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K Y B E R N E T I K A — V O L U M E 8 (1972), N U M B E R 5 

A Numerical Method of Matrix Spectral 
Factorization 

ZDENĚK VOSTRÝ 

The spectral factorization of transfer function matrices is an intrinsic problem arising in the 
optimal control of linear discrete systems with respect to a quadratic performance index. 

The presented method is based on the comparison of two approaches — in the time domain 
and in the frequency domain — to a special control problem. 

INTRODUCTION 

To develop a numerical method of matrix spectral factorization, we first solve the 
problem of optimal control for a simple two-input two-output system with respect 
to a quadratic performace index. Without any loss of generality we have chosen the 
system transfer function matrix with polynomial entries. 

The first part of the paper shows how to transform the solution of the above problem 
in the frequency ddmairi'into the solution of infinitely many simultaneous equations 
in the time domain. This'systeni of equations enjoys a particular structure so that 
a solution has been found, as shown in Example 1. 

. . . « • ' . ; ' • , ' i 

Further, the classical frequendy-domain approach leading to the spectral factoriza­
tion of matrices, is Analyzed; The problem having a unique solution, we deduce that 
both solutions coincide. Thus relating these solutions yields a relationship between 
the solution of the infinite system of simultaneous equations and the spectral factoriza­
tion. This method is shown in Example 2, which completes Example 1. 

In the last part of the paper the generalization to n-input ri-output systems is given. 
We stress at this point that full rank of the matrix to be factorized is necessary as 

well as sufficient for the present method to hold. ' 
This method can be applied equally to the matrices whose entries are rational 

functions in z " 1 after having multiplied the matrix by the least common denominator 
of all its entries. The factorization of the original matrix is obtained by simply multi­
plying the result by the factorized least common denominator. The spectral factoriza­
tion of polynomials is described elsewhere [3]. 



A 2-OUTPUT 2-INPUT SYSTEM 

Consider a particular two-input two-output system having the transfer function 

matrix with polynomial entries. 

We seek for those inputs that will bring the outputs of the system to zero for any 

initial state and, in doing so, 

(1) (i) will minimize the squared outputs and 

(2) (ii) both inputs will be zero in the steady state. 

The above conditions imply the physical realizability as well as stability of the 

optimal control. 

We denote the transfer function matrix of the system as 

(3) S(z) = z - 1 P " ^ S l 2 ^ l , 
LS21(z) S22(z)J •, 

the inputs as 

^m -
and the outputs as 

-»-Ш 
We find it convenient to further introduce initial conditions in the bilateral Z-trans-

form 

» " ' • • • * • ^ s 

where 

Y;(z) = iyl-jZJ, Y2-(z) = iyljz\ 
i = i j"i 

{ = m a x ( n n , n 2 1 ) , r\ = max (n 1 2 , n 2 2 ) 

and ntJ stand for the degrees of the polynomials St/z). 

The input and the output of the system obey the equation 

(6) X(z) = S(z)(Y(z) + Y-(z)). 

Let the performance index be given as 

(7) I = £(W)2+ (*;?) 
j = 0 



450 where 

(8) Xx(z) = ^x)z->, X2(z) = ^x)z~i. 
j=0 j=0 

This is, in fact, the sum of squared outputs x) and x). 

It follows from the Z-transform theory that 

(9) / = J _ | ( J ] X l + X2X2)
dZ-

2nj J r z 

where j is the imaginary unit, T is the unit circle |z| = 1, 

J , ( z ) = X 1 ( z - ) , X2(z) = X2(z~>). 

In the matrix shortland, performance index (8) can be written as 

(io) i = ̂ | r(z).x(z)d^ = -LI **(*-»)*(*)-
2«J J r - 27ijJ r z 

(T denotes the transpose). 

The expression (10) is still valid for a general multivariable system. 

MINIMIZATION OF (10) IN THE TIME DOMAIN 

By (2), for any e > 0 there exists an TV such that 

\y)\ < e , |>'f| < E for any i > N . .\y 

Consequently, up to a small error which tends to zero for N -* 00, performance 
index (10) depends only on a finite sequence of the system inputs. Hence it follows 
that 

(ii) i'i(y1o,y\,...,yl
ll,yly2i,...,yfi). 

The minimum of/ is achieved if 

(12) ^ T = °< ' = 0 ,1 ,2 , ...,N 
dy) 

(13) r i = ° ' i = 0 , l , 2 , . . . , N . 
dy] 

Substituting (6) into (10) gives us 

(14) / = - L | (YT(z-) + y-T(z-))s"r(z-1)s(z)(y(z) + Y~(z))^. 
2nj J r -



Now substitute (14) into (12) and (13) and rewrite 

(15) i L = - L i [_• 0] S7(z->) S(z) (y(z) + Y-(z)) ^ = 0 , 
cy\ lit] J r z 

i = 0, 1,2, .....V, 

(16) A __ J _ | [o -«] S T ( Z - I ) s(z) (y(z) + y-(z)) d-z = o, 
d.V? 27Tj J r Z 

J -0,1,2, . . . . JV. 

On integration, both equations (15) and (16) yield N and N simultaneous linear 
equations in unknowns y\, y]. 

By (3) we carry out 

(17) S T ( Z - ' ) S ( : ) = Z P " ( : " ' ) S21(z-)-| rSl I(z) Sl2(z)l 
Ls I 2(z-) S22(z-)J ls2l(z) S22(z)j 

_ p ( z ) B(z)"| 
LB(z-) C(z)J 

with the obvious definition of A, B and C 
Write 

(18) S,fr)-'%&', i - 1 . 2 ; ; = 1,2. 
r = 0 

(19) .<z)=£V-'> 
r - -« 

fl(z) = I fcrz"r, 
r - -« 

where 

ctø- E V , 

č = max (п, ,п21) , t] = max (л1 2п2 2) ; 

(20) _ r = a _ r X s J 1 s ; ' r + E - f s f t , , 
>=o j = 0 

r = 0, I , . . .,•_; 

(21) Ьr-I-)MІr+ __•?#,, 
j=o ; - o 

г = 0, l,...,i,; 



(22) 

(23) 

b_r = I Sf s,i, + I -TMi/. 
j = 0 ; = o 

r = 0, 1,..., í ; 

I-ľ-Ji.+ 1-гMî,. 
j = 0 j = 0 

r = 0 ,1 , . . . , ! / . 

Remark 1. By convention the empty sum is taken zero. 

On substituting from (17), equation (15) takes the form 

/ = = ±k^]\A{z) B(z)F i (z )l- = o. 
2KJ?E \B{z-i) C{z)\\?2{z)\ z 

Now substitute (20) through (23) into (15) and integrate it for i = 0 

«o.v0 + «i>l + ... + o{y| + b0>o + fc-i-yj + ... + fc-?y
2 + 

+ c^yi, + a2yi2 + ... + a.yl, + fr.yii + fc2yi2 + ... + b„yi,, = 0. 

In a like manner we obtain the remaining equations by setting i = 0, 1, ..., AT in 
(15) and (16). 

In a matrix form they read 

(24) M'Y' + BY = 0 , 

where (for definiteness assume £, > tj) , 

(25) 
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(26) Y = 

y0 

y\ 

yl 

ylN+i 

yl 
yl 

k 
y*+i 

«l «2 

Ь-, -кг 
aг aъ 

Ь, h 
i 0 

кt 0 

Ь, Ь 2 

C, C2 

• ъ, 
• cт 

Ц o 
c, o 

dimension 2N x (£ + rç) 

(27) Y" = 

У\г 

УU 
УU 

Ѓ-г 

Д. 
This equation cannot be solved for Y' since M' is rectangular, that is, there are more 

unknowns than equations. 

By virtue of condition (2), y\ and y\ approach zero for increasing i. Now assume 

N sufficiently large so that 

(28) 

and 

for 

Уs+r = 0 

y 2

N + r = o 

r > 0. 

Then (28) together with (24) constitute a solvable system of simultaneous equations. 

The M' and Y' are modified to v„ ,ii,-;-



454 (29) 

(30) Y" = 

while Y and B remain unaffected. Hence (24) reads 

(31) M"Y" + B Y " = 0 . 

The solution of equation (31) simplifies greatly if we realize that y^ and yl depend 
only upon the initial conditions Y~. As a matter of fact, the knowledge of these 
relations yields recurrent equations for y\ and y}. These will qualify as a solution of 
(10) with increasing order of the M" matrix. 

To solve equation (31) more easily we modify M" to a special form. The modifica­
tion is as follows: 



(i) We reorder the rows of M" thus forming a new matrix M'", namely, the first 

row of M'" is the first row of M", the second row of M'" is the (TV + l)-th row 

of M", the third row of M'" is the second row of M", the fourth row of M'" is the 

(N + 2)-th, etc. 

(ii) We form another matrix M by following the same procedure for the columns 

of M'". 

The resulting matrix M thus has the form 

(32) 

M 

я 0 Ô « t Ь-j " 2 &_ 

Ь
0
 c

0
 b, c, b

2
 cг 

ai Ь
i я

0
 Ь

0
 a, Ь, 

Ь-, cx Ь
0
 c

0
 b, c, 

aг bг я, b 

6-2 cг Ь
ч
 c 

• Ьm Cm 0 0 0 -

a, b_, 0 

We can use the following simple method to write down the matrix M. The technique 

is especially well-adapted for the computer use. 

Write the sequence a{, bh c ; on paper tapes PI and P2 in the following form 

(33) PI = {a0 b0 a. &_. a2 6_ 2 ... a, fc_, ... a4 fc_? 0 ... 0} , 

P 2 s { c 0 bt ct b2 c, ... 6, c, 0 0} 

and define generally a paper tape as 

P * {Po Pi P2 } • 



456 Introduce the corner paper tape [P/J which defines certain entries of a matrix as 

follows 

i i :•-..'•:' 

Po Pi p2... 

Pl 

Pг 

then the M matrix is given as 

(34) M = 

[Pll 
P2І 

The modification of M" to M induces the modifications of B' to B and Y' to Y. 

(35) B'= o -
Ł, b_г 

Ь 0 

0 

0 

a. Ь, bг 

• at 0 L 

Ц o 
o 

• Ц c i cг 

Һ* o 

b-, • • • b-t 0 c, • '• c„ 0 

(36) Y = 

УІ 



To recall, the first rows of B and Y are the first rows of B' and Y' respectively, the 
second rows of B and Y are the (N + l)-th rows of B' and Y' respectively, etc. 

The B matrix is of dimension 2N x (£ + n). 

We are to solve the equation 

(37) M Y + B Y = 0 . 

Since M is evidently positive definite, it is invertible and hence 

Y = - M 'BY - . 

As shown above, it is sufficient to compute just yl and yl
0, i.e., we need just the first 

two rows of the inverse M _ 1 . 
Examining closely the matrix B, we find that the (2£ + /c)-th row is zero for all 

k = 1, 2 .... Therefore we need only the first 2§ entries in the first two rows of M _ 1 . 
Below we shall establish a theorem on the inverse of a multidiagonal positive 

definite matrix, which will greatly simplify the problem. 

Definition 1. A symmetric matrix A - [ a y ] , i, j = 1, 2, ..., n, is said to be (2r — l)-
diagonalif there exists a natural number r < n such that at'j — Ofor|i — j \ + \ > r, 
and at j + 0 for at least one i and j for which \i — j \ + 1 = r. 

Theorem 1. Let A be a (2r — \)-diagonal positive definite matrix of dimension N. 
Then the (r — \)-dimensional upper-left-corner submatrix of A~l can be computed 
via operations on an (r — \)-dimensional matrix. 

Proof. Consider the above matrix A and decompose it into the form below: 

(38) A= 

where Q, Pit and P\ are submatrices of dimensions respectively (r — l) x (r — \) 
1 x (r - 1) and (r - 1) x 1. 



It is well-known [1] that if A is positive definite then all principal submatrices of A 
are again positive definite. 

This allows us to use a block decomposition of A to compute the A~l. 
The first step is to compute Q~l. Then we define 

(39) 

and write 

1 - |_ G í Я ď 
Since QtQil = /, we conclude that 

Hence 

(40) 

a.e + P& = / , Í ^ G . + PlHl = 0 , 

P.c + QG\ - 0 , P l o i + QH. = / . 

e 1 = ( a 1 - P 1 g - 1 P ' 1 ) - 1 , 

G t = -c.P.o,- 1, 

(41) G i - - C " I ' i - , « i . 

H, = Q - 1 + G ' . G . e " 1 , 

see [1]. Note that e. in (41) is a number. Repeat the above procedure for 

(42) 

Let again 

Q.2 = 

a2 P2 0 
P 2 

0 Є, 

Є 
LG2 II2J " 

Then formulae similar to (41) hold for e2, G2 and H2. 
We are going to show that we do not need the last column and row of Q~y to 

compute Q2

X without its last row and column. 

For instance 

(43) e2 = (a2 - P2Q;lP'2)~l = (a2 - [ P 2 0] 

(44) G2 = -e2P2Q~l = - e 2 [ P 2 0] " 

er1 

* ••• A 

(The entries denoted as * are multiplied by zero.) 

eг 1; 
**•••* 



The last entry of G2 will not evidently be used in the next step and hence need not 459 

be computed. 

To summarize, the method consists of successive adjoining a row and a column 

to the matrix Q,_,, of a short computation, and of deleting the last row and column 

of 07': 

(45) 

'-, P, 
-1 

«• п, г g 
ь, 

Q; = 'V U;-i = Щ д -
ol 

-
K 

J - g h h, hы 

(46) 

Write: 

(47) 

Єj = (ű 
ł-P/QГЛ-,í)"1 

G; = - - . P . Q Г - i , 

І7ř = QГЛ + CfiieŢ1 . 

G. = [G, gf] , 

II; = 
Лi 

IIІ ''2 

ft, /î2 . . . h ř _, 

Delete g and ft,, /Í 2, ..., /i r_, to gst 

LG; я j Є Г X = 

again of dimension r — 1. 

This completes the proof and also suggests an effective method of computation. 

Now we apply Theorem 1 to solve equation (37). Using (46) and (47) we compute 

the (r — l)-dimensional submatrix of M _ 1 . As stated above, we just take its first 

two rows; in general, we take as many rows as the number of outputs in the system. 

It is easy to increase the order of the matrix M by adjoing additional paper tapes 

according to (34). This simultaneously increases the number of variables in perfor­

mance index (11). 

The numerical method described is based on successive adjoining the paper tapes to 

Q ; until HQj"1 - QT+yi g s, or generally, until \\Q7l - Q7+\\\ g e , where k is the 

number of the system outputs. It is important to first adjoin the paper tape Pfc, then 

P(/c - 1), ..., P2, PI. We shall call each adjoining of Pfc, ..., P2, PI an iteration. 



Example I. (Two-input two-output system) 

S ( _ ) = П + 0 - 2 _ - 1 - 2 _ - -1 
W L l + ^ z - 1 1 + 0 - 5 Z - 1 ] 

Гб-c 

L2Í 
(49Ì S Ъ " 1 ! S(z) - Г 6 ' 0 4 + 2 ' 2 ( Z + Z _ 1 ) 2 ' 6 + 2 ' 2 Z " Ь 5 Z ' 1 ' 

(49) S (_ ) . S(z) - | . ^ + . ^ _ i 5 z б 2 5 _ ^ ^ + z _ 1 } ^ 

By (20), (21), (22), (23), 

(50) ç = 1 , 7 = 1 -

a0 = 6-04, aл = a_! = 2-2 , 

Ь0 = 2-6, i>. = 1-5, fc_, = 2-2, 

c 0 = 6-25 , C] = c_ ^ = — 1-5 . 

By (33), 

(51) P, = {a0 b0 a, Ь_] 0 0 ...} = {6-04 2-6 2-2 2-2 0 ...} , 

P2 = {c0 6, 0 .} = {6-25 -1-5 0 0 ...} . 

Construct the matrix Q using (34) to compute Q^1 by (46), (47). As stressed above, PI must be 
the first row of Q to get y0 first and then y0. 

From the coefficients of PI and P2 we infer that r = 4 (see Def. 1). By (34) we can construct 
the following matrix, which is of order r — 1 = 3 by Theorem 1: 

(52) ß = 
a0 b0 aг 

b0 c0 bx = 
ÖI ^i a0^ 

604 2-6 2-2 

2-6 6-25 -1 -5 

2-2 -1-5 6-04 

The method was programmed for a digital computer. Taking the form of the B matrix into 
account, we see that it has 2£ rows and the 

(53) Гa, ЬЛ p-2-1-51 

_ Ь _ ! C]] _2'2 ~ l - 5 . 

ßв' = 

Denote Q r as in (46) and write down only the entries needed. 

After adjoining successively P2, PI, P2, P I , P2, PI we obtained 

•3416918 -0-20114481 

'•2011448 0-2930832]' . 

after further adjoining P2, PI, P2, PI, P2, PI, we obtained 

., f 0-3406889 -0-20030491 

L-o-; 

and finally 

(54) ßío 

1-2003049 0-2923799J 

i _ Г 0-

' ~ L-o-
3406879 -0-20030401 

2003040 0-2923793]' 



Comparing the respective entries we could see that the difference 461 

Her-1 - QT:\\ < io-6 

and that QJQ1 represents the solution with the accuracy 1 0 - 7 . 

Now (37) yields 

U J L«'20256-01381lJb'2-J L / -J 
Equation (55) can be viewed as a control law at time i: 

This recurrent equation together with the initial conditions ^ L j , j>?-i yields the optimal contiol 
for system (48) with respect to performance index (11). 

In terms of the Z-transform equation (56) formally reads 

(57) Y(z)= -z~1RY(z) + C, 

where C represents the influence of the initial conditions. 

MINIMIZATION OF (10) IN THE FREQUENCY DOMAIN 

We take a classical approach [2] to minimize performance index (10), which reads 
for our problem as 

(58) / = - L i (yT( z - i ) + Y-T(z~i))S\z~i)S(z)(Y(z) + Y~(z))^ . 
2r.j J r z 

We set 

This is true if the integrand has no pole inside F: 

(60) s T (z- 1 )s (z) (y(z) + y - ( z ) ) z - ' = A . 

It is well-known [2] that S7(z~]) S(z) can be decomposed to the form 

(61) Sr(z-*)S(z)~S-(z-i)S+(z) 

where S-^'1) = S+ T(z_ 1) , S + (z) and (S + (z))~l have all their poles inside T. 

Thus 

(62) z - 1 s - ( z - 1 ) s + ( z ) ( y ( z ) + y-(z)) = A. 



462 We premultiply equation (62) by (S~(z~1))~1, 

z'1 S + (z)(r(z) + Y-(z)) = ^ - ( z - 1 ) ) - A = A, 
OГ 

(63) -S^Y^ + fЖMj^A.-p (Z)Y-(Z)-

Here [.]+ denotes the extraction of the poles lying inside T. 

By Liouville's theorem both sides of (63) are constant, in our case zero: 

(64) Y(z)=-z(S + ^ - i [S+(z)Y-(zï Ш'-[ 

The entries of S+(z) are polynomials in z so that 

(65) S+(z) = A0 + z~1A1 + ... + z~kAk 

where k is the largest degree of all polynomials involved. We shall show that A0 

is nonsingular: S+ is nonsingular outside E by hypothesis and hence it is so also for 

z -* oo. It follows that A0 is nonsingular. 

We use A0

 1S + instead of S+ in (64) and shall show that Y(z) is not affected: 

(66) У(г)=-г(5 + ) - 1 Л 0 А 0

1 [ ^ ^ . 

We expand ( A 0 S + ) 1 into a power series in z J and truncate it after the first term: 

(67) ( V S T 1 = (1 + z-'A-1 + z-2A0

lA2 + ... + z-'A^A,)-1 = 

= 1 + z _ 1 0 , 

0 being the remainder of the series. 

Using (67) in (66), 

(68) Y(z)=-(z.l + 

By (67) evidently 

*)[-* S
+
 Y-(Z) 

Л _ 1 s + = 
í , - « „ i . 

= n+(p\lZ
 1 + (p\lz

 2+...+ q>\xz «, (p\2z
 l + (p\2z

 2 + ... + <p\2z "1 

L <P\l^ + <P\^-2 + ••• + pj.l-~' , 1 + <P22Z"' + <p22^2
t+ ••• +'<Pl2Z~"] 

The degrees of the polynomials result from the finite memory of the system, see (5). 



The inverse Z-transform gives us 

(70) 
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UJ 2*j Jr 
- > ) * -

_zi£(..1 + в).p |~_______(_f| ___ 

By definition, 0 contains no term with positive powers of z. 

The following column matrix 

-AolS+Y-(zy 

contains only the negative powers of z. It means that the integrand in (71) will con­

tain the zero coefficient at z _ 1 , i.e. 

(71) 

On modifying, 

-44 
-яjjr L 

V S + У - ( Z ) - ' dz 
= 0 

pol _ __i í [___________] dz _ _ Гio_________"| 

2 + ... + (pltyl,., <pl2y
2-i + (p2

22y
2-2 + 

Otherwise speaking, this represents the extraction of all terms at z - 1 . 

Substitute (69) into the last equation. 

Then 

CH) [*]-
[<r>llJ'-l + <r>ll>'-

LviiJ '- i + <P2i>'-

and equivalently 

/73N p o l = _ | > „ <r>U ••• <r>!l <r> 12 <p\ 

L.VoJ L<r>21 <r>21 ••• </>21 <r>22 <r>2 

or, in the shorthand notation, 

Y0 = -RY- . 

Rewrite formally (72) in terms of Z-transform 

(74) y = -<PY + C ; 

>22V2-J 

+ <PÌ 

+ <ŕ>2 2 > -

9Ìг\ 



464 where 

(75) Ф(z) = 
Ź <?>Іi2 '. X ^ І г 2 ' 

i = 1 i = 1 

í ч 
Г > 2 l Z ~ \ X ^ г 2 " ' 

THE METHOD O F MATRIX SPECTRAL FACTORIZATION 

Comparing (75) and (69) yields 

Ao1S+(z) = cP(z)+ 1. 

Hence 

(76) S + = A0(<Z> + 1) . 

Let us look for a way of computing the A0. 

We know that S+(z) is unique up to a unitary matrix U: 

S\z->)S(z) = S-(z-i)S+(z) = K-(z->)K+(z) 

where 

S + ( z ) = U K + ( z ) , 

S-(z- 1 ) = K-(z- 1 )U T 

and hence 

S-(z'1) S + (z) = ^ - ( z - 1 ) UTU K+(z) = K~(z'l)K + (z) . 

Thus the A0 matrix is not unique and we have the liberty of choosing a way of com­

putation. 

It is seen that (76) implies 

(77) S-(z- 1 ) S+(z) = (1 + ^ ( z - 1 ) ) AoA0(l + <*>(z)) . 

To simplify the computations we set z = 1, and denote this as S(l) = S„: 

(78) S'S: = S\S* = (1 + #1) ATA0(1 + <*>*) 

and on modification 

(79) (1 + <*>!)-> SlS*(l + <*>*)-' = AJA0 . 

The left hand side Lof (79) is positive definite and hence L = AJA0, where A0 can 

be taken as an upper-triangular matrix. The technique of finding A0 is described 

in [1]. 

The above trick allows us to factorize SJ(z-y)S(z) without knowing S(z). 



Example 2. 

To demonstrate the above method, let us go back to Example 1. There we obtained the R 
matrix (55), which is the same as the R in (73). 

Equation (75) gives us 

and for z ' = 1 we have 

Setting z J = 1 in (49), 

, , _ ("0-30884Z-1 -0-21057z_ ,"| 

^ ~ L 0 - 2 0 2 5 6 2 " 1 -0-13811Z"1] 

T 0-7362 0-179861 

L —0-1732 111797] 

«-[trí_]-
:-^»-^-.)-[:r:q=^ 

An = 
_ p-21698 1-518781 

° _ L° 18494 J 

(80) ;+(z) = P': 

L°-: -_ 

by (79). 

Finally the result is 

S+(z) = A0(l + 4>(z)), 

•21698 + 0-99234Z"1 1-51878 - 0-6766z 

-37461Z""1 1-8494 - 0-2554z 

To check this result, we also computed 

10-440067 3-29969 ' 

^ 3-29969 3-249968 

and the determinant of the matrix (80): 

det S + (z) = 4-10008 + 0-70006z_1 . 

The matrix (80) is indeed the 5+(z) matrix because the poles of the matrix (S+(z))_1 lay 
inside r. 

THE GENERALIZATION TO n-INPUT n-OUTPUT SYSTEMS 

Consider an n-input n-output system described by the transfer function matrix 

_ u S1 2 . . . S l n 

(1.1) s = s22 

s, s„ 



466 where 

(2-1) 

(3-1) 

Write 

(4-1) 

Evidently 

(5-1) 

Denoting 

(6-1) 

we get 

(7-1) 

s./=LЧ--'̂  

S І І - Z - Ь Г ' 
1 = 0 

D -. STS = 

Du D12 . 

- > 2 1 

' Ð , n l 

Á,i • A,J 

£>Ü = E ЗД,.. 

Ç; <= max « t i , 
<*el,л> 

D„.= E ^ - ' = ^ , 
r - - ť l 

Examine closely expressions (61) and (71). It is easy to see that the highest power of Z 
in all polynomials of the i-th row of the D matrix does not exceed £,. 

Analogously, the highest power of z _ 1 in all polynomials of thej-th column of the D 
matrix does not exceed £,.. 

To apply the above algorithm we write down matrices (25) through (29): 

(8.1) B = 
B'tl B'12 ••• B'ln 

B'nl B'm 

where B'u are matrices of dimensions N x £} having the form 

(9.1) #, = 

"4 4 • 
4 4 - • 4 1 

. dЏ 

díí 
0 

0 ... oj 

for j ^> І 



and 

(10.1) 

Further 

(11.1) 

^ г 1 

ď 

в'lt = 

" 2 d7Ѓ d7;ІJ 0 

dľjІJ0 
0 

for /' > j . 

M = 

м u мl2 

м21 

м lи 

мвl 
м„ 

where M,y are JV x N submatrices of the form 

r 4 -*«• -7ïł 

rfî, d* dГ,1 

(12.1) 

and 

M ; ; = 

1 0 

dтř o 

4 
0 

«#• 

0.. .0 <ќ; d?.-

for 7 è i 

M, ; = MT, for i > 

The M matrix can be constructed by successive adjoining paper tapes like in (34). 

We have to use as many different tapes as is the number of the system outputs. 

To demonstrate this procedure we define the following n x n matrix 

(13.1) Л' = 

dx[ dX2 . . . 

ď21 ď2
r
2 ... 

dVn 

d;: 

ďяl d'n.n-1 d~r 

Observe that the superscript r is positive below the principal diagonal and negative 

elsewhere. 

Write 

(14.1) nn=[A°n,A
l

n,...,An], 

where £ = max £,. 
ie<l,n> 



Therefore we can define paper tapes PI, P2, ..., Pn as follows: 

(15.1) Пn -. 

"{<*?. d°12 ... d°ïя 

d°21{d°22...d0

2n 

dnl RC 

A\ , A\ , . . . , A\ 

0. . .0} = P1 

0 ...0} • P2 

0 . . .0} = Pn 

in words 

PI is given by first row of 77„, 

P2 is given by second row of FTn starting with d22, 

Pn is given by n-th row of Yln starting with d°„. 

Now we use the corner paper tapes (see (34)) and construct the M matrix as 

1*11 

(16.1) M = 

In words, we choose the tape having a nonzero element furthest in the right. Let the 

index of this element be r; then M is a (2r — 1) — diagonal matrix in accordance 

with Definition 1. 

Construct an (r - 1) x (r — l) matrix Q, starting in the upper-left corner as 

follows: We adjoin the tapes [ P i ] , [P2], ..., [Pn], again [ P i ] , [P2], ..., [Pn] etc., 

until all entries of Q are defined. We see that Q is again of the form (38). 

Further compute Q~l and repeat this algorithm until the next iteration differs 

sufficiently little. 

It remains to define the matrix B. 

Let 

Define 

£ = max š| . 

ß u = 

d\j dlj 
dìj d\s 

d\'j 
d\j 

- 1 , - 2 
J+l.J aj+l,J 

nj Unj 

dlҺ,j 

"d~J> _ 



and 

U: = 

_0 
1 0 
0 1 

0 0 1 0 

and 

Then 

Bi+tj = BtJ.Uj for i = l , 2 , . . . ( f - 1) 

j = 1,2,..., n . 

ß = 

# 1 1 # 1 2 •• # l n 

# 2 1 # 2 п 

% ß = 

Further we proceed in the same way as for a 2-input 2-output system, that is, we com­
pute 

R = QJlB, 

construct $(z) by (75), and further compute <P(l) = <£* and 

ST(1). S(l) = ST . S* . 

The A0 matrix is given by (80) as 

(1 + $ J ) - 1 S T S * ( 1 +<*>*) = ATA0. 

We choose A to be an upper-triangular matrix and compute it by the formula for 
the decomposition of a positive definite matrix. Then 

S+(z) = A0(l + <P(z)) 

and we have thus obtained the desired spectral factorization of ST(z-1) S(z). 

CONCLUSIONS 

Examples show that the method described converges quite fast. It has been proved 
analytically that the method converges monotonically and if there are no zeros of 
det ST(z-1) S(z) on the unite circle, it converges geometrically. If we write X for that 
zero of ST(z_1) S(z) lying inside T and being closest to F then the method converges 
no slowly than U|2 ' . 

The method has been tested by computing | S i S * — S«TS+1 as well as by the check 
for stability of (S+(z))-1. 

The method allows the accuracy 10"6 or better. 
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Numerická metoda spektrální faktorizace matic 

ZDENĚK VOSTRÝ 

Při syntéze mnohorozměrných diskrétních regulačních obvodů podle kritéria 
minima kvadrátů je hlavním problémem numerický výpočet spektrální faktorizace 
matic, jejichž prvky jsou racionální lomené funkce komplexní proměnné z. 

Numerická metoda popsaná v tomto článku je odvozena bez újmy na obecnosti 
pro polynomiální matice, které pro odvození metody chápeme jako matice přenoso­
vých funkcí jednoduché mnohorozměrné soustavy. Dále je určeno řízer.í takovéto 
soustavy z nenulového počátečního stavu do nulových ustálených hodnot výstupů 
podle minima součtu kvadratických ploch výstupů. 

V první části článku je ukázáno, jak lze danou úlohu v časové oblasti převést na 
řešení nekonečného systému rovnic o nekonečně neznámých a jak tento systém řešit. 

V druhé části článku je výpočet spektrální faktorizace matic pomocí řešení v časové 
oblasti. Postup je ukázán v příkladech. 

Ing. Zdeněk Vostrý; Ústav teorie informace a automatizace ČSA V (Institute of Information 
Theory and Auto mat ion — Czechoslovak Academy of Sciences), Vyšehradská 49, Praha 2. 
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