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BURSTING SCENARIA IN ADAPTIVE ALGORITHMS: 
PERFORMANCE LIMITATIONS AND SOME REMEDIES1 

KOSTAS S. TSAKALIS 

A simple, yet general, bursting scenario is presented for a wide class of parameter 
estimation and system identification algorithms in the absence of sufficient excitation. This 
allows for an analytical derivation of a lower bound on the worst-case performance of such 
algorithms in the presence of perturbations. A simple example is constructed to illustrate 
the implications of these results in adaptive control and interpret the design some burst 
suppression mechanisms. 

f 
1. INTRODUCTION 

Adaptive identification algorithms are a fundamental component of most adaptive 
control schemes where the basic idea is to use input-output ( I /O) da ta to identify 
on-line an appropriate I / O operator (either of the plant or the desired controller). 
This is typically performed by deriving (or assuming) a parametric model of the 
plant and then employing an algorithm to estimate the unknown parameters. The 
parameter estimation algorithm is designed by using fairly s tandard optimization 
tools, e. g. gradient or Newton search, least squares etc. The properties of such 
algorithms in the context of system identification have been extensively studied, 
establishing their applicability to a variety of practical problems [15, 30]. 

In the context of adaptive control the same ideas have also proven successful in 
achieving the control objective despite the presence of pure parametric uncertainty in 
the plant model [2,10,12, 20, 27]. However, a fundamental and serious problem arises 
when non-parametric forms of uncertainty appear in the plant description, e.g., 
unmodeled dynamics and bounded disturbances. In such cases, analytical examples 
and simulation studies have shown that the original adaptive control algorithms 
may fail to guarantee boundedness of the parameter estimates and the other closed-
loop signals [7,11,25,26] These phenomena are caused by the lack of "sufficient" 
excitation which allows the perturbations to dominate the error signal and cause 
the failure of the identification algorithm to obtain a "good" model of the plant. 
The fundamental obstacle and difference from open-loop system identification in 

1 This work was supported in part by ARPA under grant F 49620-93-1-0062 and in part by NSF 
under RIA grant ECS-9111346. 
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overcoming such problems is that the designer has limited or no control over the 
external inputs and, consequently, the level of excitation. Nevertheless, a variety of 
recent studies has established that with some modifications, the basic identification 
algorithms can yield "robust" adaptive controllers without requiring any excitation 
conditions (e.g., see [7,12,21,27] and references therein). A similar result has also 
been established in the practically interesting case where the plant is slowly t ime-
varying [14, 19, 34]. 

However, the performance of these adaptive control schemes is typically char­
acterized by fairly weak measures such as root-mean-square (RMS) criteria. The 
implication of this observation is that the closed-loop performance may be poor in 
terms of stronger but practically important measures such as peak steady-state er­
ror. (Such a performance measure can be conveniently characterized by the l imsup 
absolute value of the error and, hence, is referred to as "limsup performance;" note 
that , like RMS, this is an asymptotic performance measure and does not account for 
transient behavior.) This was found to be the case in situations where a disturbance 
together with the lack of sufficiently high levels of Persistent Excitation (PE) causes 
the identification process to fail, at least temporarily. Although signal boundedness 
is maintained with the modified algorithms the identification failure is now manifest­
ed by short but persistent time intervals where the various error signals at tain large 
values. The term "large" is used here to signify a magnitude that does not vanish as 
the magnitude of the perturbation approaches zero. Such a behavior is typically re­
ferred to as burst phenomena [1,8,17,24,29,36]. Partial remedies include the use of 
dead-zones with linear time-invariant (LTI) plants e. g., [7,10,12,16, 20, 23]. On the 
other hand, employing a form of high-gain feedback, an improvement of the tracking 
error l imsup performance has recently been obtained in model reference adaptive 
control, but at the expense of the closed-loop robustness properties [5, 31]. Despite 
the (partial) success of these remedies, however, bursting still remains as one of the 
major obstacles in designing practically useful and reliable adaptive algorithms. 

In view of these results, one may pose the natural question of whether an adaptive 
controller can be found to provide practical l imsup performance guarantees in the 
absence of any excitation conditions. At this poinl, the possibility that an affirmative 
answer to this question exists is, at best, remote. For example, [8, 29] studied 
bursting phenomena involving adaptat ion in two different environments, albeit with 
the same conclusion. T h a t is, in the presence of disturbances, basic gradient laws 
with small adaptat ion gains can result in a bursting behavior. 

Motivated by these studies, in this paper we adopt a different point of view, 
namely, that bursting is a consequence of the optimization objective in the parame­
ter estimation process rather than the form of the estimator itself. More specifically, 
we address the problem of fundamental performance limitations of the parameter 
estimation/identification process occurring in environments where perturbations are 
present but there is lack of "sufficient" excitation. We begin by considering the 
standard linear-model parameter estimation problem where we provide an analyti­
cal method to construct bursting scenaria for a wide class of adaptive algorithms. 
Based on this simple bursting mechanism we obtain lower bounds on the worst-case 
l imsup performance of adaptive algorithms in various situations arising in param-
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eter estimation and system identification problems. In all cases, our results show 
that in the absence of any input constraints, arbitrarily small perturbations, such as 
bounded disturbances, unmodeled dynamics, and slow time variations of the system 
parameters, impose a fundamental performance limitation. This limitation is rather 
severe in the sense that the worst-case l imsup performance deteriorates proportion­
ally with the size of the parametric uncertainty set. Finally, guided by the results of 
our analysis, we construct a simple example to illustrate the appearance of bursting 
phenomena in adaptive control. Viewing the violation of the developed sufficient 
conditions for bursting as necessary conditions for burst suppression, we also discuss 
some of the possible mechanisms tha t can lead to the design of adaptive laws that 
offer "reasonable" l imsup performance guarantees. 

2. BURSTING IN P A R A M E T E R ESTIMATION 

2 . 1 . L T I m o d e l s 

Let us consider the linear process model with output disturbance 

y = wT6* + d . (1) 

where y : IR+ i—* IR is the output of the process, w : IR+ •—• 1R" is a vector of signals 
(regressor) available for measurement, 0* E lRn is an unknown constant parameter 
vector and d is an unknown disturbance. For such a process the standard parameter 
estimation problem is to design an algorithm to estimate 9*, given the measurements 
y and w. 

Denoting by 9 the current estimate of 6*, the "quality" of this estimate is simply 
its distance from 0*. However, since the latter is unknown, a typical measure of the 
quality of the estimate 6 is given in terms of the estimation error 

e\ = y — y = w 9 — y = w </> — d (2) 

where <f> is the parameter error 0 — 9*. 
This problem is fairly standard and is encountered in several applications ranging 

from modeling and system identification problems to echo cancellation/noise atten­
uation and adaptive control problems. In the case of system identification, the input 
vector w is largely at the disposal of the designer and several studies can be found 
addressing the problem of selecting the input in order to minimize (in some sense) 
the effect of the disturbance in the identification/estimation process [15, 30]. 

On the other hand, there are several important applications where the designer 
has little or no access to the process inputs, e.g., when the parameter estimator 
is part of a closed-loop control system. In such cases, estimation algorithms may 
produce periodic bursting of the estimation error or, even, an unbounded parameter 
drift [1, 29]. This phenomenon has a simple interpretation from an optimization 
point of view: the argument of the minimization of, say, el over 9 is not continuous 
at d = 0, w = 0. This simple observation can be used to motivate a constructive 
proof of estimation error bursting. For this purpose, we consider a class of param­
eter estimation algorithms A tha t , loosely speaking, minimize a "fading memory" 
functional of the estimation error with "finite" speed of adaptat ion. More precisely, 
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2 .1 . A s s u m p t i o n . A is a parameter estimation algorithm for the linear model 
y = u;T0*, generating parameter estimates 0 such that : 

1. 0(Z) = A[(y)t,(w)t,(0)t), where (•)* denotes truncation at t. 

2. Given any bounded, piecewise continuous y, w for which there exist positive 
constants t0,T,6w and a constant vector 0* such that for all t > t0, 

rt+T 

/ w(T)wT(T)dT>6wI (3) 

y(t)=wT(t)6* (4) 

the parameter estimates 0 converge to 0*, for any 0(0). 

3. Whenever |j(y)t|joo < cy, ||(t~0.||oo < cw, ||(0)t||oo < ce where cy, cw, c6 are 
(finite) constants, there exists a (finite) constant T such that |0(/) | < T 

4. Suppose that a convex, closed and bounded set M C H n such tha t 0* € M 
is known a priori. Then, in addition to the above properties, the parameter 
estimates 0 generated by A remain in M for all / > 0. 

Adaptive algorithms that satisfy the seemingly reasonable and perhaps desirable 
Assumption 2.1, are susceptible to "bursting" as quantified by the following result. 

2 .2 . P r o p o s i t i o n . Consider the case where an algorithm A is used to estimate 
the parameter vector 0* of the perturbed linear model (1). 

1. Suppose that A satisfies Assumption 2.1,1-2. Then for any 6 > 0 and any 
0o G IRn, there exist bounded, piecewise continuous w,d with ||<i||oo < ^ a n d 
such that 0 —y 00 as t —• oo. 

2. Suppose that A satisfies Assumption 2.1 and 0* G M- Then for any 6 > 0, 
there exist bounded, piecewise continuous w,d with |Jo?||oo < 6 and such that 
l i m s u p ^ ^ led = | H | o o m a x 0 G x |0 - 0*| + 6. 

P r o o f .-(1) Let w be such that (3) is satisfied and |wT(0* - 0O)| < 6. Note that 
such an w can always be found, e.g., w = we6/\0* - 0oj where we is P E (satisfies 
(3)) and \we\ < 1. Further, define d = wT(00 - 0*); clearly [|d||oo < &- With this 
choice, (1) becomes y = wT 00 which, by the properties of A, implies that 0 —» 0O as 
t —* oo. 

(2) Let 0O = argmaxoGA-i |0 - 0*| and define cw = |M|oo- In view of Par t 1 of 
the proposition, given e > 0 there exist w, d : ||d|foo < ^ a n d a time Ti such that 
|0(Ti) - 0O| < e/c«,. Next, let w(l\) = cw(00 - 0*)/|0o - 0*| a n d ti(Ti) = -6. Since 
0 is bounded, it follows that f i (T i ) > cw\0o — 0*| + 6 — e. The same principle can 
be invoked to establish, using an induction argument, the existence of a sequence T 
where €\ satisfies the above inequality. Further, by letting e = 1/21, we obtain the 
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desired right hand-side while equality follows from the fact that the latter is also an 
upper bound of c\. • 

This result provides a constructive proof tha t arbitrarily small bounded distur­
bances can cause a class of adaptive algorithms to exhibit burst phenomena in the 
absence of any excitation (or other) conditions on the input. Moreover, as the mag­
nitude of the disturbance approaches zero, the worst-case l imsup performance of 
the estimation error approaches a constant which depends only on the parametric 
uncertainty set and the magnitude of the input signal but is independent of the 
disturbance bound. 

2 .2 . L T V m o d e l s 

One of the most important justifications behind the study of adaptive algorithms 
has traditionally relied on their intuitive applicability in slowly time-varying envi­
ronments. In this case, the analysis of several adaptive laws has produced results 
analogous to those for LTI models with disturbances, with the notable exception 
that dead-zone-like remedies are now unable to provide the corresponding l imsup 
performance guarantees for the estimation error. This is, in fact, a fundamental 
problem in the absence of any excitation conditions, regardless of the existence of 
ar r other perturbation terms. One simple explanation of this problem is as fol­
lows: During a period of insufficient excitation, there is a nontrivial manifold where 
the contribution of the parameter error to the estimation error is zero. Since all 
standard algorithms rely on such an error signal to assess the quality of the param­
eter estimates, the actual parameters may drift in a way that does not contribute 
any information to the estimation process. Thus, the estimator is "blind" to such 
parameter drift ; and an error burst will occur as soon as the excitation changes 
direction/magnitude revealing the current value of the actual parameters. 

To quantify this simple argument, let us consider the linear time-varying (LTV) 
process model 

y = wTQ+ (5) 

where y : IR+ t—> IR is the output of the process, w : IR+ i—• IRn is the regressor 
vector and 0* : IR+ •—> IRn is the unknown time-varying parameter vector. The speed 
of variation of the unknown parameters can be characterized in a simple way by the 
magnitude of their derivative. For example, assuming that ft is a positive constant 
such that ||lj*||oo < H, smaller values of fi indicate slower varying parameters. Next, 
we consider algorithms tha t satisfy the following: 

2 .3 . A s s u m p t i o n . A is a parameter estimation algorithm satisfying Assump­
tion 2.1 with the following modifications: 

(i) In 2.1,2, and whenever lj* is constant for t > to, 6 is only required to converge 
to a residual set 

B = {O:\0-64 <dzy/T/8~,} 

for any lj(0), where dz > 0 is a constant. 
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(ii) In 2.1,3, there also exists a (finite) constant T' such tha t \0(t)\ < T'\y(t) — 
wT(t)9(t)\. 

This assumption is weaker than the one used in the previous section in that , 
under persistent excitation, asymptotic convergence of the parameter error to zero 
is not required. Instead the parameters are allowed to converge to a residual set of 
nonzero radius, thus including dead-zone-like algorithms. (Note that the expression 
used above is inspired by the typical dead-zone estimator with threshold dz where the 
radius of the residual set is dzy/T/6w) On the other hand, a stronger condition is 
used in part 3 of the assumption which essentially reflects the fact that the quality of 
the parameter estimates is inferred by the instantaneous estimation error. This part 
of the assumption can be relaxed to include algorithms minimizing an exponentially 
weighted L2 norm of the error [13] or an error functional over a finite moving window. 

2 .4 . P r o p o s i t i o n . Consider the case where an algorithm A is used to estimate 
the TV parameter vector (9* of the linear model (5) and suppose that A satisfies 
Assumption 2.3. Then for any fi > 0, there exist bounded, piecewise continuous u> 
and (9+ : IR+ .—• M with ||0*||oo < A', such that l imsup t_oo k i | > ||,u;||00diam.A/f — 
dzy/n. 

P r o o f . Let 6\,92 E M such that \B\ ~92\ = d iamA4. Also let w\ be such that 
(3) is satisfied and |u>i(2)| < cw, VL Then, for any e > 0, there exists T\ such 
that when A is applied to the model (5) with (9* = 6\ and w = w\, \9(T\) — Q\\ < 
dzy/T/6w + e. Next, define w = W\, 9*(t) = 9\ in the interval [0,Ti) and w = 0, 
6*(t) = 0i -f n(92 - 9i)(t - Ti)/diam.A/f in the interval [TUT2), where T2 = Tx + 
diam jvt/ / i . Then at time T2, 9*(T2) = 92 and 9(T2) = 9(TX). Hence, choosing 
w(T2) = cw(91-92)/\91-92\, we have that ex(T2) > cwdiamM-cw(dz JT/6W +e). 
Clearly, the sequence can be repeated ad infinitum with (9* oscillating between 9\ 
and 92. Hence, l i m s u p ^ o o k i | > c„;(diam.M — dz^/T/6w). Finally, for the special 
case where during the excitation intervals w at tains its maximum magnitude in 
the direction of each unit vector for a subinterval of length T/n, it follows that 
6W — cwT/n yielding the desired expression. • 

For adaptive algorithms satisfying Assumption 2.1 (dz = 0) this lower bound 
on the worst case performance is sharp. On the other hand, for dead-zone-like 
algorithms (dz > 0) the bound given in the proposition is conservative and makes 
sense only when dz is small relative to diamjvf. Less conservative bounds or bounds 
independent of dz can be derived for specific cases, e. g., for the s tandard dead-zone 
algorithm l imsup t^oo kil ^ | | |w;||oodiamA4. Nevertheless, Proposition 2.4 conveys 
an important qualitative message, that is, the size of the parametric uncertainty set 
imposes a fundamental worst-case l imsup performance limitation for a general class 
of adaptive algorithms operating in TV environments.1 

Not i ce that Proposition 2.4 also provides a rigorous proof of the conjecture that dead-zone 
techniques do not provide any limsup performance guarantees in the TV case. 
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3. BURSTING IN SYSTEM IDENTIFICATION 

In this section we briefly discuss the implications of the above observations and re­
sults in the identification of linear systems. In particular, we consider the case where 
the I/O map of a linear system is identified via adaptive linear-model parameter es­
timation. This approach amounts to expressing the I/O relationship in terms of a 
standard linear model and using a parameter estimator to estimate the partially un­
known parameters. For example, given a uniformly observable linear system [A, b, c] 
(possibly time-varying) we can always express the I/O relationship u \—> y ip the 
form 

x = Fx + 9uu + 62*y ; y = qTx (6) 

where F is a Hurwitz matrix and (q, F) is a completely observable pair at the disposal 
of the designer (e.g. see [34]). Further, using the definitions 

w = [G(s)[Iu], G(s)[Iy]]т 

n = G(s) {G'(s) [Iu] èu + G'(s) [Iy] ć Ц 

where G(s) = q (si — F) 1, G'(s) = (si — F) l the above relationship assumes the 
convenient linear-model form 

y = wT9* -n + et. (7) 

Here, et denotes exponentially decaying terms due to initial conditions and n is a 
perturbation due to the swapping of the possibly time-varying parameters. 

From (7) it becomes apparent that linear-model parameter estimation algorithms 
can be employed in performing a (parametric) identification of the system (6). In 
such a case we distinguish two types of error signals measuring the quality of the 
parameter estimation and identification processes. One is the usual estimation error 
e\ = w 0 — y driving the parameter estimator. The other is the identification error 
e\ = G(s) [u6i + y92] — y arising when the estimates 9 are interpreted as an I/O 
operator and serves as an approximation error of (6). The relationship between these 
two errors is given by ei = c\ — r) where r) = G(s){G'(s) [ul] 9\ + G'(s) [yl] 02}-

In this framework, we are interested in assessing the performance limitations of 
system identification algorithms applied to a perturbed version of (6). For simplicity, 
throughout the rest of our discussion we assume that the system (6) is exponentially 
stable. For the same reason, we need to further restrict the class of algorithms under 
consideration by introducing the following technical condition. 

3.1. Assumption . In Assumptions 2.1 and 2.3 equation (4) is replaced by y(t) = 
wT (t)9* +£t where et is any exponentially decaying term. Furthermore, there exists 
a constant 7 > 0 such that the quantity T in Assumptions 2.1 and 2.3 satisfies 
r < j\9(t) - 6*(t)\, uniformly in \\ut\\oo-

Under this condition, it is possible to extend the bursting scenaria of the previ­
ous section to the system identification process. Note, however, that some technical 
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modifications are required to account for the specific way that the perturbat ions 
enter the system as well as the fact that the regressor vector w can only be manip­
ulated through the input u. In particular, the latter constraint takes the form of a 
minimum time required for w to be steered from the origin to any point on a ball in 
IRn whose radius depends on the bound of ||w||oo- (Notice that w is controllable from 
u [21, 27].) With this observation, conservative but intuitively appealing s tatements 
on the performance limitations of a class of adaptive identification algorithms are 
given below. 

3 .2 . P r o p o s i t i o n . [33] Consider the case where the system (6), perturbed by 
setting y = q x + d, is identified by means of a parameter estimation algorithm 
A, which is designed based on the linear model y = wT6*. Further, suppose tha t 
6* £ M and A satisfies Assumptions 2.1 and 3.1. Then for any 8 > 0, there exist 
bounded, piecewise continuous u,d with Halloo < 8 and such that 

l imsup | e i | > ||w||oo max \0 - 9*\CU [2 — e77*] 
t-»oo 6£M. 

l imsup |e i | > Hull*, max \B - 6>\[CU(2 - e7 r«) - 0 ( 7 / ( 0 + 7))(e7 T" - e"QT")] 
f - .oo OEM 

l imsup |e i | > 0 ( M r / ( l + 7) ) |M|oe 
t—*oo 

where Cu,Tu,a are positive constants depending on the bound of u, the system (6) 
and the regressor filters; Mr = m a x r s.t. {9 : \6 — 0m\ < r} C M. 

The proof of the proposition follows the same basic idea outlined in Proposition 1, 
except that during the bursting phase the regressor vector must be driven to the 
desired value by u; since this process consumes time TU, the maximum possible 
adjustment of the estimated parameters must also be taken into account, e. g., using 
the Bellman-Gronwall Lemma. 

Similar results are obtained for the adaptive identification problem of an LTV 
plant of the form (6) where (q,F) is an observable pair and 0* : IR+ >—> M. Here, 
to ensure that this identification problem makes sense, we need to impose some 
restrictions on the set of admissible parameter vectors 0*. For example, in a typical 
identification problem such a condition may be expressed as 

0* :IR+^M' CM ; ||^||oo < Ato 

for some /io > 0, where M' denotes the largest (in diameter) connected part of M 
such that any 9 £ M' corresponds to a system that is pointwise strongly controllable 
and observable and exponentially stable, uniformly in 9 £ M'. 

3 .3 . P r o p o s i t i o n . [33] Consider the case where the system (6) is identified by 
means of a parameter estimation algorithm A, which is designed based on the linear 
model y = wT9+. Suppose that A satisfies Assumptions 2.3 and 3.1 and 9* £ M'. 
Then there exists ptQ > 0 such that for any /i G (0,/io), there exist 0* : IR+ 1—> M' 
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with ||#*||oo < //, and a bounded, piecewise continuous u such that 

h m s u p h l > H l o o - V C u p - e ^ - ] 
t — . 0 0 

l i m s u p l d l > | | t i | | o o M / { C u ( 2 - e ^ ) - 0 [ 7 / ( a + 7 ) ] ( e 7 T u - e - Q 7 " " ) } 

limsupleil > |H | o 0 0{[M;-c i ,v / T7^- -^ ( r ' ) ] / ( l + T)} 

where C u , r u , o ; are as in Proposition 3.2, M' = [diamjVT - dzy/T/8w - 0 (F ' ) ] and 

M; = 2max0oeM'[r] s.t. {(9 • |0 - <90| < r} C jvT.2 

The proof follows along the lines of the previous results, with the addition of 
a regulating input during the parameter drift phase; this input ensures that when 
the system parameters drift, the regressor and estimation error maintain small mag­
nitudes which, in turn, limits the maximum possible adjustment of the estimated 
parameters to an arbitrarily small value. 

Thus, as in the case of linear-model parameter estimation, the presence of arbi­
trarily small disturbances or parameter time-variations combined with lack of suf­
ficient excitation, can induce persistent estimation and identification error bursts 
whose magnitude is proportional to the size of the parametric uncertainty set. For 
the estimation error, this is immediately apparent from the respective lower bound, 
gi en in the propositions, by letting TU become sufficiently small. On the other hand, 
the first lower bound for the identification error is meaningful only when the "adap­
tation gain" 7 is sufficiently small but becomes to conservative for large adaptat ion 
gains. (Note that Cu —• 0 as TU —+ 0.) In the latter case, the second lower bound 
offers a qualitatively similar conclusion at the expense of a reduction in the size of 
the parametric uncertainty. 

3.4. R e m a r k . The qualitative characteristics of this behavior are not limited 
to a specific model (or structure) of perturbations. Indeed, the same effect can 
be obtained by output disturbances or unmodeled dynamics. For the latter, in 
particular, the perturbation d takes the form d — Ai[«] + &2{y] where A i , A2 are 
stable operators. In order for this problem to be practically meaningful, the class 
of admissible perturbations should be restricted to those for which the perturbed 
system is "close" to the original one e.g., by specifying an upper bound for the 
induced gains of A». Under these conditions, the results of Proposition 3.2 remain 
valid when 8 is such that A i , A 2 have induced L2 (or Loo) gains less than b and 
8 £ (0,8Q), for some 8Q > 0. 

It is not surprising that the construction of a bursting scenario for this case 
involves high-frequency inputs u and perturbations that are "large" at high fre­
quencies. For example, the effect of the previous burst-inducing disturbance can be 
emulated by choosing 

A,- = 9tqT(sI - F)-l(6l0 - 9U)GH{S) 

2If, in addition, A satisfies \0(t)\ < *y'dist(8(t), B) for some constant -7' and for all 0 G {8 : 0 < 
j3 < dist(5(i), B)}, then the terms 0(V) drop out of the performance lower bounds. 
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where GH($) is a stable, high-pass transfer function with "cut-off" frequency v0, 
while during the P E intervals the input is a sum of high frequency (^> v0) sinusoids.3 

On the other hand, some modification of the results is necessary when the admissible 
perturbations are further restricted to enter the system in a multiplicative or additive 
form. For such a case, it can be shown that the error lower bounds in Proposition 3.2 
remain valid if the term ma,XQ£M \0 — 0* | is replaced by Mr. 

An interesting by-product of our bursting scenario is that , without imposing any 
excitation conditions, the problem of ensuring "good" l imsup performance in the 
presence of arbitrarily slow plant parameter variations is as hard as the problem of 
ensuring good Loo performance (i.e., including adaptat ion transients) for LTI plants 
with arbitrary initial conditions in the parameter estimates but with restricted initial 
conditions on the plant/filter states. 

4. E X A M P L E : LTI PLANT WITH DISTURBANCE 

Although not formally treated in the present study, similar scenaria can be extended, 
at least in principle, to the adaptive control case where the parameter drift can cause 
a temporary destabilization of the closed-loop and, thus, induce even more severe 
bursting. In the following we illustrate the construction of such bursting scenaria 
by means of a simple example from model reference adaptive control (MRAC). 

Consider the plant with input disturbance d 

b r 
yP = —— [u P + d\ 

s + a 

with nominal parameters a = 0, b = 1 and suppose that the control input up is 
designed so that the nominal plant output tracks the output of the reference model 

1 r . 

ym = s+l 

for any bounded reference input r. To achieve this objective when the plant param­
eters are partially unknown we use the controller 

UP = [r>yPW 

where 6 is updated by a gradient-based adaptive law with projection. For simulation 
convenience, we update 0 in discrete-time with sampling interval Ts = 0.2, according 
to the following equations: 

(k +Ì) = ПM 

2«i(*)C(Ц 
m(k) + 2(T(k)((k)\ 

gt is a scalar, time-varying gain, switching the perturbation off during the bursting intervals in 
order do simplify the derivations. 
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The estimation error and regressor vector are taken as the sampled versions of their 

continuous time counterparts 

f i = # T C г Ы i C=[Уp,—-г[Уp]]T 

m 

i + l ™ ' ' w s+1 

l + m 2 ; m 2 = - 0 . 7 5 m 2 + u2

p + yţ. 

The projection set M is selected to contain the nominal controller parameter vector 
(0* = [ 1 , - 1 ] T ) ; in our simulations we take M — [0.3,3] x [—4,4]. 

Guided by the previously presented construction of bursting scenaria, we let 

r = Hi[sin(4*) + sin(f)] + H2 

d = sa t 0 . 5 [-A'y P ] 

where sato.5 denotes a saturation nonlinearity with linear region [—0.5,0.5] (clearly, 
Halloo < 0.5). It now follows t h a t whenever Hi,H2 are sufficiently small so t h a t 
Kyp is in the linear region of the saturation, and r is P E , the adaptat ion algorithm 
drives the parameter estimates towards the point [1, K — 1]. Thus, if K — 1 > 0, the 
nominal unperturbed closed-loop is unstable, something that becomes evident in the 
form of a burst as soon as the disturbance is removed and/or the magnitude of the 
reference input is increased. This behavior is illustrated in Figures 1-6. It should be 
emphasized that the burst magnitude is essentially independent of the disturbance 
bound; if the latter is decreased, the same qualitative behavior will be obtained by 
decreasing Hi and increasing the length of the drift phase. 

5. BURST SUPPRESSION 

In this section we briefly discuss the implication of the above results on the design of 
adaptive laws that provide practically meaningful l imsup performance guarantees 
in the absence of excitation. For this purpose, we observe that the violation of 
at least one of the assumptions can be interpreted as a necessary condition for 
burst suppression. In the following, we use our previous example to discuss the 
differences between two approaches to burst supression for LTI plants. One is the 
use of some form of a dead-zone that modifies the optimization objective so that 
error convergence to zero is not required (violating Assumption 2.1. The other was 
introduced in [35] and uses a "s tandard" adaptive scheme (i.e., conforming to the 
previous bounds) but employs set-membership concepts to estimate (and reduce) the 
parametric uncertainty set on-line. Notice that in this approach, Assumption 2.1,2 
is also violated but in a more subtle way. T h a t is, the parameter estimates do not 
converge to any point in the initial parametric uncertainty set M, for all initial 
conditions and all inputs satisfying the P E condition. They do, however, converge 
to any point in M that is consistent with the measurements and the "noise" bound. 

5 .1 . A d a p t a t i o n w i t h d e a d — z o n e 

For our example, since the plant is LTI, one quick remedy for bursting is the use of 
a dead-zone in the adaptat ion. Following [20], such a dead-zone can be introduced 
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in the adaptive iaw by simply replacing the estimation error t\ by 

(•dz — 

where do is the dead-zone threshold For the selection of do we need to know an 
upper bound on the effective perturbation entering e\. If such a bound is avail­
able, the modified adaptive law guarantees that l imsup jei| < l imsup do. Further­
more, for a threshold that is strictly greater than the perturbation bound (in the 
l imsup), the estimated parameters converge, resulting in a tracking performance 
bound l imsupjei | < ( m i n ^ 6 q ) _ 1 l imsup do. Although in the general case the de­
sign of do could be quite involved, in our simple example it turns out that it suffices 
to choose do to be greater than the input disturbance. In our simulations, shown in 
Figures 1-6, we choose do = 0.6. 

5.2. A d a p t a t i o n w i t h u p d a t e d p r o j e c t i o n se t 

A different approach to burst suppression is to decrease the size of the effective para­
metric uncertainty (d iam.M). This idea was explored in [35], where set-membership 
(SM) estimation principles were used to reduce the parametric uncertainty set on­
line and establish dead-zone-like l imsup performance guarantees. 

Set-membership estimation deals with the problem of estimating the smallest 
possible set that contains the unknown parameters of an affine parametric model, 
using I/O measurements and an instantaneous bound on the noise. A suboptimal 
but computationally tractable solution of this problem can be obtained recursively as 
an ellipsoid that contains the constraint set (see : for example, [3,4,6,9,28]; see also 
the Appendix for a brief review of the recursion equations and some basic results). 
Although the primary interest in this approach is the estimation of the parametric 
uncertainty set (or constraint set), the center of the ellipsoid could be used as an 
estimate of the unknown parameters. Employing such an estimator in an adaptive 
control scheme offers asymptotic performance guarantees that are similar to those 
obtained with dead-zone algorithms (see Proposition A.l in the Appendix). There 
are, however, some differences between the two that should be taken into account in 
the interpretation of theoretical results as well as practical designs: 

• SM algorithms exploit measurement information more efficiently than dead-
zones, taking into account both the size and directionality of the excitation. 
This often results in a significant performance improvement in terms of speed 
of convergence and asymptotic, properties of the estimation and parameter 
errors. 4 

• Naturally, SM algorithms introduce an increased complexity in the estimator 
that could be significant when the number of adjustable parameters is large. 
This added complexity could pose a problem in the selection of sampling rates, 

l This is analogous to the performance comparison between least-squares and gradient estimators. 
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since in the initial stages of estimation the SM updates are quite frequent. To 
a lesser degree, the memory requirements for SM estimation could become 
prohibitive for large problems. 

• A more subtle difference is due to the more restrictive assumptions of SM 
algorithms. As defined, an SM estimator requires the knowledge of an instan­
taneous bound of the perturbation, while its dead-zone counterpart needs only 
a bound of the l imsup value. Among the consequences of this difference is that 
SM algorithms also require a (possibly time-varying) bound on the transient 
terms, including contributions of initial conditions, with the corresponding re­
sults being only semi-global. On the other hand, dead-zone algorithms need 
only "steady-state" information and produce global results. Furthermore, vi­
olation of the assumptions can induce more severe problems in an SM esti­
mator in that the constraints become inconsistent and the algorithm requires 
re-initialization. 

An interesting use of the SM algorithm, explored in [35], is as a set estimator 
that a t tempts to reduce the size of the uncertainty set on-line. In this approach, the 
adaptive controller employs two estimators: One is responsible for the updat ing on 
the controller parameters via a simple gradient scheme with projection. The other 
is an SM etimator, responsible for updating the parametric uncertainty set used for 
projecting the parameters of the first estimator. Tha t is, the parameter updates are 
performed according to 

0 = n E k n M ( ^ ^ \ - 9(0) eM (8) 

6(t+) = n°~knM[9(t)] whenever dist(0, Ek n M) > e* (9) 

where the constant e* denotes the thickness of the boundary layer used in the pro­
jection IlEknM and dist(o, Ek DM) is defined as 

dist2(0, Ekr\M) = dist^-a (9, M) + dist^_, (9, Ek). 

The sets Ek are updated by the auxiliary set-membership estimator (16) - (21) and 
(24) (operating in hybrid mode), with the regressor and error signals defined as 

Zk = C(tk)/Vm2(tk) 

ik = ~ei(tk)/^m2(tk) + 9T(tk)zk - cJ_lZk (10) 

Hk = /-(<*) 

(limjfc—oo tk = oo; typical initialization EQ _l M.) 
As shown in [35], for LIT plants, this combination of estimators maintains the 

desirable RMS performance of gradient adaptat ion (with fixed projection set) while, 
in-addition, it offers dead-zone-like performance guarantees in the l imsup sense. 
More precisely, under the assumption that the effective perturbation entering the 
estimation error t\ has an a priori known bound fi(t), a MRAC with the adaptive 
law ( 8 ) - ( 9 ) has the following properties: 
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• Signal boundedness is guaranteed for sufficiently small unmodeled dynamics 
(the sufficient condition for robustness is the same as for a MRAC with fixed 
projection set [32]). 

• The RMS performance guarantees are the same as for a MRAC with fixed 

projection set (i .e. , the upper bounds for RMS V7=£= and RMS -7=̂ = are 

as in [32]). 

• The estimation and tracking errors satisfy the following l imsup performance 
guarantees 

lim sup 
í—+00 

łim sup 
ť—>-oo 

Єl 

'm2 

ei 

< (ҳ/2n(l + e*) + Ѓj \ìm sup(џ) + 0 U 1 i 4
J sup(ť j fc-ť j i ._ i)) 

< O (yЩì+Tiӯ+Tj ü m sup(/i) + 0 U^.supíť j fc-ťj fc-i)) 

where 2n is the number of adjustable parameters and e is a small design pa­
rameter (see Proposition A . l ) . 

These results should be carefully interpreted, since they only establish the equality 
of worst-case performance and robustness bounds of the fixed and updated projection 
set MRACs. The two schemes, however, will not necessarily exhibit the same RMS 
performance, nor they will preserve signal boundedness for exactly the same class 
perturbations. Further, for the implementation of the updated projection set algo­
rithm, the a priori knowledge required is the combination of the knowledge needed 
for the fixed-set projection and dead-zone MRACs together with an upper bound on 
the transient contribution of the perturbation terms, including initial conditions, in 
the estimation error. Although the latter can be annoying, it should be emphasized 
that unlike dead-zone algorithms, the RMS performance guarantees of the updated 
projection set MRAC are not affected by the conservatism in the selection of the 
threshold fi(t). 

E x a m p l e . Returning to our example, we simulate the closed-loop response with 
an adaptive controller employing updated projection sets. As before, we use the 
discrete-time version of the estimator to adapt the controller parameters, i.e., 

0(к + 1) = ПЕкПМ 

2ei(*)C(*) 
m(k) + 2C(k)((k)\ 

with sampling time 0.2 time units. The SM updates of the parametric uncertain­
ty set Ejt (i.e., Rk and Ck) are performed every 0.5 time units, with a threshold 
fi(t) = 0.6/vlm + 5 e _ 0 25t which is consistent with dead-zone case. In addition, for 
comparison purposes, we also simulate the closed-loop response where the controller 
parameters are updated by an SM estimator alone (setting 0(k) -— Cjfc). 
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5 .3 . S imula t ion resu l t s 

The results of our simulations, shown in Figures 1-7 , illustrate the main points of 
our previous analysis and discussion. The first set of figures ( 1 - 3 ) shows the closed-
loop responses with the four adaptive controllers starting with zero initial conditions 
while the reference input and the perturbation alternate between the following two 
phases: 

P h a s e 1: (Drift phase) K = 5, Hi = 0.1, R2 = 0 (85 time units). 

P h a s e 2: (Burst phase) K = 0, Hi = 0, R2 = 1 (15 time units). 

Figure 1 shows the output responses with MRACs employing adaptat ion with fixed 
set projection, dead-zone, SM, and updated projection sets, as well as the "nominal" 
response of a non-adaptive MRC that was designed for the nominal plant. Figure 2 
shows the corresponding tracking error responses; the error plots are clipped to 
emphasize steady-state details. Figure 3 contains the trajectories of the parameter 
estimates for each of the four adaptive laws. 

In these plots we observe that the response of the MRAC with fixed projection 
set exhibits large bursts in the beginning of each Phase 2 interval. At these instances 
the parameter estimates have been driven near the point (1,4) and correspond to an 
unstable closed-loop system. Although stictly speaking this behavior is not periodic, 
th parameter trajectories in Figure 4 indicate that these bursts do not disappear 
with time. 

As expected, the tracking error bursts are considerably reduced with dead-zone 
adaptat ion. This improvement, however, is obtained at the expense of a deterioration 
of the RMS performance. The latter is manifested by a significant increase of the 
error in the Phase 2 intervals where the reference input is large (the peak error 
is close to two, its estimated worst case value.) Similar conclusions can be drawn 
for the MRAC with the SM estimator, although in this case the deterioration of 
the RMS performance is considerably smaller. This can be attr ibuted to the more 
efficient utilization of information by the SM estimator that results in a steady-state 
error of approximately 0.2 during the Phase 2 intervals. 

On the other hand, the MRAC with updated projection sets exhibits good asymp­
totic performance in both the RMS and l imsup sense. Its initial transient is similar 
to the MRAC with fixed projection set since, at that point, the available data offer 
very little information about the parametric uncertainty set. During the rest of the 
cycles, however, the reduction of the latter does not permit any significant parameter 
drift towards the destabilizing region and, consequently, limits the size of the error 
bursts. Notice that , in contrast to the dead-zone and SM adaptation, this algorithm 
ensures the "convergence" of the tracking error to zero during the Phase 2 intervals 
where the plant disturbance is absent. 

Finally, it should be emphasized that the non-decaying memory of SM estimators 
can cause significant differences in the estimates of the parametric uncertainty set for 
inputs that have the same steady-state but different transients. This is illustrated in 
the second set of figures ( 4 - 6 ) where the reference input and the perturbation again 
alternate between the same two phases, but starting with Phase 2. In this case, 
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even though the steady-state tracking response remains approximately the same, 
the updated projection set MRAC results in a tracking error with smaller but more 
persistent transient contributions. The absence of a "large" error burst offers less 
information about the parametric uncertainty set, something that is indicated by 
the much larger final ellipsoid (Figure 7). 

MRAC responses with lour adaptive laws 
lOOr 

MRAC responses (détail) 

' 1 ll 
_ л _ , Л У\ , 

1 
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-

' з" 

П 4 

"* 5 

Fig. 1. Output response of MRAC with the four adaptive laws. Reference input and 
disturbance selection: Phase 1 followed by Phase 2. 

Key: 1: fixed projection set, 2: dead-zone, 3: SM, 4: updated projection set, 5: nominal. 

MRAC responses with four adaptive laws (detail) 

50 100 150 200 250 300 350 400 450 500 

Fig. 2. Tracking error response of MRAC with the four adaptive laws. Reference input 
and disturbance selection: Phase 1 followed by Phase 2. 

Key: 1: fixed projection set, 2: dead-zone, 3: SM, 4: updated projection set. 
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4 Fixed Projection parameters Dead-zone parameters 

theta 1 

F i g . 3 . Parameter trajectories of MRAC with the four adaptive laws. Reference input 

and dis turbance selection: Phase 1 followed by Phase 2. 

MRAC responses with four adaptive laws MRAC responses (detail) 
60, 1 20 r 

F i g . 4 . Ou tpu t response of M R A C with the four adaptive laws. Reference input and 

dis turbance selection: Phase 2 followed by Phase 1. 

Key: 1: fixed projection set, 2: dead-zone, 3: SM, 4: updated projection set, 5: nominal. 
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MRAC responses with four adaptive laws (detail) 

0 50 100 150 200 250 300 350 400 450 500 

F i g . 5. Tracking error response of M R A C with the four adaptive laws. Reference input 

and dis turbance selection: Phase 2 followed by Phase 1. 

Key: 1: fixed projection set, 2: dead-zone, 3: SM, 4: u p d a t e d projection set. 

Fixed Projection parameters . Dead-zone paгameters 

theta 1 

. Updated Projection parameters 

theta 1 theta 1 

F i g . 6. P a r a m e t e r trajectories of MRAC with the four adaptive laws. Reference input 

and dis turbance selection: Phase 2 followed by Phase 1. 
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Fig. 7. Initial and final SM estimates of the parametric uncertainty for the MRAC with 

updated projection set. 

6. CONCLUSIONS AND DISCUSSION 

With the development of a general bursting scenario we analyzed some fundamental 

performance limitations of a wide class of adaptive algorithms, operating without 

sufficient excitation in "noisy" environments. The underlying principle behind these 

limitations is that , in the absence of sufficient excitation, perturbations may cause 

significant drifts (or effective drifts, in the time-varying case) of the parameter es­

timates. The manifestation of such a drift in the error signals is the appearance of 

a "burst" as soon as the excitation becomes large in a suitable direction. At t h a t 

point, the size of the burst depends on the speed of the parameter updates relative 

to the time-scale of the regressor signals. 

Further, using our bursting scenario in the adaptive control case, we illustrat­

ed some basic "burst" suppression mechanisms. Classical dead-zone adaptat ion 

prevents parameter adjustment when the signal-to-noise ratio may be poor. A 

more efficient, but also more restrictive, use of information can be achieved using 

set-membership estimation principles. This approach leads to a burst suppression 

mechanism whereby the parameter estimates are prevented from drifting to regions 

where bursts have occured. Combining such an estimator with a s tandard gradi-
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ent algorithm with projection, we demonstrated that the size of the bursts can be 

suppressed without sacrificing the desirable RMS performance properties of gradi­

ent adaptat ion. The results, however, are applicable to the LTI case only, while 

the LTV generalization seems to be susceptible to bursting in manner analogous to 

dead-zone algorithms. Moreover, since SM algorithms rely heavily on the knowledge 

of an instantaneous bound of the noise, their practical application would require 

some "intelligent" on-line management of the estimated parametric uncertainty set. 

Other promising approaches include the use of multiple estimators operating on 

a partition of the original parametric uncertainty set [20, 22]. Roughly, under this 

approach, the best estimator is selected at each time instant (or short interval) 

according to a cost objective. Effectively, the switching of estimators implements an 

adaptive law with infinite adaptat ion gain and, thus, violates our sufficient conditions 

for bursting. Still, the stability analysis for such an algorithm is available only for 

LTI plants. 

Yet another idea is the use of "error compensation" [5, 31] which introduces 

a suitable high gain feedback mechanism in the loop that decreases the size of the 

error bursts. From our viewpoint, this approach effectively translates the parametric 

uncertainty into a region where any possible parameter drift has a small contribution 

in the tracking error. T h e success of this technique, however, has been limited to 

MRC problems. 

Finally, we should emphasize that even if adaptation bursting turns out to be 

unavoidable in the general case, there is still a potentially viable adaptive control 

strategy in the injection of P E signals in the closed-loop. Under this approach, the 

injected signal should be of sufficiently high strength to provide a "good" signal-to-

noise ratio and ensure parameter convergence to a small residual set [18,21,27]. On 

the other hand, such a signal should be small enough in order to have a minimal 

interference with the control objective. This basic trade-off between the parameter 

error residual set and the perturbation due to the injected signal suggests that the 

achievable l imsup performance should be of the order of the worst-case disturbance 

magnitude. Although conceptually simple, it seems that the main challenge in this 

approach is to establish quantitative and non-conservative criteria for the selection 

and implementation of the injected excitation. 

A P P E N D I X 

A S E T - M E M B E R S H I P E S T I M A T I O N : BOUNDING ELLIPSOIDS 

The basic development of the Set-Membership estimation algoritms begins with an 

affine parametric model of the form 

Уk = jч + nk (11) 

where yk, Zk and n^ are bounded sequences, 9* £ IR is the unknown constant 

parameter vector, yk,zk are available for measurement and nk satisfies 

K l < /-* (12) 
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where fik is an a priori known bounded sequence. 5 The last condition implies that 

each I/O measurement (zk,yk) defines a set containing 0* as an intersection of two 

half-spaces, that is 

0, G Hk = {0 G I R M : \yk ~ 0Tzk\ < p * } . (13) 

Clearly, given k I/O pairs, the smallest set that is guaranteed to contain 0+ is the 

intersection C\\-xHi. Alternatively, n*= 1H,- can be viewed as the set of all parameters 

compatible with the model (11), the measurements and the constraint (12). 

Although conceptually simple, this solution of the set-membership estimation 

problem is computationally intractable since, in general, the number of parameters 

required to define nf= 1H,- grows linearly with k. To overcome this problem, we 

may relax our objective and find an ellipsoid, say Ek that "tightly encloses" the set 

n f = 1 H , . The advantage of this approach is that an ellipsoid is defined in terms of a 

fixed number of parameters (a center and a generalized radius) as shown below. 

Ek = E(Rk,ck) = {0E I R M : \6 - ck\R-r < l } (14) 

where Rk is a positive definite matr ix and ckl Rk are the center and generalized 

radius of the ellipsoid, respectively. Next, and in order to obtain a recursive so­

lution, we may further modify our objective as follows: Given an ellipsoid Ek-i 

containing 0* and the I/O pair (zk,yk), find the "smallest" ellipsoid Ek such that 

Ek-\D Hit C Ek. To quantify the meaning of the smallest ellipsoid we can employ 

various measures of the size of a set. One such measure, leading to relatively simple 

expressions, is the volume of the set which, for an ellipsoid Ek, is proportional to 

the determinant of Rk, 

It is now a straightforward exercise in geometry to find the ellipsoid Ek of mini­

m u m volume, containing the intersection Ek-\ OH*. A simple way to achieve this is 

to view Hk as a degenerate ellipsoid and define Ek in terms of a nonnegative scalar 

weight as shown below. 

Ek(q) = {0 G I R M : \0 - ck-i\l-1 + </|y* - °Tz*\2 < 1 + 9A-*} (15) 

where q > 0 is selected so as to minimize the volume of Ek(q)- Combining (14) and 

(15), we obtain the following recursive formulae for the ellipsoid Ek'-

Єk -

o-k -

Rk = 

Уk - cк-\Zк 

1 , / 2 -2N , 2 êlzj Rк-\Zк 
1+0(/-Іfc el)+1 , * T p 

1 +r/г fc' Rк-\zк 

(16) 

Rк~\ZкZк Rк-\ 
акRк-i qак 

(17) 

DOnly the discrete-time version of this estimation problem is considered here since, in order to 
simplify the analysis, our intention is to operate the set-membership estimator in a hybrid mode. 
Also notice that the assumption that yk, zk, f̂c are bounded can easily be met in our MRAC 
framework via signal normalization. 
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aM 
detH* = r - -A~ detHfc_! (18) 

1 +qzl Rk-lZk 

R~kl = t -T i i+ .*-**!/«* (19) 

Cfc = Cfc.i + g H f c , ! — B - J -• (20) 

i + g-fc R*-i«* 
Further, minimizing detHfc(<z) subject to the constraint q > 0 we obtain 

0 i fB 2
2 -4A/? 3 < 0 

(21) ?Opí max (o, l f e J 3 ^ - _ - 5 ) otherwise 

ft = (M- l ) / i i ( z T .R*- i* f c ) 2 

/?2 = ( 2 M - l ) 2 T ^ _ 1 2 i ^ - ( z T ^ _ l 2 f c ) 2 + ^ i
T ^ - i ^ 

#, = M(/if-e|)-_JRjfc_1zfc. 

In the above derivations, we have tacitly assumed that M > 1. The case where 
M = 1 (only one adjustable parameter) must be treated separately. In this case, 
however, the parametric uncertainty set reduces to an interval and nfLjHi can easily 
be computed recursively. For this reason, in the rest of our discussion we only 
consider the more interesting case M > 1. 

Equations (16) - (21) provide the basic recursion for a class of set-membership es­
timators. We should point out that the so-obtained estimates are more conservative 
than the optimal polytope solution of the set-membership problem. The sources of 
conservatism are in the bounding of the optimal polytope by an ellipsoid, the recur­
sive computation of the ellipsoid (nf=1Hj may be contained in the interior of Ek) 
and the simplified computation of Ek (the above formulae do not take into account 
the case where Ek lies strictly in the interior of one of the half-planes defining H&). 
Nevertheless, as shown in [9] under some excitation conditions on the regressor Zk 
and the disturbance rik the set Ek converges to a single point, namely #*. Further­
more, even in the absence of any excitation conditions, the ellipsoid Ek maintains 
certain desired properties, as stated in the following proposition. 

A . l . P r o p o s i t i o n . [35] Consider the parametric model (1) and suppose that 

9, E E(R0,co) (22) 

fit > K | + e, Vfc (23) 

where CQ 6 IR , R0 = HT > 0, fik > 0, \f k are known and 6 is a positive design 
constant. Further, consider the ellipsoid Ek defined by (16), (20) where at each 
sample k, the weight q is selected as: 

( Qopt i f detRk(qopt)<(l-e)detRk-i 
Q = { (24) 

[ 0 otherwise. 

Then, 
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1. Ek converges in finite steps; that is, there exists ko > 0 such that VA; > ko, 

q = 0 and Ek = Ek0 • 

2. veeEk, \yk-eTzk\< ( X / M + I I W + O ^ 4 ) . 

Finally, it is worthwhile to notice that a necessary and sufficient condition for 
q(k) = 0 is 

M(n\ 4- 6 - e\) - zjRk-iZk > 0 (25) 

where 8 = 0(y/e). Since qk converges to zero in finite steps, the above inequality 
(from which Property 2 of Proposition A. l is derived) indicates that , especially for 
large regressors Zk, the noise bound is used by this algorithm in a more efficient way 
than a simple dead-zone. 

(Received February 14, 1996.) 
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