parameter of likelihood of a response variable Y. Suggested moving window algorithm is 
a variant of Hastie and Tibshirani's [3] local scoring procedure. In order to discuss the 
quality of obtained results, the method is compared with the approximation by regression 
splines, treated successfully by Stone [6]. An example illustrates the solution for the logistic 
regression, the proportional hazard regression model is also examined. 

1. I N T R O D U C T I O N 

T h e m e t h o d s for n o n p a r a m e t r i c es t imat ion and smooth ing of curves are in the centre 

of a t ten t ion of t he d a t a analys ts for a long t ime . T h e mode rn equipment enables 

the s ta t i s t ic ian to examine the d a t a a t tent ively and to do deep prel iminary analysis . 

Hence the n o n p a r a m e t r i c es t imat ion of the covariate effect is at least a par t of 

prel iminary examina t ion . 

Let us consider a pair (X, Y) of real-valued r a n d o m variables. In a regression 

model , X is called a covariate, meanwhi le Y is a response variable. Let the general 

regression function be some s m o o t h function b(x), describing the dependence of a 

response variable Y on a covariate X. Likelihood-based regression model means 

t h a t the value b(x) is a pa r ame te r of likelihood for Y given X = x. Examples 

of this are t he n o r m a l regression model , in which the regression function s t ands for 

E ( y | X = a;), or the logistic regression model . We shall also ment ion the p ropor t iona l 

haza rd regression mode l for survival d a t a . 

If the observat ion is represented by a r a n d o m sample (Xi,Y{) of extent n, often 

the logar i thm of likelihood can be expressed as 

£n=J2^(Yi,b(Xi)), (1) 

1Tliis work was supported by Czech Academy of Sciences grant No. 27 557. 
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where l\ is a loglikelihood for one realization of Y, conditioned by a value of X. 
How to cope with the task of estimation of function 6 from the log-likelihood? One 
way may consist in approximation for b(x), by a parametrized function. Every 
smooth function can be well approached by a linear combination from some basis of 
functions. For instance, the splines are the popular choice. Sleeper and Harrington 
[5] illustrate successfully the flexibility of regression splines in the analysis of the form 
of hazard ratio. Stone [6] used the approximation of regression function by splines 
in the framework of exponential family of distributions. He proved consistency of 
this approximation provided the parameters of splines were estimated by (global) 
maximum likelihood method. Thus, the reparametrization may be considered as an 
alternative way to solution. From this point of view, the regressogram is a trivial 
spline, with the order 0. 

A widespreaded discussion runs about advantages and capabilities of both ap­
proaches - splines and kernel-like smoothing, cf. also discussion to paper of Hastie 
and Tibshirani [3]. The author does not intend to contribute to arguments of any 
side, his opinion is that every well-working method is valuable. Although some data-
analysts (when joking) claim that one data may be analysed only once and only by 
one method - in order to avoid contradictions and problems with interpretation of 
results. 

Our approach to estimation of regression function starts from a regressogram 
approximation. Then it proceeds to the moving window concept, considering simul­
taneously the additive regression function 6(x) = J2jbj(xj) in the case of multi­
dimensional covariate. It is necessary to stress at once that the additive model can 
include various transformations of covariates, their interactions (e. g. x\ -x?), or, say, 
two-dimensional covariate, so that its idea seems to be sufficiently wide and flexible. 

The general features of the method are described in the second part. Part 3 deals 
with the case of multi-valued logistic regression model. Part 4 considers a rather 
general case of a counting process with intensities fulfilling the proportional hazard 
model. The properties of solution are discussed in Part 5. Finally, an example with 
artificial data is solved numerically and discussed briefly. 

Although the moving window procedure is a very flexible and easily computable 
method, its consistency is not guaranteed by any theoretical result. Only for the 
case of the normal regression model, in a more general concept of the Alternating 
Conditional Expectations (ACE) algorithm, Breiman and Friedman [2] show that 
the solution obtained by the moving window smoothing is the best additive approx­
imation to E(Y |X). It means also that if E(Y|X = x) is an additive function, it is 
consistently estimable by the moving window approach. 

For a more general family of models, the results of Stone [6], mentioned above, 
can be used in order to support our conviction about the quality of the moving 
window smoothing. We discuss the connection between the moving window concept 
and the approximation by regression splines-polynomials on fixed windows. 

Volf in [8] deals exclusively with the proportional hazard regression models and 
solves several simulated examples, in order to show a good performance of the 
method. In the example illustrating the paper of Sleeper and Harrington [5], the 
result of smoothing by the splines is compared graphically with the result obtained 



Moving Window Estimation Procedures for Additive Regression Function 391 

by the local scoring. 

2. LIKELIHOOD-BASED ESTIMATION PROCEDURE 

Let us first consider the one-dimensional covariate X, with values in some finite 
interval X C R. The construction of a regressogram means that the domain X 
is divided into M disjoint intervals Im (their choice depends on the analyst), the 
function b(x) is approximated as J_ m = ] /?m • 1[~ _ Im]. Now, after inserting into the 
loglikelihood, the parameters (3m are estimated in ordinary way, which searches for 
solution of the equations d£n / dj3m = 0 , m = 1 , . . . M. If the loglikelihood is of the 
form (1), then its first and second derivatives are 

r)( . " 

~ = Y,i[xleim]-£\(Yl,[3m) (2) дßm 

д2t 

дßm дßk 

= J2 -•[•*. G Im] • t"(Yi,/?_,) for m = fc, = 0 otherwise. 

The step from estimation of the regressogram to the moving window estimation 
is quite straightforward. If we wish to estimate the value of b(x) at a point x = z, 
we take b as a constant bz in some chosen neighborhood (window) around z, say, in 
O(z). Then bz is treated as a parameter, we have to solve the equation d£n / dbz = 0. 

If the loglikelihood has the form (1), then 

^L = ^i[XteO;]-l\(Yi,b2). (3) 

Now, (3) contains only the derivatives of a "local" loglikelihood. It is the basis for 
the idea of the local scoring (or local likelihood) algorithm. However, when the form 
(1) does not hold, the derivatives do not contain the local results only. It is clearly 
visible in Example 2 which deals with the proportional hazard regression model. 

Example 1. Logistic regression with two-valued response. 
Let P(y = 0 | _) = 1/(1 + exp b(x)), P(Y = 11_) = 1 - P(Y = 01 x). Then 

£n = J2 iKXi) • l [y = 1] - ln(l + exp b(Xi))} . 

Example 2. Proportional hazard model for survival times and for i.i.d. sample 
{Yi,Si,X{, i = l , . . . , n } , where Y,- is an observed value and 8, is the indicator of 
censoring. It means that S{ = 1 when Y, is observed survival time, S, = 0 if y is 
less than survival time, the z'th observation is censored at time moment y . The 
inference for the hazard proportion b(x) is based on the logarithm of Cox's partial 
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likelihood (cf. Andersen and Gill [1]), namely on 

t -V&hJ exp6(x>) ] 

where Jj(i) = 1 if Yj > Yit Ij(i) = 0 otherwise. 

This partial likelihood has not the form (1). Nevertheless, let us compute its first 
derivatives with respect to value bz in a neighbourhood 0(z) of a point z £ X : 

W j - 2_ * | 1 W 6 OJ ^ e x p f c ( x . } . m | • (4) 

The numerical iteration is the most frequently used way how to solve the likeli­
hood equations. As a rule, the procedures need the second derivative of the loglike-
lihood, which in the case (1) yields 

pflp 

^ = X>{*,€a] I'KYM. 

When the Newton-Raphson procedure is applied, the step from sth to (s + l)-st 
iteration is given by the following expression: 

* • " - * > - £ / & • 
where the derivatives are evaluated at b('\x). 

Hastie and Tibshirani [3] recommend to incorporate a smoothing directly into 
every step (5), they suggest the modification 

# + - > _ smooth [ & « - ^ / s m o o t h ( g | ) ] . 

The notion of smoothing can have a very wide meaning, from weighted mean to, 
say, local parametrized regression. 

Both examples mentioned above allow also another iteration procedure, which 
differs from (5) and which does not use the second derivatives. Moreover, after 
smoothing the results at each point, we shall "secondarily" smooth the final result. 
The procedure will be described in the following parts of the paper. 

Let us now consider the A'-dimensional covariate X, with values in some bounded 
interval X C RK- When the dimension of X increases, the data are sparse and the 
method using the i£-dimensional windows becomes ineffective. Then the additive 
"hypothesis" is available. The general additive regression model means that the 
regression function is 

6(x) = ! .>(**)• 
The component functions 6* should be nonparametrically estimated. The tech­

nique is essentially the same as for the one-dimensional case, but the inner loops has 
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to be incorporated to the procedure. This loop computes (at each sth step of the 
"outer" loop) successively all bk , k = 1,... ,K, at all chosen points zk. At least the 
values at all realized points xki are needed for further computation. Here k denotes 
the component, i denotes the case, i = 1 , . . . , n. 

Let z be a point from the domain of X\, say. The derivation of loglikelihood (1) 
with respect to b\(z) now yields 

- ^ = El[^6o , ] . f 1 ^6 1 (z) + f : M ^ ; 

It is seen that the actual estimates (i.e. estimates obtained from the last preceding 
step) of other component functions bk, k = 2 , 3 , . . . , K, have to be available. 

3. L O G I S T I C R E G R E S S I O N MODEL 

Let Y be a random variable with M + 1 possible values from {0, 1 . . . , M}. The 
logistic model describes the dependence of probability distribution of Y on a (K-
dimensional) covariate X. The model assumes that 

P(Y = 0 | X) = 1/S'(X), P(Y = y | X) = exp(C(y, X))/,S'(X), 
M 

with 5(X) = 1 + ] T exp C(m, X), 
m=] 

when y = 1,2,... ,M. Moreover, the additive version of the model considers additive 
functions C(m,x) = Y2k=i C(m, k, xk). The form of the log-likelihood has been 
sketched in Example 1, now it enlarges to 

n ( M K \ 

^ = E E -M = ™] • J2c(m,k,Xki) - \n,S(Xi) \ . (6) 
t = l lm=l k = l J 

Our task consists in successive estimation of all functions C(m,k,x) as a functions 
of x = Xk- Let us imagine that we have already got some estimates of the regression 
functions from the sth step of the outer loop. In order to proceed with (s + 1)-
st step of estimation, we need to know the estimates of C(m, k, x) at all realized 
points Xki i — 1,. *., n, k = 1 , . . . , K. Let z be a point in the domain of Xj, Oz 

be its neighborhood (an interval around z). The actualized (s + l)-st estimation of 
fm = C(m,j,z) is obtained from the solution of (local) likelihood equation 

H - = ±Wi E Oz] [m = m] - e X P ( / m )
5 7ff ( m ' X , ) } = 0, (7) 

where Cj(m,Xi) = 53fc=i -•["' 7̂  i] C(m,k, xki). We can estimate the value of fm 

simultaneously for all m = 1 , . . . , M. The equations (7), in which j and z are fixed, 
can be solved separately for each m, or it can be solved as an M-dimensional equa­
tion. When computing the example described in Part 6, we used separate evaluation 
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for one value of m after another. The procedure then proceeds to another point z in 
the domain of Xj. When the values of C(m,j, Xji) in all realized points Xji and for 
each m are estimated, i = 1 , . . . , n, m = 1 , . . . , M, the algorithm starts to compute 
the estimates of C(m, j + 1, ."J+lt). All these computations are a part of the inner 
loop. It iterates through all j = 1 , . . . , K. Only then the algorithm may proceed to a 
further (s + 2)-nd step of the outer loop, which again runs for j = 1 to K. The iter­
ations are repeated until the convergence of all estimated functions C(m, k, •). How 
can be the convergence of functions checked and recognized? After every step, for 
every component C(m, j , •) we can construct the optimal least squares line through 
the points C(m,j, Xji), i = 1 , . . . , n. The changes of the parameters of the line can 
serve as a criterion of iteration progress and as an indicator of convergence. 

The usual way how to solve (7) consists in an iteration with the help of the second 
derivative of loglikelihood, for instance it may follow the scheme (5). In our example 
with the logistic model, 

a 2 4 .Aexp(/m)-expCJ(m,XI) fexp(/m ) • expQ(m,X ! ) \ 

^fl=h ^ I sm -J--.Ai.ecy. 
if again /„, = C(m,j,z), j and z are fixed. But the form of equation (7) suggests 
also another procedure of iterative estimation. If (7) is solved directly for fm, it 
yields 

« • — - { S " ^ * ' / g 1 « - « l . (•) 
where the sums are through {i = 1 , . . . , n : Xji £ Oz). The "inner" iteration again 
proceeds through all m = 1 , . . . , M, then through all z = Xji (realized points), and 
it renovates successively the estimates of component functions for j = 1 , . , . , K. 

4. PROPORTIONAL HAZARD REGRESSION MODEL 

The model is a popular choice for the description of covariate effect in life events 
history analysis. Especially, the Cox model is an often used representative of the 
model. It is able to analyse the censored data, its semiparametric form can be 
identified easily. However, the Cox model restricts the log hazard ratio to be linear 
in the covariates. A proportional hazard model considering a more general hazard 
function has an intensity \(t\x) = a(t) • exp(6(x)), where 6(x) is an unspecified 
smooth function. The estimation of proper function 6 can be based on /."-dimensional 
kernel procedure (Volf [7]). 

However, a more-dimensional covariate causes the data sparse and the global 
kernel approach loses its effectivity. Therefore, let us return to the model of the 
additive influence of covariates to the log hazard. Now the log hazard ratio has 
K components, 6(x) = J2j=i ^j(xj)- The analyst has to identify suitable functions 
6 ] , . . . , 6 A - and also the underlying common hazard function a(t), or better, its cu­
mulative version A(t) = / 0 a(s) ds. Evident ambiguity (with respect to additional 
constant in bj's) can be overcome by proper normalization of the functions. Volf [8] 
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describes a method of estimation for a particular but frequent case, when each ob­
ject has constant values of covariates. The method consists in alternating sequential 
computing of functions bj and A. The procedure has been tested successfully, by 
simulated examples as well as by real data. 

In the sequel, we shall consider a more general design, based on the counting 
processes. We have simultaneously to enlarge the model and to allow the time-
dependent (random) processes of covariates X,(f), i = l,...,n. In fact, such a 
system ceased to have the proportional hazards, although, for fixed X = x, the 
proportional hazard model holds. The counting process N(t) = N\(t),..., Nn(t) is a 
set of right-continuous random step functions on [0,7], with steps + 1 . It is assumed 
that no two components step simultaneously. In this model, the components need 
not to be i.i.d., the recurrent jumps are allowed. At,(i) simply counts the events of 
ith kind or of fth object in the life history. 

The model is fully described by the (random) hazard rates for counting processes 
Ni(t), namely A,(i) = a(t) • expb(X t(t)) • It(t), i~l,...,n, t G [0,7], where /,(<) 
is an indicator of risk set. It means that /,•(<) — 1 if the fth object is in the risk set 
at moment t, U(t) = 0 otherwise. The inference is based on Cox's partial likelihood. 
Its logarithm is 

.HX.it)) 

Ш ыП=,^Чџ)лmy 

By the way, if we define again the underlying baseline cumulative hazard function 
A(t) — fQ a(s) ds, there exists its generalized maximum likelihood estimator 

Ait) ~ Jl — ^ ^ , where N = T," zV<. In the frame of Cox's model, 
J 0 £.expA(A-i(S))/;(») ^ ' - 1 

this estimator is strongly consistent and asymptotically normal. However, here the 
analogy with the survival time model ends. 

Let us now return to the idea of the kernel (moving window, or m-nearest neigh­
bor) estimate for function b(x). Inspired by (4) of Example 2, dealing with the 
one-dimensional case, we may suggest the iteration scheme b^s+1\z) = h (b(*\ z), 
where 

h(b,z) = 

= - l n ?fl^S-«#««^ (9) 

Here O(z) denotes our moving window-neighborhood of point z £ A ' . 

Do not forget that Ni(t)— s are the step-wise functions, with steps +1 at the 
moments of "counts". In a survival time model it corresponds to moments (Y,, <5; = 1). 
It is seen, that we need not register all trajectories of Xj(t), but only their values 
Xj(Si), where Si are the moments of counts of Ni(t), and we are able to register 
them only if Ij(Si) = 1. 

Let us now consider the situation with multidimensional covariate processes 
X(i) = (X\(<),.. -Xji(t)) and suppose the additive form of function 6, 6(x) = 
J2j=\ bj(xj). Then the inner loop has to be incorporated to our iteration scheme. It 



396 

computes successively all components 6̂  to b£ , then we proceed to the (s + l)-st 
step of "outer" iteration. 

In order to obtain a generalization for iteration (9) with an additive regression 
function, let us imagine that when estimating, say, function bt(xt), we have already 
estimated all functions bm(xm), m = 1,2,.. .,K, during the preceding step of the 
outer loop. 

Quite analogically to the one-dimensional case, from the equation d£n/dbt(z) = 0 
we can suggest the following scheme for the moving window estimation procedure: 

*r'M = ->»[£ f ^ $ $ 'mm J £ [ ift6 ftwi a*M 
where now 

/fe(z, M ) = E 1 [-fy(0 G Ot(z)] • exp I £ l [ t -. /] • M * * i ( 0 ) 1 • $(*), 

j=i U=i J 

So(b,t) = X^j=i e x P {^(X>(0)} " Ij(0 a n d C/(-!) i s a chosen window around z in the 
domain of £th covariate. 

The inner loop now iterates through t— 1,..., K and gives the values of b\s+ \z) 
at every chosen z (we need at least the values at all observed xtj(T) provided 
Ij(Ti) = 1, where Ti are the moments of counts, i, j = 1 , . . . , n). The first inner 
loop may start from 6X = • • • = bn = 0 or from another convenient initial guess. 

5. REMARKS ON CONSISTENCY 

Stone [6] has examined the family of exponential-type regression models. Their 
loglikelihood has the form (1) with 

€ 1 (YX) = c(t?(X))-Y + d(t9(X)), (10) 

where c, d, e are known functions, 6 is a regression function of our interest. The 
functions c, d are required to be twice continuously differentiable, with c' > 0. 
Stone has proved that under mild conditions a unique (as to the additive shift) 
additive function 6(x) = J2j=i^j(xi) exis t s> closests to #(x) in the sense of the 
Kullback-Leibler distance. Leaving this aspect of the problem apart, we assume 
that the regression function has already the additive form. From this point of view, 
the second result of Stone [6] is important. Stone has considered the polynomial 
splines (of chosen order) approximating each component bj. Thus, the model is 
reparametrized by a finite number of parameters, they are then estimated by means 
of the standard (global) maximum likelihood method. It suffices to assume that: 

1. The distribution of X is absolutely continuous on X, with its density bounded 
away from zero and infinity. 

2. Function b is Lipschitz continuous on X. 
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3. The knots of the splines are chosen equidistantly and their number is propor­
tional to n7 , where 7 is chosen properly from (0,1). 

4. There are positive constants r and R such that 

E(exp(sY)|X = x) < R for \s\ <r and x G X. 

Then, when n increases to infinity, this approximation by splines yields the con­
sistent estimates of functions bj. Stone gives also the order of convergence. 

By the way, even the M +1 valued logistic regression model can be regarded as an 
M-dimensional representant of the exponential family. Let us recall its Ioglikelihood 
(6). It has the form (1), with 

M f M } 
il(Y,X) = J2 O m ( X ) - In 1 + £ exP6m(X) \ , 

m=l I m=l J 
where Y^ = 1[Y = m}. 

Sometimes the likelihood is more complicated, e. g. in the case of the proportional 
hazard regression model. New results of Kooperberg et al. [4] prove consistency even 
for the spline approximation of hazard regression. 

Let us now try to transfer the results of Stone to the moving window estimation. 
Let us recall again the regressogram approximation, in the case of Ioglikelihood (1) 
and one-dimensional covariate X. Its (global) maximum likelihood solution (2) leads 
in fact to the local likelihood iterations, because the matrix of the second derivatives 
is diagonal. Thus, the only difference between (3) and (2) consists in the use of the 
moving window instead of the fixed one. That is why the consistency property of 
Stone (which applies also to the regressogram - a "trivial" spline of order 0) holds 
also for the moving window solution. The sufficient conditions are the same as 
above, instead of increasing number of knots the decreasing width of window has to 
be considered, proportional to n 7 _ 1 . Again, the result is well known in the case of 
the kernel estimation of regression function E(Y |X = x) in the normal regression 
model. 

Unfortunately, the same statement does not hold when the additive regression 
function of multi-dimensional covariate is considered. Even in the framework of the 
exponential family of models, Hastie and Tibshirani [3] express a mere "conjecture" 
that their result of local scoring does not differ significantly from the approximation 
by splines. 

However, the number of the splines-generated parameters is high, the direct com­
putational task of global maximum likelihood would be too large. Therefore one 
should search for some sequential procedure, computing iteratively one subset of 
parameters after another. Such a procedure is again comparable with the local 
likelihood approach. But the optimality of such a procedure is not guaranteed. 

6. NUMERICAL EXAMPLE WITH LOGISTIC MODEL 

This part describes the data and the solution of an artificial example. Nevertheless, 
the case may represent a real situation. Let us imagine a company (say a kind of an 
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academic Institute), budget of which was affected by the economic problems in the 
country (probably the country from Central Europe). Therefore it was necessary 
to reduce the staff of the Institute. Simultaneously, some people are leaving the 
Institute voluntarily, they are searching for better paid jobs in the slowly developing 
private sector. 

The sample has been collected during the critical period of the last two years. 
That is why the values of all covariates may be considered as constant in the time. 
The response variable characterizes the kind of leaving (or not leaving) the job during 
followed period. The data have the following structure: 

{Si, Xu, X2i, X3i, X4i, i=l,...,n= 185}. 

Here n is the number of employeed, the response variable 6 = 1 when the employee 
was fired (42 cases), 6 = 2 when the individual left his job voluntarily (20 cases, 
retired employees are included in this group), S = 0 for remaining employees. The 
covariables have the following meaning: X2 is the length of the previous employment 
in the Institute, up to the moment of event (in case of 6 > 0) or to the moment 
when the data have been collected (S = 0). It is measured in years. Its values are 
from 0 to 14. X3 characterizes the category of the job: 1 - scientist (40 cases), 2 
- specialist (98), 3 - administration (21), 4 - technical staff (16), 5 - unqualified 
assisting employees (10). Xj = 1 for men (107), = 2 for women (78). X\ is the age 
of the individual, again in years, at the moment of leaving the job or of collecting 
the data. Its range is from 20 to 60 years. 

We wish to reveal and describe the influence of covariates on the probability of 
individuals to remain in the Institute, to be fired or to leave, respectively. The 
appropriate mathematical model is the model for the response variable (S) and for 
its regression on the covariables X\,..., X4. 

For this example, the analysis of the dependence of the response on the covariates 
will be accomplished in the frame of the logistic model, by the iteration procedure 
(8). As the fourth covariate acquires two values only, its influence can be described 
fully by a linear function 64(2:4) = a + 0 • £4. This assumption can be incorporated 
into the computing procedure. 

The results of estimation are summarized in Table 1 and Figure 1. After 9 it­
erations the convergence has been achieved. Table 1 displays the parameters of 
optimal lines (and correlation and variance analysis) led through estimated points 
of functions C(m,j, x). This linear analysis has been done before a final (secondary) 
smoothing. Thus, the least squares procedure has been weighted by the number of 
tied values of a covariate. It concerned especially the third covariate. The weighting 
with respect to the variance of results in a window has not been considered. Figure 1 
then displays smoothed estimates of functions C(m,j,x) for first three covariates, 
i.e. j = 1 ~ age, j = 2 ~ duration of employment in the Institute, j = 3 ~ cate­
gory of employee. Two distinct events were considered, for m = 6 = {1,2} for two 
distinct reasons of departure. 

The example has been constructed in order to demonstrate the usefulness of 
additive regression models and in order to check the procedure of solution. No test 
of significance of regression has been applied in order to support the conclusions. 
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COHPONEMT fJL 

COMPONENT 2j2 

Figure 1. 

Such a test might be accomplished in a traditional way, for a parametric logistic 
model, i.e. for a linear approximation to functions C(m,j,x). The values of in­
tercepts and slopes from Table 1 can be considered as preliminary estimates of the 
parameters of this parametric model. 
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T a b l e 1. 

m ì intercept slope correl var 
1 
2 

1 
1 

-0.3434 
0.4507 

0.0058 
-0.0386 

0.2805 
-0.7858 

0.0381 
0.0885 

1 
2 

2 
2 

-0.0753 
-0.8912 

-0.0119 
0.0136 

-0.1600 
0.1286 

0.0383 
0.0776 

1 
2 

3 
3 

-0.7376 
-0.6800 

0.2369 
-0.1006 

0.8075 
-0.7246 

0.0394 
0.0480 

1 
2 

4 
4 

-0.5424 
1.3862 

1.1668 
1.3485 

1 
1 

0 
0 

(Received January 28, 1993.) 
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