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KYBERNETIKA-VOLUME 20 (1984), NUMBER 1 

RECONFIGURATION IN THE ATTITUDE CONTROL 
OF ICOSAHEDRAL BODIES 

JIŘÍ BENEŠ 

Specific polyhedral diagrams of angular velocity distributions, resulting from triplets of compo­
nent vectors pointing to the midpoints of faces of a regular icosahedral body in space and gene­
rated by auxiliary driving means are described. The distributions of the number of these triplets 
as functions of the module and argument of the resulting vector are introduced. A map of the 
"firmament" for an observer placed in the centre of the icosahedral body is given, showing the 
attainable end-points of the resulting angular velocity vectors. Examples of reconfiguration are 
deduced from this map which is intended as a part of the information pattern of the computer 
for attitude control in space. 

The attitude control of an icosahedral body in space, using a controlling moment, 
which effects its rotation e.g. around the Euler axis as in the case of extensive control 
[ l ] , is assumed by computer controlled application of appropriately selected triplets 
of component angular velocity vectors, generated by auxiliary driving means. By 
summing up these triplets taken as combinations by three from a set of 20 component 
vectors, different resulting angular velocity vectors are obtained, the end^points 
of which are considered as vertices of a three-dimensional graph: the polyhedral 
diagram of angular velocity distribution [2]. If any active auxiliary driving means 
falls out, this can be remedied: 1) by generating instead promptly another triplet, 
having the same sum as the previous one before its defection (if this is possible, as 
for diagram vertices, obtainable in two or three ways); 2) by selecting appropriate 
triplets of vectors, corresponding to vertices of another suitable polyhedral diagram, 
in order to reach a goal in attitude control similar in angular coordinates, but even­
tually with a smaller module of the resulting angular velocity vector [3]. Both these 
methods enter into the general concept of reconfiguration embodied in the attitude 
control system. The described generation of the resultant angular velocity vector 
and its application are intended primarily for coarse attitude control, the fine control 
making use of further information from the sensors and of the fine mechanism of 
control of the auxiliary driving means. 
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The regular icosahedral body is depicted in the basic system of axes x, y, z in Fig. 

1, where z points to the reader. The length of its edge is a = 100-000000, the radius 

of its circumscribed sphere is Ro; = 95-105651629. The 20 component angular 

velocity vectors are oriented into the midpoints of the faces of the icosahedron. For 

Fig. 1. The regular icosahedron with the 
midpoints m ; (,' = 1, ..., 20) of its faces. 

example, the length coordinates ol midpoint m 2 in Fig. 1 are: x2 = 43-633899812, 

y2= -14-177513472, z 2 = 60-056910821. All the component vectors have the 

same module M = 75-5761340 [the dimension is that of angular velocity, which will 

not be recalled in the sequel]. By summing them up by three (without excluding pairs 

of vectors with the opposite sense), one obtains a set of resulting vectors with a number 

of elements 

Subset м vm c e f fЗ f4 f5 fб flO Polyhedral diagram 

-M 31-701884 60 12 30 20 20 icosahedron 

Пм 62-561459 60 60 90 32 12 20 truncated isosahedron 

П I M 
75-576131 220 20 30 12 12 dodecahedron 

IV M 
92-847608 120 60 120 62 20 30 12 small rhombicosidodecahedron 

vм 
115-444448 180 60 90 32 12 20 truncated icosahedron 

VIм 127-421926 60 60 90 32 20 12 truncated dodecahedron ' 

vпм 
134-291335 60 12 20 20 20 icosahedron 

vшм 
144-717274 120 120 180 62 30 20 12 great rhombicosidodecahedron 

ixм 
160-155648 120 60 90 32 20 12 truncated dodecahedron 

*м 168-993367 20 20 30 12 12 dodecahedron 

X I M 
182-388323 60 60 90 32 12 20 truncated icosahedron 

xпм 
194-864678 60 60 120 62 20 30 12 small rhombicosidodecahedron 



This set can be decomposed into 12 subsets according to the module M of the result­
ing vector. Table 1 gives the characteristics of the relevant polyhedral diagrams 
having the end-points of the resulting vectors as vertices. Here, M is the module 
of the resulting vectors belonging to the subset, v,„ is the number of combinations 
in the subset; c is the number of vertices; e the number of edges, f the number of faces; 
f3, f4, f5, f6, flO are numbers of the triangular, quadrilateral, pentagonal, hexagonal, 
decagonal faces respectively. It is 

12 

V,„ = 1140 = Y > m . 

The distribution of v,„ as function of M is in Fig. 2. On its basis, and that of Table 1, 
three neighboringly united (n-united, in the sense of [2]) bodies have been constructed: 

CASE A: THE SMALL ICOSICOSODODECAHEDRON, shown in Fig. 5, 
resulting from the union of subset XIM (set of vertices of the truncated 
icosahedron in Fig. 3) and of subset XIIM (set of vertices of the small 
rhombicosidodecahedron in Fig. 4). 

Fig. 2. The distribution of vm as function of the module 
M of the resulting vector. 

3. The truncated icosahedron 
from subset XIM 

CASE B: THE (3-4-10)-HECATONPENENTADIOHEDRON, shown in Fig.8, 
resulting from the union of subset VIIIM (set of vertices of the great 
rhombicosidodecahedron in Fig. 6) and of subset IXM (set of vertices 
of the truncated dodecahedron in Fig. 7). 

CASEC: THE (3-4-5)-HECATONPENENTADIOHEDRON, showninFig. 11, 
resulting from the union of subset VM (set of vertices of the truncated 
icosahedron in Fig. 9) and of subset VIM (set of vertices of the truncated 
dodecahedron in Fig. 10). 

The characteristics of the three bodies (for case A, B, C) are given in Table 2. Here, 
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Fig. 4. The small rhombicosidodecahedron 
from subset X1IM. 

Fig. 5. The small icosicosododecahedron. 

Fig. 6. The great rhombicosidodecahedron 
from subset VIIIM. 

Fig. 7. The truncated dodecahedron from 
subset IXM . 

M denotes the mean square value of the radius of the representative sphere ot the 
«-united polyhedral diagram and 5t and 52 express the quality of approximating 
the representative sphere by the n-united polyhedral diagram. For case A: 

== /60 . 194-8646782 + 60 . 182-3883232Yt 

M = ( 
120 

= 188-729625521 

<5, = 194-864678 : 188-729625521 = 1-032507098, 

ón = 182-388323 : 188-729625521 = 0-966400068 . 
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Fig. 8. The(3-4-10)-hecatonpenentadio-
hedron. 

Fig. 9. The truncated icosahedron from subset 
V». 

Fig. 10. The truncated dodecahedron from 
subset VIM . 

Fig. 11. T h e ( 3 - 4 - 5)-hecatonpenentadiohed-
ron. 

The distribution of the number of combinations v,„ as a function of the module M, 
as in Fig. 2, has proved valuable for the selection and purposeful formation of new 
polyhedral diagrams [3]. Following a personal suggestion [4], a distribution of the set 
of combinations as a function of the argument of the resulting vector has been in­
vestigated. 

Let q> be the angle between the resulting angular velocity vector and the z axis 
of the basic system. The decomposition of the set of the 1140 resulting vectors accord-
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Table 2. 

u 

a 
u 

e Body M *l s2 
c e f fЗ f4 f5 flO 

A 5 SMALL ICOSICOSO-
DODECAHEDRON 

188-729625521 1-032507098 0-966400068 120 210 92 20 60 12 

B 8 ( 3 - 4 - 1 0 ) - H E C A T O N -
PENENTADЮHEDRON 

150-040006191 1-067419630 0-964524580 180 330 152 20 120 12 

c 11 ( 3 - 4 - 5 ) - H E C A T O N -
PENENTADЮHEDRON 

121-580771093 1-048043410 0-949528835 120 270 152 80 60 12 

i Ì , ьL 

xxф 
xvпф i 

. l r l l I , 1.1 

.20 30 

xxvi9 

LjJiLLJL 

40 45 
f H 

Fig. 12. The distribution of 
v,, as function of the angle 

<p for the range 0 to JT/2 

(left above: for 0 to TC/4, 

left below: for jt/4 to jt/2). 

ing to discrete values of cos q> some of which are positive and others negative, yields 
76 subsets. Being interested here for brevity mainly in the upper part (hemisphere) 
of the diagram, we consider only positive values of cos q> and arrange the respective 
38 subsets in the order of increasing values of cp from 0° to 90°. The distribution is 
in Fig. 12. For brevity we give the characteristics of some of the subsets only: 

Subset 

IL 

9 

0-000000000 

8-943913546 

M 

31-701884 ' 

134-291335 

182-388323 5 

10 

It is 

xxxvn„ 
XXXVIIL 

84-921357944 

85-827701764 

160-155648 20 

194-864678 5 

V, = 2£v,-= 2.570 = 1140. 
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Let us now investigate more closely the vertices contained in the octant given by the 
positive values of the coordinates x, y, z and belonging to the polyhedral diagrams 
of cases A, B, C (Fig. 5, 8 and 11). Let /? be the angle between the projection of the 
resulting angular velocity vector into the plane xy and the x axis of the basic system. 
Let a = (rc/2) — (p. The set of the vertices of the three polyhedrons of Table 2, belong­
ing to the octant xyz, is represented in the angular coordinates /?, a in Fig. 13, where 
full dots stem from case A, half-full dots from case B and empty dots from case C. 
Let us remark that this figure gives the angular coordinates of the bodies (vertices) 
in the xyz quadrant of a "firmament" for a hypothetical observer at the origin ot the 
basic system x, y, z, seated towards Ox, with O v at his left and Oz pointing overhead 
(to the "zenith"), the "horizon" being in the plane xy, Correlating these points with 
the respective triplets of component angular velocity vectors, a set of rules can be 
established which may be useful for the algorithmic resources (including the informa­
tion pattern) of the computer (the formator) used both for control and reconfiguration. 
For the octant considered an auxiliary diagram of the deployed part of the icosa-
hedron (with face 1 at its centre) may be used as in Fig. 14. The rules may be stated 
e.g. as follows: (Fig. 13): 

ÏÏ/2 + 

TT/4Ѓ 

f - 8 — : ^ 2 6 

W"bv 
ïï/4 TГ/2 

Fig. 13. The map of the "firmament" for a hypothetical observer Fig. 14. The auxiliary dia-
at the centre of the icosahedral body (in angular coordinates a, fi). gram with face 1 at its centre. 

"The points of the right star are attainable by combinations by three of the vectors 

aiming to the midpoints of the faces of the prismatic roof 1 — 2 - 7 — 12 — 6". 

"Those of the left star by combinations by three of the vectors aiming to the faces 

of the prismatic roof 1-6—11-10—5". 

"The remaining full points are attainable by combinations by three of the vectors 
aiming to the faces of the prismatic roof 1-5 — 4 - 3 — 2"; etc. 
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There are interesting symmetry relations which appear when marking the triplets 
of component vectors on the auxiliary diagram of Fig. 14. 

In order to indicate the possibilities of the reconfiguration, let us concentrate upon 
a central portion of Fig. 13 as redrawn in Fig. 15 with the indication by concentric 

/b3 ^\ fc tV, 

%/ (Z) Si 
• 2 0 \ b 2 j ' «'6 / 

ïï/2 

Fig 15. The central portion of the map of Fig. 13 with indication by concentric circles of vertices 
attainable by 2 or 3 triplets. 

circles of those vertices which can be attained by two, resp. three triplets of compo­
nent vectors. The vertices can be reached by these triplets: 

A) Full dot vertices (Case A): 

- 2 - 5 a, 

- 2 - 6 aj 

- 5 - 6 ax 

- 2 - 4 a t 

- 2 - 1 2 
a, 

B) Half-

1 - 3 - 5 

1 - 5 - 1 1 

1 - 6 - 7 

1 - 6 - 10 ; 

'ull dot vertices (Case B): 

bi 1-2-10 or 1 - 4 - 6 

ь2 
1-2-11 or 1 - 5 -12 

b
3 

1 - 3 - 6 or 1 - 5 - 7 

Wз 2 - 4 - 6 b16 2-- 6 - 10 

Ь,4 2-5-11 bi
9
 3-- 5 - 6 

bí5 2-5-12 b20 5-- 6- 7 
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C) Empty dot vertices (Case C): 

Cl 1 - 2 - 1 6 or 2 - 10 - 12 or 4 - 6 - 12 

c 2 
1 - 5 - 1 3 or 2 - 3 - 11 or 3 - 5 - 12 

c 3 
1 - 5 - 1 7 or 3 - 6 - 11 or 5 - 7 - 11 

c 4 1 - 6 - 8 or 2 - 7 - 10 or 4 - 6 - 7 

c? 1 - 2 - 1 5 or 2 - 4 - 11 or 4 - 5 - 12 

Cg 1 - 6 - 9 or 3 - 6 - 10 or 5 - 7 - 10 

Cю 1 - 3 - 1 1 

C ц 1 - 4 - 1 2 

c 1 2 1 - 7 - 1 0 . 

Some of the subsets of vertices, which may be considered for the purpose of re­

configuration, are encompassed by bundles in Fig. 15. 

Fig. 16. Symmetry of triplets 1 — 2—11 and 1—5—12 shown 

on the auxiliary diagram. 
Fig. 17. Triplet 1 - 7 - 1 0 for 
attaining vertex c 1 2 in the se­
cond stage of reconfiguration. 

As an example, let us consider the vertex b 2 (case B) from the point of view of the 

reconfiguration. This point is attainable by two triplets of vectors: 1 — 2 — 11 or 

1 — 5 — 12. If one of these fails, it can be at first replaced by the other. This is connect­

ed with a symmetry, observable on the pertinent auxiliary diagrams of Fig. 16. If 

both these triplets fail, there is a second stage of reconfiguration possible, connected 

with the transition to the vertex c 1 2 of the polyhedral diagram for case C, i.e. with 

a loss in the value of the module of the resultant angular velocity vector from M = 

= 160-155648 to M = 127-421926. The required triplet is 1 - 7 - 10 represented 

on the auxiliary diagram of Fig. 17, which can be easily compared with those of Fig. 

16. 

An other example of reconfiguration can be followed in Fig. 15 as two subsequent 

transitions: 1) from vertex a 2 (triplet 1 — 2 — 6) to vertex b 3 (triplet 1 — 3 — 6 

or 1 — 5 - 7); 2) fronfvertex b 3 to vertex c ^ (triplet 1 — 4 — 12). The whole re­

configuration is connected with a loss of the module of the resultant angular velocity 

vector from M = 194-864678 (point a 2) over M = 160-155648 (point b 3 ) to M = 

55 



= 127-421926 (point c n ) . The stages of the reconfiguration can be followed on the 
auxiliary diagrams of Fig. 18. Surprisingly enough, the changes in these diagrams 
involve neighbouring or near faces, and without previous thorough analysis of the 
polyhedral diagrams it would be hardly possible to predict their effect. 

Fig. 18. The stages of reconfiguration from vertex a2 to vertex b3 (attainable in two ways) and 
to vertex clv 

For purposes of the analysis of the effect of the loss of activity of individual auxiliary 
driving means and for purposes of subsequent reconfiguration it is advisable to parti­
tion the faces of the icosahedron into five subsets and to colour them e.g. in this 
symmetric way (Fig. 1): red: 5, 7,14,16; blue: 3,10,12, 19; green: 1, 8,15,17; yellow: 
2,9, 11, 18; orange: 4,6, 13, 20. In the case of specific failures, accordingly im­
poverished maps from those in Fig. 13 and Fig. 15 can be drawn, with the loss of the 
pertinent color component in the triplets. 

In conclusion let us express the hope that this analysis may be of some interest 
to those who study the dynamics of icosahedral bodies on different scales and in 
different disciplines. In Cybernetics the interest in the group of the icosahedron 
may be justified also e.g. by the intriguing open problems of the morphogenesis 
of icosahedral viruses and the pertinent deltohedrons with icosahedral symmetry 
(icosadeltohedrons), where a concurrent application of biochemical and crystallo-
graphic approaches may be indicated. 
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