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K Y B E R N E T I K A - V O L U M E 23 (1987) , N U M B E R 4 

APPROXIMATION AND ADAPTIVE CONTROL 
OF MARKOV PROCESSES: 
AVERAGE REWARD CRITERION 

ONESIMO HERNANDEZ-LERMA 

Several procedures to approximate the optimal value of average-reward controlled Markov 
processes with Borel state and control spaces are introduced. The procedures are then used 
to obtain (i) optimal policies, and (ii) optimal adaptive policies for control processes depending 
on unknown parameters. The latter include the well known "method of substituting the estimates 
into optimal stationary controls". The approximation procedures are based on a nonstationary 
version of the value-iteration scheme. 

1. INTRODUCTION 

In this paper we introduce several procedures to approximate the optimal value 
of infinite-horizon average-reward controlled Markov processes (CPM's) with Borel 
state and control spaces. The procedures are then used to determine (i) optimal 
policies, and (ii) optimal adaptive policies for CMP's depending on unknown par­
ameters. The policies obtained in (ii) include the "method of substituting the estimates 
into optimal stationary controls", also known as the "principle of estimation and 
control (PEC)", introduced independently by Kurano [22] and Mandl [24, 25], and 
a policy based on the "nonstationary value-iteration" scheme proposed by Federgruen 
and Schweitzer [6] for finite state Markov decision processes, extended here to 
Borel CMP's. Related adaptive policies in [1, 2, 3, 10] are also briefly discussed. 

A common feature of most of these adaptive policies is that they can be obtained 
by suitable modifications to the standard value iteration (VI) scheme, also known 
as the "method of successive approximations". Thus an important part of this paper 
is the extension to Borel CMP's of VI results by White [31], Hordijk et al. [20], 
Tijms [29] and many other authors. Related results for discounted reward CMP's 
are given in [12,13, 16, 28]. 
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Organization of the paper 

In Section 2, we introduce the CMP we will be dealing with, together with the 
basic assumptions on it. Additional assumptions are introduced in later sections, 
as needed. Also in Section 2 we summarize the required background material, namely, 
optimality conditions (Theorem 2.4) and ergodicity conditions (2.6). 

Section 3 is on the VI scheme. The main result is Theorem 3.9 in which several 
uniform approximations to the optimal average reward are provided. This theorem 
extends well-known results, and, for completeness, a proof of it is given in an appendix 
(Section 7). At the end of Section 3, we extend to Borel spaces several results by 
Baranov on "successive averagings" for Markov decision processes with finite state 
and control spaces. 

In Section 4, we consider a sequence of CMP's and give conditions for it to converge 
to a limiting CMP; uniform approximations to the limiting optimal reward as well 
as optimal policies are also obtained. These results, which are important in themselves, 
are then used (in Section 6) to prove the optimality of the PEC adaptive policy. 

Section 5 deals with a Nonstationary Value Iteration (NVI) scheme, which — as 
in Section 4 — also provides uniform approximations to the optimal value function, 
as well as optimal policies. The main difference to notice between the results in Section 
4 and the NVI approximations is that the latter are recursive, whereas the former 
are not. The NVI Theorem 5.7 extends results in [6] on finite Markov decision 
processes. 

Section 6 is on adaptive CMP's; the results in Sections 3, 4 and 5 are used to obtain 
approximations and optimal adaptive policies for CMP's with unknown parameters, 
provided that a consistent parameter-estimation scheme is given. We thus present 
new results on the PEC adaptive policy [9, 11, 22, 23, 24, 25], the VI adaptive policy 
[1, 2], and the NVI adaptive policy studied for discounted reward problems in [12, 
13, 16, 17]. It is also shown how to obtain other adaptive policies, as those in [3] 
and [10]. 

Finally, in Section 7, a proof of the VI Theorem 3.9 is given. 

Terminology and notation 

A Borel space, say X, is a measurable subset of a complete separable metric space, 
endowed with the Borel sigma-algebra 3S(X). The Cartesian product of sets X and Y 
is denoted by XY. We denote by M(X) the space of real-valued bounded measurable 
functions on X. Given two Borel spaces X and Y a stochastic kernel (or conditional 
probability measure) on X given Y is a function q(dx | y) such that for each y e Y, 
q(- | y) is a probability measure on X, and for each Borel set B e SS(X), q(B | •) is 
a Borel-measurable function on Y For a signed measure fi on 0&{X), \n\ denotes 
the total variation norm [26]. For a real-valued function v, \v\ and ||»||. denote 
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the supremum norm and the span seminorm, respectively, i.e., 

\\v\\ := sup \v(x)\, and |t>||s := sup v(x) — inf v(x) . 

"iff" means "if and only if", and "a.s." means "almost-surely". 

2. PRELIMINARIES 

In this section we first introduce the control model we will be dealing with, together 
with the underlying assumptions. We then give some basic optimality conditions 
in Theorem 2.4 below, assuming the existence of a solution to the so-called optimality 
equation (OE); finally, we present several (ergodicity) conditions under which one 
such solution is insured to exist. 

Controlled Markov processes (CMP's) 

A CMP is characterized by four objects (X, A, q, r) where: 

(a) X is the state space, which is assumed to be a Borel space. 

(b) A is the action (or control) set, a Borel space. For each xeX, the set of admissible 
actions (or controls) in state x is denoted by A(x) and is assumed to be a non­
empty measurable subset of A. We also assume that the set of admissible state-
action pairs 

K : = {(x, a) | x e X and a e A(x)} 
is a measurable subset of the product space XA. The elements (x, a) in K some­
times will be denoted by k. 

(c) q(dx | k), the so-called law of motion (or transition law), is a stochastic kernel 
on X given K. 

(d) r: K -» IR is a measurable function denoting the one-step reward (or return 
or income) function. 

A CMP models a system that is observed at times ( = 0 ,1 , . . . , with states and 
actions denoted by xt and at at time (. If the system is in state x( = x e l a t time ( 
and we take the action at = a e A(x), we are paid the reward r(x, a) and the system 
moves to a new state xt+1 = x' according to the probability distribution q(- \x, a) 
on X. Once the transition into x' has occurred, a new control a' e A(x') is chosen 
and the process is repeated. An example of a CMP is a difference equation control 
model of the form 

2.1 xt+1 = F(xt, a„ £,) , where ( = 0 , 1 , . . . ; x0 is given , 

and the disturbance sequence {£,} are i.i.d. random elements independent of x0 

[5, 10, 16, 19]. 
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In adaptive control problems q and r will be allowed to depend on unknown 
parameters 9, in which case the CMP will be written as (X, A, q(9), r(6)). 

The vector ht := (x0, aQ,..., xt-x, at-t, xt), where (x;, a;) e K for all i = 0,1,... 
..., is called the history of the CMP up to time t. For each t _• 0, ht is a vector 
in the space of histories H„ where -tf0 := X, and H ( := KHt„t for f = 1, 2, .... 

A policy is a sequence <5 = (<5(), where <5((* | h() is a conditional probability 
measure on A given ff(, and satisfying the constraint 

<5((A(x() | ht) = 1 for all h, e Ht and all t = 0. 

A Markov policy is a sequence (/0, / . , ...) of functions/, e F, where F is the collection 
of all measurable functions / : X -* A such that / (x) e A(x) for all x e l . As usual, 
we identify F with the set of all stationary policies, i.e., Markov policies of the form 
(/, / , . . . ) , which will be simply denoted by / 6 F. 

We are concerned in this paper with the problem of maximizing the long-run 
average expected reward per unit time, or simply, the average reward given by 

n- I 

2.2 J(<5, x) : = lira inf n~l E* £ r(xt, at) 
H-+0O t = 0 

when the policy <5 is used and the initial state is x. In 2.2, Ex denotes the expectation 
with respect to the probability measures Px induced by <5 and x, together with the 
transition law q; see, e.g. [5, 19]. In adaptive control models (X, A, q(8), r(9)), 
we shall write such a probability as Px

,e when the true parameter value is 9. 

A policy <5* is said to be (average) optimal if it satisfies /(<5*, x) = J*(x) for all 
x e X, where 

J*(x) : = sup J(8, x) , x e X . 
s 

Actually under the conditions imposed below (see, e.g., Theorems 2.4 and 2.9) 
it will follow that J*(x) is identically constant: 

j*(x)=j* for all xeX. 

Throughout this paper, the CMP (X, A, q, ?•) is assumed to satisfy the following. 

2.3 Assumptions. 
(a) For every state xe X, the control set A(x) is a compact subset of A. 

(b) \r(k)\ ^ R < oo for all k = (x, a) e K, and r(x, a) is a continuous function 
of a e A(x) for each x in X. 

(c) j x v(y) q(dy \ x, a) is a continuous function of a e A(x) for each x e X and 
each v e M(X). 

Remark. All the results in this paper hold true if in 2.3(b) and (c) we replace 
"continuous" by "upper semi-continuous". This follows from the measurable 
selection theorems in [18] or [27]. 
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The following is a well-known result [8, 11, 29]. 

2.4 Theorem. Suppose there exist a constant j * and a function v* in M(X) such 
that 

(OE) j * + v*(x) = max {r(x, a) + $xv*(y) q(dy | x, a)} for all x e X . 
aeA(x) 

Then: 

(a) sup J (5, x) ^ j * for all xeX. 
d 

(b) If je F is a stationary policy such that f(x) maximizes the right side of (OE) 
for all xeX, i.e., 

;* + v*(x) = r(x,f(x)) + jv*(y) q(dy | x,f(x)) for all xeX, 

then j is optimal and J(f, x) = j * for all xeX. 
(c) For any policy d and any x in X, 

n - l 

lim n - 1 £ r(x„ a,) = j * P^-a.s. 
n-»ro 1 = 0 

iff 
l imn _ 1 X;^(x r , a.) = 0 P*-a.s., 
«->oo ( = 0 

where 0(x, a) is the function on K defined by 

4>(x, a) : = r(x, a) + jxv*(y) q(dy \ x, a) - j * - v*(x), (x, a)eK . 

2.5 Remarks, (a) If j * and v* are as in Theorem 2.4, it is then said that {j*, !>*(•)} 
is a solution to the optimality equation (OE). 

(b) Mandl [24] introduced <j)(x, a) as a "measure of the difference" between 
a e A(x) and an optimal action in state xeX. Notice that the (OE) can also be 
written as 

max 4>(x, a) = 0 . 
aeA(.x) 

Moreover, Theorem 2.4(b) can be re-stated as follows: If je F is such that 

(f)(x,f(x)) = 0 for all xeX, 

then j is optimal. Note that one such policy j exists: see the measurable selection 
theorems in [5, 18,27, . . . ] . 

Ergodicity conditions 

The question now is: Under what conditions does there exist a solution {;'*, «*(•)} 
to the optimality equation (OE)? Before giving an answer, let us introduce the follow­
ing. 

269 



2.6 Ergodicity conditions. 

(1) There exists a state x* eX and a positive number a0 such that 

q({x*} | fc) = a0 for all keK. 

(2) There exists a measure n on X such that 

n(X) > 0 and q(- \ fc) 5; /.(•) for all keK. 

(3) There exists a measure v on X such that 

v(X) < 2 and q(- \ fc) < v(-) for all keK. 

(4) There exists a number a < 1 such that for all k and fc' in K", 

||g(. | fc) - «(• | fc')l| < 2a, 
where || || denotes the variation norm for signed measures. 

(5) For any stationary policy f e F there exists a probability measure pf on X such 
that 

\\qf(- | x) - pf(-)\\ = ct for all x eX and t = 0, 1, ..., 

where the numbers c, do not depend on x and / , and ]Tct < oo. Here #/(• | x) 
r 

denotes the t-step transition probability measure of the Markov process {xt} 
when the stationary policy / is used, given that the initial state is x0 = x; see 
Remark 2.7 below. 

2.7 Remark, (a) The f-step transition probability qf(- \x)= q\- \ x,f(x)) in 2.6(5) 
is given recursively by 

qf(B | x) = $xq'f \B | y) qf(dy \ x) for all B e ®(X) and t = 1 , 

where qf(' \ x) := bx(-) is the unit measure concentrated on x. Note that 

<?}(• I *) = 1f(- I *) = «( ' I *./(*)) ^ all xeX. 

(b) In 2.6(5), it is easily, verified that pf is the unique invariant probability measure 

of the state process { x j . Furthermore, the average reward J(f, x) in 2.2 becomes 

a constant j(f): 

J(f, x) = liminf n-^jxr(y,f(y)) q'f(dy \ x) = 

= Jr(y,f(y))Pf(dy) : = ; ( / ) for all x e Z . 

2.8 Lemma. The following implications hold for the ergodicity conditions 2.6: 

( l ) - ( 2 ) - ( 4 ) - ( 3 ) 
1 

(5) 
This again is a well-known result; for a proof see, e.g., Georgin [8]. In particular, 

Georgin uses results by Ueno [30] to show that the constants c, in 2.6(5) can be chosen 
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as c, = 2a' for all t 2: 0, where a is the number in 2.6(4). Other conditions sufficient 
for 2.6(5) are given in, e.g., [10, 29]. 

The following result is proved (e.g.) in [8,11, 23]. 

2.9 Theorem. In addition to Assumptions 2.3, suppose that either 2.6(1), 2.6(2) or 
2.6(3) hold. Then there exists a solution {j*, »*(•)} to (OE). 

There are other ways to obtain a solution to (OE) using directly 2.6(4) or 2.6(5), 
and viewing the average-reward control problem as a "limit" as /? tends to 1 of /?-
discounted reward problems: see the references cited above. 

Motivated by our interest in adaptive control problems, we now turn to the 
question of how to obtain (if possible, uniform) approximations to the optimal 
reward J*. 

3. VALUE ITERATION 

A common approach to obtain approximations of a solution {j*, «*(•)} to (OE) 
is the method of successive approximations or value iteration (VI) introduced 
by White [31] for average reward problems. In this section we summarize and 
extend to Borel spaces X and A ideas in [31, 7, 20, 29, . . . ] . We also extend to Borel 
spaces results by Baranov [4] on successive averagings for finite state and control 
spaces. 

Throughout the remainder part of the paper we suppose that the CMP (X, A, q, r) 
satisfies the following. 

3.1 Assumptions. In addition to Assumptions 2.3, we suppose: 

(a) The ergodicity condition 2.6(4) holds, and 

(b) There exists a solution {j*, u*(')} to the optimality equation (OE). 

To begin with, we rewrite (OE) in Theorem 2.4 as 

3.2 j * + v*(x) = Tv*(x) , x e X , 

where T is the operator on M(X) defined by 

3.3 Tv(x) : = max {r(x, a) + $xv(y) q(dy \ x, a)} for all xeX . 
a<=A(x) 

Clearly Tv e M(X) if v e M(X): see the measurable selection theorems in [5, 18, 27]. 
A basic result is to show (Theorem 3.9) that Tis a contraction operator with respect 
to the span seminorm 

| o | . := supu(x) — inf v(x) . 
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Uniform approximations 

Let {vt} be a sequence in M(X) defined recursively by 

v, := T i v j = T'v0 , t = 1,2, ..., 

where v0 e M(X) is arbitrary; that is, for t = 1, 2 , . . . , 

3.4 vt(x) = max {r(x, a) + J'i>(_ J(J>) q(dy \ x, a)} for all x eX . 
aeA(x) 

vt(x) may be interpreted as the maximal expected reward for a planning horizon 
of t epochs when the initial state is x and the terminal reward v0(y) is obtained when 
the final state is x, = y; that is, for any t = 1 and xeX, 

t - i 
vt(x) = sup E*{ £ r(jc;, a/) + v0(xt)} . 

s ; = o 

Clearly, as t -* co, the functions t>( might not converge to a function in M(X): 
take, e.g., r(x, a) identical to a nonzero constant. We shall see, however, that appro­
priate transformations of vt do converge. 

Let {e(} be the sequence in M(X) defined by 

3.5 et(x) := vt(x) - tj* - v*(x), where t = 0, 1, ... and xeX . 

Notice that, for all t = 0 and xeX, 

3.6 et + 1(x) = max {(j)(x, a) + J"e((>>) q(dy \ x, a)} , 
aeA(x) 

where <fi(x, a) is the function defined in Theorem 2.4(c). We also have the following. 

3.7 Lemma. 

(a) \\et+1\\ = \\et\\ = \\v0 - v*l for all t = 0. 
(b) The sequence e+ := sup et(x) is nonincreasing, whereas et := inf et(x) is non-

decreasing. x x 

(c) | e / + i j s ^ \\etjs for all t = 0, where | - | | s denotes the span seminorm. 

Proof, (a) Since <p(x, a) = 0, it follows from 3.6 that 

|e /+1(x)| = \\et\\ for all t = 0 and all x in X , 

and therefore, |Je(|is nonincreasing. For t = 0, we have ||e0|| = \\v0 - v*\\. 
(b) Similarly, 3.6 yields 

et+1(x) = supet(y) = e + . 
y 

Thus e(
+

+1 g; e+ , which proves the first part of (b). 
To prove the second part, l e t / e F be a stationary policy such that (j>(x,f(x)) = 0 

for all x e X; see Remark 2.5(b). Then, from 3.6, 

e,+i(x) 2 Je,(j) qf(dy | x) = infet(y) = e; . 
y 

(c) This follows from (b). • 
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By Lemma 3.7, the sequence {et} is uniformly bounded and decreases in both 
the sup norm and the span seminorm. We will show below (Theorem 3.9(b)) that 
{et} converges exponentially fast to a constant. 

3.8 Definition. Let " = {/,} be a Markov policy such that ft(x) maximizes the right 
side of equation 3.4 for all t 2: .1 and x e X; we t ake / 0 6 F arbitrary. 

3.9 Theorem. Under Assumption 3.1, we have: 
(a) \Tux — Tu2\\s <, a |«i - w2||sfor all ui and u2 in M(X), where a < 1 is the 

constant in 2.6(4). 
(b) There is a constant c such that 

sup \et(x) - c[ _g ||e.||. ^ a'Je0||s for all t = 0, 1, .... 

(c) Let V(
+ : = sup wt(x) and Vt~ : = inf wt(x), where 

wt(x) := vt(x) - y (-i(x) for all xeX . 

Then V(
+ is a nonincreasing sequence, whereas V(" is nondecreasing, and both 

sequences converge exponentially fast to j * , i.e., for all t S: 1, 

0 < F(
+ - j * ^ 2 a ' - 1 i l e 0 | | s 

and 
0£j*- Vr ^2a ( ~ 1 | | e 0 | | s . 

(d) V(" g J( / ( , x) ^ j * ^ V(
+ for all x e X and t £ 1. 

(e) sup \wt(x) - j * \ ^ 2a t~1 | |e0 | |s for all f ^ 1. 

(f) sup | J(f„ x) - 7*| ^ sup |w.(x) - 7*| for all t ^ 1. 

(g) sup \(vt(x) - vt(z)) - (v*(x) - v*(z))\ -> 0 as f -> oo for all zeX. 

(h) sup \(j)(x, ft(x))\ g 2a r -1 | |e0 |Js -> 0 as t -> oo, and therefore, by Theorem 2.4(c), 

the Markov policy 5 in Definition 3.8, that is, the policy that uses the control 
at: = ft(xt) at time t, is optimal. 

This theorem provides several uniform approximations to the optimal average 
reward j * . Observe also that the stationary policy / . that maximizes the right side 
of 3.4 may be regarded as approximately optimal for the infinite horizon problem 
when t is sufficiently large; this is made precise in parts (d), (f) and (h). Theorem 3.9 
is essentially contained in the papers by Tijms [29] and Acosta Abreu [1]; however, 
since these papers are still unpublished, a proof will be given here: see Section 7. 

Successive averagings 

As a direct consequence of Theorem 3.9 we will now extend to Borel spaces a result 
of Baranov [4] on successive averagings for Markov decision process with finite 
state and action spaces. 
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Let vt be the VI functions in 3.4 and define ut := t 1vt. Using 3.4 we can write 
theM.iteratively: 

3.10 M ( =e r M ( _! for all f = l , with M 0 ( - ) : = 0 , 

where Qt is the operator on B(X) given by 

Q, v(x) := max {f_1r(x, a) + (t - 1) f_1 $v(y) q(dy \x, a)} , xeX. 
aeA(x) 

For each f =• 1, the operator Qt is a contraction with modulus (f — l)/f, and therefore, 
there exists a unique function u* in M(X) such that 

3.11 M* = Qtu* for all f = 1 . 

From Theorem 3.9, we then obtain the following. 

3.12 Corollary. Suppose that the assumptions of Theorem 3.9 hold. Then, as f -> oo, 
(a) sup \ut(x) —j*\ ~> 0. 

(b) I«r-« ( | |-*o. 
(c) sup \u*(x) - j * \ -* 0. 

Proof. Part (a) follows from Theorem 3.9(b), whereas (b) follows from: 

K - « , f l < ; ( f - ' i ) | K - I . . . . . I I - -

= \\wt - ut\\ ^ sup \wt(x) - 7*1 + sup K(x) - / * | , 

where wt are the functions in Theorem 3.9(c) and (e). 

Part (c) follows from (a) and (b). • 

3.13 Remark. Observe that the policy 3 = {/,} in Definition 3.8 is such that ft(x) 
also maximizes the right side of the "successive averagings" equation 3.10. Thus 
from Theorem 3.9(h), we have obtained by a different approach another conclusion 
in [4]: The policy 8 defined via the successive averagings 3.10 is optimal. It can also 
be proved, using Corollary 3.1.2(b), that the policy d' = {/,'} such that f't(x) attains 
the maximum on the right side of 3.11, is optimal. 

4. APPROXIMATING MODELS 

Let (X, A, q„ r(), where t — 0 , 1 , . . . , be a sequence of CMP's. In this section 
we give conditions under which the average-optimal reward of the f-models con­
verges to the optimal reward of a "limit" control model (X, A, q, r); in the following 
section we shall study the convergence of a nonstationary version of the value itera­
tion functions in Section 3. 

Sometimes we shall write as qx and rx the transition law q and the reward function 
r in the limiting control model (X, A, r, q). 
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4.1 Assumptions. The control model (X, A, qt, rt) satisfies Assumptions 3.1 for all 
0 ^ t ^ oo. Moreover, the sequence {rt} is uniformly bounded and 2.6(4) holds 
uniformly in t; that is, 
(a) \rt(k)\ <; R < oo for all k e K and 0 ^ t ^ co, and 
(b) sup \\qt(- \k) - q,(' \ k')\\ < 2a, with a < 1, where the sup is over all k and k' 

t.k.k' 

in K and all 0 < t < oo. In addition: 
(c) g(t) -> 0 and n(t) -> 0 as t -> oo, where 

Q(t):= sup \rt(k)-r(k)\ and n(t) := sup \\qt(- \ k) - q(> | fc)| , 
k k 

and the sup is over all k e K. 

Thus for each t, all the results in Sections 2 and 3 hold. In particular, for each t, 
there is a bounded solution {j*, v*(')} of the optimality equation in Theorem 2.4 
or 3.2, i.e., 

4.2 j * + v*(x) = max {rt(x, a) + J v*(y) q,(dy | x, a)} : = Ttv*(x), 
aEA(x) 

for all x e X and 0 < £ < oo , 

where Tt is the operator on M(X) defined by 

4.3 Tt v(x) : = max {rt(x, a) + $v(y) qt(dy \ x, a)} , ve M(X), xeX . 
aeA(x) 

For the limit control model (X, A, q, r) = (X, A, qx, rm), we write (sometimes) 
j * = j * and v* = D* , so that 4.2 and 4.3 hold for t = oo. 

For each t, let / * e f b e a stationary policy such that f*(x) maximizes the right 
side of 4.2 for all xeX. The main results of this section are that j * and v* converge 
to J* and v*, respectively, and that the Markov policy 8* = {/*}, which takes 
the action 

a, : = f*(xt) at time t = 0, 1, ..., 

is optimal for the limiting control model. We summarize these results as follows. 

4.4 Theorem. Under Assumptions 4.1, we have: 

(a) For every 0 < t < o o , / 6 F and xeX, 

\qn
t,f(' | x) - q}(- | x)l < n n(t) for all n = 0, 1, ..., 

where q",,f(m \ x) denotes the rc-step transition probability for the r-model when 
the stationary policy/ e F is used and the initial state is x. Here we use the notation 

?«, / (*! *) = «/(• I x) • 

(b) | ; ,(/) - j(f)\ S R n(t) for all 0 < f < oo and fe F, where ; , ( / ) = Jt(f, x) 
denotes the average reward for the f-model when the policy feFis used; see 
Remark 2.7(b). Here, jjj) = j(f). 

(c) \j* - 7*| ^ RAf) f o r a11 ° = t = °° • 
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(d) jv* — v% g b0. max {g(t), n(t)}, where || | s denotes the span seminorm and 
b0 := (2 + 2||t>*|| + R)/(l - a). 

(e) S* — {/,*} is average optimal for the limiting control model. 

Proof, (a) For n = 0, (a) holds trivially, since q°tJ(' \ x) = Sx(-) for all f , / and x; 
see Remark 2.7(a). For n = 1, the inequality follows from the definition of n(t). 
For n > 1, the inequality in (a) is easily verified by induction. 

(b) Since 

jt(f) = lim n~l lrt(y, f(y)) q"tJ(dy \x) for all 0 g t ^ oo , 

where jx(f) = j(f), we obtain 

\h{f) - J(f)\ ^ lim »_1{<?'v0 + nR n(i)} = R n(t). 

(c) With the notation of part (b), we can write 

j * = sup jt(f) for all * 0 ^ t g oo , 
/ 

where the sup is over a l l / e F, and /* = j * . Thus (by (b)) 

|i* - 7*| 5S sup \jt(f) - j(f)\ g R n(t) . 
x 

(d) By Theorem 3.9(a) applied to the /-model, 

JTtv* - Ttv%^4vf -v%. 

On the other hand, from 4.2, v* = Ttv* - j * for all 0 ^ / ^ co (where T = Tx 

as in 3.3), so that 

||i>* - v% g \\Ttv* - Ttv% + \\Ttv* - 7b* ||, + \j* - /* | S 

S4vt-v% + 2[e(t)+\\v*\\7t(t)] + Rn(t), 

which implies (d). 
(e) By Remark 2.5(b), the optimality equation 4.2 for the /-model can also be 

written as 
max (j)t(x, a) = 0 for all xeX and 0 ^ r ^ oo , 

aeA(x) 

where 

4.5 cf)t(x, a) := rt(x, a) + jv*(y) qt(dy \ x, a) - j * - v*(x) . 

Note also that (t>t(x,f*(x)) = 0 for all x and /. Thus by 4.5 and the definition of 
4>(x, a) in Theorem 2.4(c), we can expand 

<K*,L*(x)) = 0(x,L*(x)) - <Mx,/.*(x)). 

and then a straightforward calculation using parts (c) and (d) yields 

\<l>(x,ft*(x))\SQ(t) + (R+lv*\\)n(t)+\\v:-v%->0 as r-> oo . 

Since this convergence is uniform in x, we conclude from Theorem 2.4(c) that 5* 
is optimal for the limiting control model. • 
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The approximations given by Theorem 4.4 have an inconvenience: To use parts 
(c), (d) or (e), first we have to solve the optimality equation 4.2 for each t = 0,1,.... 
It would be better, of course, to have a recursive approximation scheme. We will 
present one such scheme in the following section which unfortunately, to converge, 
it requires assumptions some restrictive than 4.1 above. 

5. NONSTATIONARY VALUE ITERATION 

We shall consider again the sequence of control models (X, A, q„ tt) which "con­
verge" to the control model (X, A, q, r) = (X, A, qm, rm). Now, however, we impose 
stronger assumptions. 

5.1 Assumptions. In addition to Assumptions 4.1, we now suppose that 

i? : = Z #(t) = °° and n : = ZKO < °° • 
( = 0 ( = 0 

The necessity of the new assumptions when doing nonstationary value iteration 
(NVI) is discussed by Federgruen and Schweitzer [6, page 232], who introduced 
the NVI scheme for Markov decision processes with finite state and control spaces. 
In this section we extend the NVI scheme to Borel control models; we will follow 
a development somewhat parallel to that in Section 3. 

Thus instead of the VI functions / . in 3.4, we now define the NVI functions vt 

as follows: For alW =• 0 and x e X, 

5.2 vt+1(x) := Ttv/x) = max {r/x, a) + )v/y) q/dy | x, a)} , 
UEA(X) 

where v0 e M(X) is arbitrary. And then, instead of the function et in 3.5, we now 
introduce, for all t ^ 0 and x e X, 

5.3 d/x) := v/x) - tj* - v*(x), 

d"/ : = sup d/x) , d^ : = inf d/x), 
and x x 

5.4 c/x) := d/x) + v*(x) = v/x) - tj* . 

5.5 Lemma. The sequence {d/-)} (and therefore {c/-)}) is uniformly bounded. 

Proof. By definitions 5.2 and 5.3, 

- W * ) " Ttv/x)-(t+l)j*-v*(x), 
or 

d,+ i(x) = max {r/x, a) - r(x, a) + j dt(y) q/dy \ x, a) + 
aeA(x) 

+ jv*(y) [q/dy \x,a)- q(dy | x, a)] + 4>(x, a)} . 
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By Remark 2.5(b), <p(x, a) = 0, and therefore, 

dt+1(x) g sup d/y) + Q(t) + 6. 4 0 . w h e r e bi := Ml . 
y 

which implies 
dt

+
+1 = d+ + Q(t) + _! 4f ) for all f = 0 . 

Similarly, 

d;+1 = dr - -(0 - *i 40 f o r a11 f = ° • 
Thus, t 

dt+1 _ 4 + I [e(0 + fci 401 = do + e + M f o r a11 * = o, 
i = 0 

and similarly, 
dr+i = do - (e + M ) for all f = 0 . D 

In Theorem 5.7 below we use the following notation 

y(t) : = g(t) + M n(t), and yc(t) := gc(t) + M nc(t) , 

where 

5.6 ec(t):=_>(0 a n d ^(0:=I40. 
i = ( i = ( 

and M is upper bound for all ||d,||« and | c , | s ; such an M exists by Lemma 5.5. Theorem 
5.7 is the NVI analogue of the value-iteration Theorem 3.9(b), (e), (g), and (h). 

5.7 Theorem. Suppose that Assumptions 5.1 hold. Then: 

(a) There exists a constant c such that 

sup \d/x) - c\ < (1 + 2M) . Dt for all t = 0 , 

where 

D.:.max{e<([./2]), -^([./2]), a ^ } . 

(b) sup |i>,(x) - 5,..(x) - j * \ = sup |d,(x) - d,_,(x)| = (1 + 2M)(D, + _>,_,) 

for all f = 1. 
(c) sup |(t5,(x) - v/z)) - (v*(x) - v*(z))\ -* 0 as r ->ao for all zeX. 

(d) Let 3 = {/,}, with / , e F, be the Markov policy such that, for each t _ 0, /,(x) 
maximizes the right side of 5.2 for all x e X. Then 3 is average optimal for the 
limiting control model (X, A, q, r). 

Parts (a) and (b) of this theorem extend to Borel control models some parts of 
Theorem 4 1 in Federgruen and Schweitzer [6]. We shall refer to the policy 5 in part 
(d) as an NVI policy. In Section 6 we will introduce an adaptive NVI policy. 

Proof, (a) Let c/') be the function in 5.4; then for all t = 0 and xeX, 

ct+1(x) = Tt c/x) - ;* = Tc/x) - ./* + Tt c/x) - Tc/x), 
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where T(or T^) is the operator in 3.3. Thus, since 

Tt c,(x) - Tct(x) ^ g(t) + Mn(t) = : y(r) for all t ^ 0 and xeX, 

we have 

ct+l(x) ^ Tc/x) - j * + y(t) for all t ^ 0 and xeX, 

and therefore, 

ct+n(x) :g V ct(x) - nj* + £ y(i) ^ T" ct(x) - nj* + f(t). 
i=t 

Substraction of v*(x) on each side of the latter inequality implies (see 5.4) 

dt+n(x) ^ etrn(x) + yc(t) for all t ^ 0 , n ^ 1 and xeX, 

where 
ejx) := T" c/x) - nj* - v*(x) (cf. 3.5). 

A similar argument shows that 

T ct(x) - Tc,(x) ^ -y(r) 

and then 

<*.+„(*) = e(,„(x) - ?
c(r) , 

so that 
\d,Jx) - ejx)\ g f(t) = e

c(r) + M 7rc(r). 

On the other hand, by Theorem 3.9(b), there exists some constant c such that, 
for all t ^ 0 and n g l , 

sup \etJx) — c\ S °<"|K,o||« = a"|tlf||s = Mof • 

Therefore, 
\dt+n(x) -c\£ \d,Jx) - ejx)\ + \ejx) - c\ g 

g Qc(t) + M nc(t) Man S (1 + 2M). max [Q
c(i), nc(t), a"} . 

Let m = t + n, with t = [m/2] and n = m - t ^ m - [m/2] ^ [m/2]; then the 
above inequality becomes 

\dm(x) - c | *a (1 + 2M) max [Qc([mj2]), 7rc([m/2]), a[ra/2]} , 

for all m ^ 1 and xeX, which proves part (a). 

(b) and (c): Both follow from (a) and 5.4. 

(d) It suffices to verify that 

(1) sup \(f>(x,ft(x))\ -»• 0 as t -> oo , 

so that (d) follows from Theorem 2.4(c). To simplify the notation let us write J/x) 
as at; then cj)(x,ft(x)) in Theorem 2.4(c) becomes 

(2) 4>(x, a,) = r(x, at) + J v*(y) q(dy | x, at) - j * - v*(x), 
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and 5.2 becomes 

vt+i(x) = rt(x, at) + J vt(y) fl<(d3' I x> «») • 

Then on the right side of (2) add and substract vt+l(x) - vt(x) and then an obvious 
computation using parts (b) and (c) yields (1). D 

Nonstationary successive averagings 

A nonstationary version of the "successive averaging" functions in 3.10 is obtained 
as follows. 

Let ut(x) := t"1 vt(x), where t= 1,2,... and xeX, and vt are the NVI functions. 
From 5.2, the ~f satisfy 

5.8 ut+1(x) -Qtut(x), for all f ^ O and xeX; M 0 ( - ) : = 0 , 

where 
Qt v(x) := max {(t + l ) _ 1 rt(x, a) + t(t + i)"1 J"wt(y) qt(dy \ x, a) . 

aeA(x) 

Clearly, for each t = 0, 1, . . . , the operator Qt is a contraction with modulus tj(t + 1), 
and therefore, there exists a unique function u* e M(X) such that 

5.9 u* = Qtu* for all t = 0 , 1 , . . . , 

and as a consequence of Theorem 5.7, we obtain: 

5.10 Corollary. Suppose that the assumptions of Theorem 5.7 hold. Then, as t -» co, 
(a) sup \ut(x) - j * \ -+ 0 , 

xeX 

(b) | | S ( - «*| ^ 0 , 
(c) sup \u/x) — j * \ ~* 0. 

Notice that, with the obvious changes in notation, Remark 3.13 also holds in the 
present, nonstationary case. 

Discounted-Iike NVI 

A review of the results above will show that the measures qt(- \k) may be sub-
probabilities, i.e. qt(X | k) <. 1, provided that they satisfy Assumption 5.1. In 
particular, we may take 

<zX-|fc):=M-|fc), t = 0,l,..., 
where {/?,} is sequence of positive numbers increasing to 1 and such that 

( = 0 

In such a case, the NVI functions, which we now denote by ht (instead of vt as in 5.2), 
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are defined by 

5.11 h't+l(x):=Uth't(x): = 

: = max {rt(x, a) + ft J h,(y) qt(dy \ x, a)} , t = 0, 1, . . . , 
aeA{x) 

where ho 6 M(X) is arbitrary. Note that U( is a contraction operator with modulus ft. 
In terms of U„ Gordienko [10] studies average-optimal policies for discrete-time 

systems of the form 2.1, where the noise sequence {£,} has unknown distribution. 
In Gordienko's paper, rt(k) = r(k) for all t, and qt(- | fc) is the empirical process 
of {£,}. For similar problems in the discounted-reward case, see [16, 17]. 

6. ADAPTIVE CONTROL MODELS 

In this section we consider control models (X, A, q(&), r(0)) depending on a par­
ameter 9 that takes values in a Borel space 0. For each 0 in 0, the 0-model (X, A, q(6), 
r(6)) is such that the transition law and the one-step reward function depend on 9, 
i.e., we have q(- \ k, 0) and r(k, 9), where k e K, but everything remains essentially 
the same as in Sections 2 and 3 except for notational changes. For instance, instead 
of the long-run average expected reward per unit time J(5, x) in 2.2, we now have 

J(8, x, 9) := lim inf n'1 E*'e £ r(x„ at, 9) 
n^oo t = 0 

for each 9 in 0, where E^° denotes the expectation with respect to the probability 
measure Px

,e when 9 is the true parameter value. 
The program for this section is as follows. Firstly, we summarize some of the 

results in Sections 2 and 3; the idea is to put the parametric models in the appropriate 
setting. Secondly, we re-state some of the approximation results in Sections 4 and 5, 
and then those results are used to obtain several adaptive policies. 

Preliminaries 

In the first part of this section we suppose that the 0-analogue of Assumptions 4.1 
are valid; namely, we suppose: 

6.1 Assumptions. (X, A, q(9), r(6)) satisfies Assumptions 2.3 for all 9 in 0; that is, 

— A(x) is a compact subset of A for all x in X. 
— r(x, a, 9) e M(K0), and for each x e 0, the function r(x, a, 9) is continuous in 

a e A(x). 
~ jx v(y> fy <l(dy | x, a, 9) is continuous function of a e A(x) for each x e X, 9 e 0 

and v e M(X0). 
Moreover, 
(a) \r(k, 0)\ § R < oo for all k e K and 9e0. 
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(b) sup |tj(« | k, 0) — q(' | k', 9)\\ = 2a, where a < 1, and the sup is over all 0 in 
e,k,k' 

0, and k and k! in K. 
(c) For any 9 e 0 and any sequence {9,} in 0 such that 0, -+ 0, it holds that 

g(t, 0) -> 0 and 7c(f, 0) -> 0 as t -> oo, 
where 

g(t, 0 ) : = sup |r(k,9t) -r(k,9)\ 
k 

and 
n(t, 9):= sup \\q(-\k,9t)-q('\k,9)\\. 

k 

(d) There exist bounded functions j*(9) e M(0) and v*(x, 9) e M(X, 0) such that 

6.2 j*(0) + v*(x, 9) = T9 v*(x, 9) for all x e l , 

where, for each 9_e 0, Te is the operator on M(X0) defined by 

6.3 Te v(x, 9) : = max {(r(x, a, 9) + Jx v(y, 9) q(dy \ x, a, 0)} . 
azA.x) 

Conditions sufficient for (b) and (d) may be obtained as in Section 2. Of course, 
implicit in the description of the 0-control model is the fact that q(- \k, 0) is a Borel-
measurable stochastic kernel on X given K0. 

On the other hand, existence of solution j*(9), v*( •, 0) of the 0-optimality equation 
in Assumption 6.1(d) allows us to use the 0-version of Theorem 2.4 to obtain the 
following. 

The principle of estimation and control (PEC) 

Let / * be a measurable function from x0 to A such that, for each 0 e 0 and 
xeX, the action f*(x, 9) e A(x) maximizes the right side of the (OE) 6.3. (Such 
a function / * exists by the measurable selection theorems in [18, 27].) By Theorem 
2.4(b), /*( •, 0) e F is an optimal stationary policy for the 0-model, and from Theorem 
4.4 we may conclude the following. 

6.4 Theorem. Suppose that Assumptions 6.1 hold and let {9,} be any sequence in 0 
converging to 9 e 0. Then: 

(a) |j*(0,) - j*(9)\ S R n(t, 9) for all t = 0. 

(b) \v*(-, 0.) - v*(-, 9)\\s = constant. max [g(t, 9), n(t, 9)}. 

(c) Let {0j be a sequence of strongly consistent (SC) estimators of 0 e 0 (that is, 
a sequence of measurable functions 0, from Ht to 0 such that, as t —> oo, 9, 
converges to 0 P*'"-a.s. for all policy 8 and all x e X), and let S* = {df} be 
the policy defined by 

S*(ht):=f*(xt,9t(ht)) for all hteHt and t £ 0 . 

Then 8* is optimal for the 0-model. • 
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To obtain this theorem it suffices to make the substitutions 

6.5 r/k) := r(k, 0.) and qt(> \ k) := q(- \ k, 9t) 

in Theorem 4.4. 
We call 6* as PEC adaptive policy and it was originally introduced by Kurano [22] 

and Mandl [24]. Examples of SC estimators are given by those authors; see also 
[9, 14, 15, 28]. 

Nonstationary value iteration 

In addition to 6.1, let us assume 

6.6 For any 0 and 0, as in 6.1(c), 

f, Q'J, 0) < OO and £ n(t, 0) < oo . 
r = 0 ( = 0 

Now, instead of the NVI functions v/x) in 5.2, define 

vt+1(x, 0t) := T9cvt(x, 0 (_ t) where r ^ O and v0(-):=0. 

That is, 
v!(x, 0O) : = max r(x, a, 60) 

aeA(x) 

and for t ^ 1, 

6.7 vt+i(x, 0t) :~ max {r(x, a, 6t) + \v/y, 0 , -0 q(dy | x, a, 0,)} . 
aeA(x) 

For each / 2: 0, l e t / ( - , 0() e F be such tha t / (x , 0,) maximizes the right side of 6.7 
for all x e X, and 

fo(x, 0O) : = arg max r(x, a, 0O) for all x e X . 
asA(x) 

Strictly speaking, we should w r i t e / a s / ( - , 6„ 0,_1; ..., 0O), but we shall keep the 
shorter notat ion/(• , 8t). 

Using again the substitution 6.5 we can rewrite Theorem 5.7 as follows. 

6.8 Theorem. Suppose that Assumptions 6.1 and 6.6 hold and let 0, -> 0 e 0. Then: 

(a) There exists a constant c(0) such that 

sup \d/x, 0) - c(0)\ -> 0 as t -+ oo , 
xeX 

where d/x, 0) := v/x, 0 (_ t) - tj*(9) - v*(x, 0) . 
(b) sup \vt+1(x, 6t) - v/x, 0 t_i) - j*(9)\ -> 0 as t-^ oo. 

XEX 

(c) sup|[t; I+1(x, 0,) - vt+1(z, 0,)] - [v*(x, 0) - v*(z, 0)]| -> 0 as t -> oo for all 
xeX 

zeX. 
(d) Let {0,} be a sequence of SC estimators of 0 satisfying 6.6 P*'e-a.s. for every 
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policy d and xeX, and let 5 = {5t} be the policy defined by 

Hht) • = J fat, ®fat)) for a11 M II. a n d t ^ 0 . 

Then 5 is optimal for the 0-model. 

We call 3 and NVI adaptive policy. Other NVI adaptive policies can be defined 
via suitable variants of the NVI scheme of Section 5. For instance, for the discounted-
like NVI functions in 5.11 see Gordienko [10], or for the nonstationary successive 
averagings 5.8 see Baranov [3], For adaptive policies in terms of the value iteration 
functions vt in Section 3 see [1, 2]. 

For discounted reward problems these policies (except Baranov's) are further 
discussed in [12, 13, 16, 17, 28]. 

7. APPENDIX: Proof of Theorem 3.9 

(a) Let uL and u2 be arbitrary functions in M(X), and let gL and g2 in F be station­
ary policies such that 

Tufa) = r(x, gfa)) + Ju.0?) q(dy | x, gfa)) for all xeX and i = 1, 2 . 

Of course, 

Tufa) £ r(x, gj(x)) + \uf.y) q(dy \ x, g/x)) if j * i. 

Then for any two arbitrary points x and x' in X, 

7.1 (TMl - Tu2) (x) - (TuL - Tu2) (x') = $x(uL(y) - u2(y)) X(dy) , 

where X is the finite signed measure on X given by 
X(') := q(- | x, gL(x)) - g(- | x', g2(x')). 

By the Jordan-Hahn Decomposition Theorem [26], there exist disjoint measurable 
setsX+ andX" whose union is X and such that 

\\X\\ = X(X+) - X(X~) g 2a . 

where || • || denotes the total variation norm, and the latter inequality comes from 
2.6(4). Moreover, since X(X+) + X(X~) = 0, we have X(X+) ^ a. Thus in inequality 
7.1 we obtain 

W"i(3') - u2(y))X(dy) = (Jx + + J x - ) ( M l - u2)X(dy) = 

= j x + sup(M l - u2)X(dy) + \x- inf(u t - u2)X(dy) = 
y y 

= | M j ~ « ? | | s A ( X + ) S a | | M l - « 2 | | . . 

Since x and x' are arbitrary points in X, the desired conclusion follows, 

(b) The operator Tin 3.3, applied to the function »*(•) + (t - l)j*, satisfies 

T{v* +(t - l)j*) = Tv* +(t - l)j* = v* + tj* by 3.2. 
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Thus 

h i . = h - r - v% = |[r.,_1 - T(V* + (t- i)j% g 
^a[].,_j -(t- _)j*-_*|,-a||_,_..||., 

so that 
| e , | s g a' |e0 | | s for all f £ 0 . 

From this inequality and Lemma 3.7(b) we conclude that there exists a constant c 
satisfying part (b). 

(c) By Definition 3.8 off, e F, we have 

vt(x) = r(x,ft(x)) + J . ,_.(y) a(dj; | x,/,(x)) for all xeX. 

On the other hand, 

t,_ .(x) ^ <x, L(x)) + J .,_ 2(y) a(dj; | x, /,(x)) for all xeX, 

and therefore, 

_,(x) - i>,_.(x) ^ sup{.,_1(j;) - vt-2(y)} = V(_! . 
y 

Thus V,+ ^ V,t1; and a similar proof yields V~ 2: V,_1; which proves the first 
part of (c). 

To prove the second part, note that, from 3.5, 

7.2 w,(x) = e,(x) - e,^(x) + j * 

and therefore, 
V,+ =sup{e,(x) - e,-x(x)} + j * , 

V; = inf {_,(*) - e ,_ x (x )} + j* . 

Finally, since |[w,|js = V,+ - V~ g 2 sup |e,(x) - e,-i(x)|, the desired result follows 
from part (b). x 

(d) In part (c), we have already shown that V," ^ J* ^ V+ for all t. On the other 
hand, 

J(f„ x) g j * for all i ^ 0 and x 6 X . 

Thus it only remains to prove the first inequality in (d). 

To prove this, let us first simplify the notation writing / , = g e F for any fixed 
_ _j 1; then 3.4 becomes 

7.3 v,(x) = r(x, g(x)) + J u,_ t(j;) qg(dy | x) . 

Now, by Assumption 3.1(a), Lemma 2.8 and Remark 2.7(b). 

J(9,x) - J <j,0(y)) ^ (d j ) = j(g) for all x _ X . 

Again by Remark 2.7(b), p9 is the invariant probability measure of qg(' \ ") and 
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therefore, integrating both sides of 7.3 with respect to pg, we get 

\vt(x) pg(dx) = fr(x, g(x)) pg(dx) + J |p.- j(y) q/dy | x) p,(dx) = 

= j(g) + )Vt_1(y)pg(dy). 

Consequently, 

7.4 j(g) = $wt(y)pg(dy) for all t = l , where g=ft. 

The latter implies 

V~ = XL ) = F<+ for a11 f = - • 
(e) Follows from (b) and equation 7.2. 

(f) Follows from (e) and equation 7.4. 

(g) Follows from (b). 

(h) To simplify the notation let us write at = ft(x), so that vt(x) in 3.4 can be written 

as 

vt(x) = r(x, at) + K - i Q O q(dy | x, at), 

and 4>(x, ft(x)) becomes 

<j>(x, at) = r(x, at) + jv*(y) q(dy | x, at) - j * - v*(x) . 

On the right side of the latter equation, add and substract vt(x) and (t - l)j*, 

to obtain 

4>(x, at) = et(x) - J e,-x(>>) a(dj; | x, a ( ) , 

and then (h) is concluded using (b). This completes the proof of Theorem 3.9. • 
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