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KYBERNETIKA — VOLUME ] (1972), NUMBER 5

A Numerical Method of Matﬂx Spectral
Factorlzatlon

ZDENEK VOSTRY

The spectral factorization of transfer function matrices ts an intrinsic problem arising in the
optimal control of linear discrete systems with respect to a quadratic perforinance index.

The presented method is based on the comparison of two approaches — In the time domain
and in the frequency domain — to a special control problem.

INTRODUCTION

To develop a numerical method of matrix spectral factorization, we first solve the
problem of optimal control for a simple two-input two-output system with respect
to a quadratic performace index. Without any loss of generality we have chosen the
system transfer function matrix with polynomial entries.

The first part of the paper shows how to transform the solution of the above problem
in the fréquency domain’ mto the solution of infinitely many simultaneous equations
in the time domain. This’ system of equations enjoys a particular structure so that
a solution has been found, as shown in Example 1. \
~ Further, the classical frequenéy—domam approach leading to the spectral factoriza-
tion of matrices, _1s1analyzed. The problem having a unique solution, we deduce that
both solutions coincide. Thus relating these solutions yields a relationship between
the solution of the infinite system of simultaneous equations and the spectral factorlza-
tion. This method is shown in Example 2, which completes Example 1.

In the last part of the paper the generalization to n-mput n-output systems is given.

We stress at this point that full rank of the matrix to be factorlzed 18 necessary as
well as sufﬁc:lent for the present method to hold. | |

This method can be applied equally to the matrices whose entriés are rational
functions in z ™! after having multiplied the matrix by the least common denominator
of all its entries. The factorization of the original matrix is obtained by simply multi-
plying the result by the factorized least common denominator. The spectral factoriza-
tion of polynomials is described elsewhere [3].
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A 2-OUTPUT 2-INPUT SYSTEM

Consider a particular two-input two-output system having the transfer function

matrix with polynomial entries.
We seek for those inputs that will bring the outputs-of the system to zero for any

initial state and, in doing so, '
(1) (i) will minimize the squared outputs and

2 (i) both inputs will be zero in the steady state.

The above conditions imply the physical rcalizability as well as stability of the
optimal control.
We denote the transfer function matrix of the system as

5140 5ule]

(3) S(Z) = [521(3) Szz(z)

the inputs as

-}

and the outputs as ) .
X(2) = [X '(Z)].
X,(z)

We find it convenient to further introduce initial conditions in the bilateral Z-trans-

form . .
o e
where

2 i
Y=z,
1

\I‘Ma

S _
Yi(z) ='Zly‘_jz’, Y;(z) =
1= J

¢ = max (”lh ’lz[), n = max ("12, "12)

and n;; stand for the degrees of the polynomials S;(z).
The input and the output of the system obey the equation

(6) X(z) = S(z)(¥(z) + Y(2).

Let the performance index be given as

8

(7) ' I= 3 (<32 + (2

i=0
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450 where

® X)) = e Xl -

= .
Y xiz.
j=o

This is, in fact, the sum of squared outputs x} and x.
It follows from the Z-transform theory that

1 - -
9) I=——-.§(X,X1+XZXZ)5ij
2 Jr z

where j is the imaginary unit, I' is the unit circle |z] = 1,
X,(2) = X1(z7"), Xi(z) = Xy(z7").

In the matrix shortland, performance index (8) can be written as
1 z -
(10) 1= L 6x@) .30 E = Lfxe) x ¥
2n Jr z 2 Jr Tz

(T denotes the transposc).
The expression (10) is still valid for a general multivariable system.

MINIMIZATION OF (10) IN THE TIME DOMAIN

By (2), for any & > 0 there exists an N such that
[y}l <&, |yi|<e foramny i>N. A

Consequently, up to a small error which tends to zero for N - oo, performance
index (10) depends only on a finite sequence of the system inputs. Hence it follows
that

(11) I =18 ¥1s s Vi Yoo V3o -0 ¥8) -
The minimum of I is achieved if

a

12 =0, i=012..N
(12) ayi

- al
13 = =0, i=0,1,2,..,N.
(13) i

Substituting (6) into (10) gives us

(4 1= %§(w (") + Y7 (=) ST S() (Y() + Y () 2.
mj Jr z



Now substitute (14) into (12) and (13) and rewrite

a 1 ' 01 ST S(21 (Vis ¥z _

(15) a—y;=2—nj3€r[zo]sc ) S ) + () & =0,
=0,1.2,..,N,

(16) 5'1—{_2—=~§[0 2] ST(z7) S(2) (Y(2) + Y~ (2)) E‘_? =0,
=0,1,2..,N.

On integration, both equations (15) and (16) yield N and N simultaneous linear

equations in unknowns y!, y2.

By (3) we carry out

o s ==Lt S [0 )

_[4= B@)
B(z™") C(2)
with the obvious definition of A, B and C.
Write

(18) Silz) = is:iz", i=1,2; j=12,
r=0

(19) Az) = Z;::z,z",

n
Cz)= Y ¢z7"

-n

where ‘
& = max (ny,n3,), n = max(n,;n,,); "
LISt 4
o) o= a S AL
r=0,1,...,¢&;
@y S S

r=0,1,...,0;
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(22) m_xzrs“sjl, + Z s“sf,‘,,,
r=0,1,...,f;

(23) ¢ =c., =Z spPsiie + Z s
rj= 0,1,...,7.

Remark 1. By convention the empty sum is taken zero.
On substituting from (17), equation (15) takes the form

gt I P [

Now substitute (20) through (23) into (15) and integrate it for i = 0
a(,y(', +oay; ..+ acyé + boy2 + b_,yf + ...+ b_§y§ +
+oagyiy +ayl, 4 agte+ byt + byyi, + .+ by, = 0.

In a like manner we obtain the remaining equations by setting i = 0,1, ..., N in
(15) and (16).
In a matrix form they read

(24) MY +BY =0,
where (for definiteness assume ¢ > n),

(25)




dimension 2N x (2N + 2¢) 453

,1 . .
y‘l’ a 4 - - - oag bbb - b
s by, - - by o o -
: a, a; - o 0 b by 0
N by, by - by o ¢ - cy O
. o 0 . /
L - by 0.
@) Y =| M4 B=| a, o/ l cq 0O
Yo b )
2 ¢ 0 0
Y1 0
w i
,5;”*{@ [ 0 00 — 0
dimension 2N x (& + 1)
-1
}1—1
V-2 .
(27) ‘7 . Y- = vk ‘
B J’2~1
)’2-2
;
Yen

This equation cannot be solved for ¥’ since M’ is rectangular, that is, there are more
unknowns than equations.

By virtue of condition (2), y} and y? approach zero for increasing i. Now assume
N sufficiently large so that

(28) Yher=0
and
.Vfl-v'-r =0 L :
for
r>0.

Then (28) together with (24) constitute a solvable system of simultaneous equations.
The M’ and Y’ are modified to

RN I
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(29)

a, 4, a © 0 by by - - - bi 0 —— 0
a, a, a, a0 by bpby - - by 0 —— ©
4, b
by -
a 0 by
0 a 0 0 [
0 ag by
\ } | .
M 00 0" ag 8y ag 0 0 ———— 0by - - b7h
0 0

=<
|
~
=

(30)

while Y~ and B~ remain unaffected. Hence (24) reads
) MY’ + BY™ =0.

The solution of equation (31) simplifies greatly if we realize that y§ and y depend
only upon the initial conditions Y~. As a matter of fact, the knowledge of these
relations yields recurrent equations for y{ and y?. These will qualify as a solution of
(10) with increasing order of the M” matrix.

To solve equation (31) more easily we modify M” to a special form. The modifica-
tion is as follows: :




(i) We reorder the rows of M” thus forming a new matrix M”, namely, the first
row of M” is the first row of M”, the second row of M” is the (N + 1)-th row
of M”, the third row of M” is the second row of M”, the fourth row of M” is the
(N + 2)-th, etc.

(i) We form another matrix M by following the same procedure for the columns
of M”.

The resulting matrix M thus has the form

(32

ag bo ay by ay by - caygby - .a b 0 ——— o0
by g bye, b e - -bpen 0.+ 000 ——— 0
a, b a, by, a b, a by 0

<>
o o O
R
<

L g
We can use the following simple method to write down the matrix M. The technique
is especially well-adapted for the computer use.

Write the sequence a;, b, ¢; on paper tapes P1 and P2 in the following form

(33) Pl ={ag by ay by ay b_y ... ay b ... ag b_g 0 ... O},
P2={cy by ey by ¢ ... by ¢ 0 ... 0}

and define generally a paper tape as

455



456  Introduce the corner paper tape [P;] which defines certain entries of a.matrix as
follows y

then the M matrix is given as

(34)~ e M= [p1]

a; a; ag by b, by
a - - ag 0 bay /b 0
/ by o
L 0 0
1 |
B'= ) 0 0 0
(33) by b, by o ¢, cn
b, - - . by 0 ¢y /57 0
// j /
bg o 0
| |
|
0 C ]
L 4

(36) Y =|y?

i |
- - = =
ZNZ O NO
— e



To recall, the first rows of B and Y are the first rows of B’ and Y’ respectively, the
second rows of B and Y are the (N + 1)-th rows of B’ and Y respectively, etc.
The B matrix is of dimension 2N x (& + ).

We are to solve the equation
(37) MY + BY =0.
Since M is evidently positive definite, it is invertible and hence
Y= -MI!BY .

As shown above, it is sufficient to compute just yg and yj, i.e., we need just the first
two rows of the inverse M ™!,
Examining closely the matrix B, we find that the (2£ + k)-th row is zero for all
k = 1,2 .... Therefore we need only the first 2¢ entries in the first two rows of M~ 1.
Below we shall establish a theorem on the inverse of a multidiagonal positive
definite matrix, which will greatly simplify the problem.

Definition 1. A symmetric matrix 4 = [a,;],i,j = 1,2, ..., n,issaid to be (2r — 1)-
diagonal if there exists a natural number r < nsuch thatap; = Ofor |i - jl +1>r
and a; ; # 0 for at least one i and j for which |[i — jl + 1 = r.

Theorem 1. Let A be a (2r ~ 1)-diagonal positive definite matrix of dimension N.
Then the (r — 1)-dimensional upper-left-corner submatrix of A~* can be computed
via operations on an (r — 1)-dimensional matrix.

Proof. Consider the above matrix 4 and decompose it into the form below:

Ba 23 0 —— 0  —— 0
P .
38 - . “ B °
( ) A o a; Py
T
P Q
()
L : N

where Q, P;, and P} are submatrices of dimensions respectively (r — 1) x (r - 1),
1 x(r—1)and (r — 1) x L. :
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458 It is well-known [1] that if 4 is positive definite then all principal submatrices of A
are again positive definite.
This allows us to use a block decomposition of A to compute the A™!.

The first step is to compute Q™ !'. Then we define

a, P,
Q‘=[P; Q]
-1 ey Gy

Qi =\ H, |

Since 0,07 = I, we conclude that

(39)

and write

ae + PGy =1, a,G, +P,H =0,
P+ QGy =0, PG +QH =1.

Hence

(40) e = (a; —P1Q71PV1)¥1,
G, = —e,P,Q7},

(41) Gy = —Q YPe,,

H = 07"+ GGet,

see [1]. Note that e, in (41) is a number. Repeat the above procedure for

a, P, 0
(42) Q,=|P,
0 9

Let again

-1 _ | € G,
2 _[G; Hy 1"

Then formulae similar to (41) hold for e,, G, and H,.

We are going to show that we do not need the last column and row of Q{’ to
compute Q; ' without its last row and column,

For instance

(43) ey =(a, — P,Q7'Py)"" = (a, — [P, 0] 21re, )2,

EEnE 0
(44) G, = —e,P,07" = —¢,[P, 0]
o7t

£ oo %

(The entries denoted as = are multiplied by zero.)



The last entry of G, will not evidently be used in the next step and hence need not
be computed.

To summarizz, the method consists of successive adjoining a row and a column
to the matrix Q;_,, of a short computation, and of deleting the last row and column

of g;':
(45)

-1

£
o
~

ol

h
_ 7 .o e
el [ |- o] .

¢ bk, hoa
(46) e; =(a; — PQ7\PY?
G = —ePQ .
H = Q) + GiGie; *.
Write:
G, =[G g],

hl

hy hy ... b,

Delete gand hy, h,, ..., h,_; to gzt

N -1 _ e G
@7 0; ‘[a; H]

again of dimension r — 1.

This completes the proof and also suggests an effective method of computation.

Now we apply Theorem 1 to solve equation (37). Using (46) and (47) we compute
the (r — 1)-dimensional submatrix of M™'. As stated above, we just take its first
two rows; in general, we take as many rows as the number of outputs in the system.
It is easy to increase the order of the matrix M by adjoing additional paper tapes
according to (34). This simultaneously increases the number of variables in perfor-
mance index (11).

The numerical method described is based on successive adjoining the paper tapes to
Q; until Q7" = Q75| < & or generally, until Q7! ~ 07| £ & where k is the
number of the system outputs. It is important to first adjoin the paper tape Pk, then
P(k — 1),..., P2, PL. We shall call each adjoining of Pk, ..., P2, P1 an iteration.
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Example 1. (Two-input two-output system)
14+02z70 1 — 2271
48 S(z) = >
(“8) @) l:l + 2270 1+ 0'52'1:|
604 +22(z + 27Y) 26 + 22z — 157}
26 +22z70 — -5z 625 — 1:5(z + z71) |’

@) S, Se) = [

By (20), (21), (22), (23),

(50) E=1, n=1,
ag =604, a,=a_, =22,
- by =26, by =15, b, =22,
=625, ¢, =c_; =—15.
By (33),
(51) P, ={ay bypa, b_; 00 ..} ={604 2622220..},
P2={co by ¢, 0 ........ }={625 -150 0 .

Construct the matrix Q using (34) to compute Qi_1 Dy (46), (47). As stressed above, P1 must be
the first row of Q to get y} first and then y3.

From the coefficients of P1 and P2 we infer that r = 4 (see Def. 1). By (34) we can construct
the following matrix, which is of order r — 1 = 3 by Theorem 1:

ag by a; [604 26 22
(52) Q=|boco bi|=]26 62515
a; by ag| |22 —15 604

The method was programmed for a digital computer. Taking the form of the B matrix into
account, we see that it has 2£ rows and the

b 22 =15
(53) =] "= )
b_y ¢ | 22 ~15
Denote Q; as in (46) and write down only the entries needed.

After adjoining successively P2, P1, P2, P1, P2, P1 we obtained

—1 [ 03416918 —()'201!448:|

- —0-2011448  0-2930832

sl =
after further adjoining P2, P1, P2, P1, P2, P1, we obtained

1 hl: 0-3406889 —0'2003049:|

12 —0-2003049  0-2923799
and finally
54 0 = 0-3406879 — 0-2003040
20 —0-2003040 02923793 |



Comparing the respective entries we could see that the difference
-1 -1 -6
“Qu - Qs H < 10

and that Q5¢ represents the solution with the accuracy 10~ 7.
Now (37) yields

1 . 4 _ 2 1 1
(55) yg QY = 030884 —021057[¥L,] _ _ L[yt
¥2 020256 —0-13811 || y2, v,

Equation (55) can be viewed as a control law at time i:

1 1
Vi Vi
(56) [V IZ] B _R [y lz ]] ’
Vi Vi<t
This recurrent equation together with the initial conditions yL 1 yz_l yields the optimal contiol
for system (48) with respect to performance index (11).

In terms of the Z-transform equation (56) formally reads
(57) Y(z) = —z7'RY(z) + C,

where C represents the influence of the initial conditions.

MINIMIZATION OF (10) IN THE FREQUENCY DOMAIN
We take a classical approach [2] to minimize performance index (10), which reads
for our problem as
1 d
(8 1= *(ﬁ () + YT STEY) SE) () + Y (@) =
2y J z
We set

(59) Lo - is*(z-') S 1) + (@) £~ 0.

This is true if the integrand has no pole inside I':

(60) Sz S()¥(z) + Y (z))z7 = A.

1t is well-known [2] that ST(z™") S(z) can be decomposed to the form
(61) S (z7")S(z) = S7(z7") S*(2)

where $7(z7") = S*7(z™"), S*(z) and (S*(z))~! have all their poles inside TI.
Thus

(62) 27 ST () ST (Y(2) + Y () = 4.

461
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We premultiply equation (62) by (S™(z7"))",

SR () + Y () = (7)) A = 4y
or

63) I STEYE) + [%]= A - [L)ZY(Z)] _

Here [.], denotes the extraction of the poles lying inside I.
By Liouville’s theorem both sides of (63) are constant, in our case zero:

9 o) = —a(se) [T

The entries of S*(z) are polynomials in z so that
(65) S*z) = Ao+ 274, + ...+ 2774,

where k is the largest degree of all polynomials involved. We shall show that A4,
is nonsingular: S* is nonsingular outside I" by hypothesis and hence it is so also for
z — co. It follows that A, is nonsingular.

We use Ay 'S* instead of S* in (64) and shall show that ¥{z) is not affected:

(66) ¥(2) = —=(S7)" Aods! [L@l

We expand (4,S*) ™! into a power series in z7* and truncate it after the first term:

67)  (4g'S*) ' =(1+ z7 Mg  + 2724 A, + o+ 2T A AYTE =

=14+z1'0,
@ being the remainder of the series.
Using (67) in (66),
ety
(68) Y(z) = = (z.1 + ©) [Mfy—(z)] .
z s
By (67) evidently
(69) Ag'St =

- [1 +olz otz ehizTs el b+ rphz“"]

@z 03z 03z L 05T + 00z L ol

The degrees of the polynomials result from the finite memory of the system, see (5).



The inverse Z-transform gives us 463

(70) [y] -y -
Yo 2mj Jr z
Yo 455 Y () d
_21rjf£,-('1+6)'|: z J+z.

By definition, @ contains no term with positive powers of z.

[Agls+ Y’(z)i]

contains only the negative powers of z. It means that the integrand in (71) will con-

The following column matrix

tain the zero coefficient at z 77, i.e.
—lg+ y—(. .
(71) J—,cﬁ@[—ﬁl" S (‘)] 4y,
2mj by z -

On modifying,

[yé] _ 2;135 [Aals%z) Y"(z)} s = — [15;812)1 1(5)] ,
Yo i Jr z + z .

Otherwise speaking, this represents the extraction of all terms at z7 1.
Substitute (69) into the last equation.
Then

1
™) ME

Yo
_ [(pl‘ly‘-l ot o+ olte eils 4 ohyiy o+ w'izyz-n]

o3yt + ‘P;U’l—z + ..+ (Pgtyﬂgs ‘P;z,"zq + ‘P%zyzvz + ...+ ‘/’gz."zﬂ,
and equivalently
(73) [yé]Z _ [wh ol o510l 0l (P;‘zjl v-
s P31 Ph1 - P31 Ohy @31 O
or, in the shorthand notation,
Y, = —RY™ .

Rewrite formally (72) in terms of Z-transform

(714) Y= —-aY +C;



where

S—
o=
N

INgl X
<
o=
N
!

"
oy
W

(75) &(z) =

S
o
Iy
N
)

e iMs

THE METHOD OF MATRIX SPECTRAL FACTORIZATION

Comparing (75) and (69) yields
AF1SH(z) = o(z) + 1.
Hence ’
(76) St =A@+ 1).

Let us look for a way of computing the A,.
We know that S*(z) is unique up to a unitary matrix U:

S z7") S(z) = 57(z71) $¥(z) = K~ (z7H K*(2)
where
S*(z) = UK*(z),
S (z)=K(zH)UT
and hence
STz S*(z) =K~ (z7Y) U'u K*(z) =K (z7")K*(z).
Thus the A4, matrix is not unique and we have the liberty of choosing a way of com-

putation.
It is seen that (76) implies

(77) S7(z7Y) S*(2) = (1 + ¢7(z7Y)) ATA(1 + 9(2)).

To simplify the computations we set z = 1, and denote this as S(1) = Sg:
(78) S;Si = SIS, = (1 + oL) AT4,(1 + ®,)

and on modification ‘

(19) (1 + @) SIS + ) = Ald, .

The left hand side L of (79) is positive definite and hence L = A43A4,, where 4, can
be taken as an upper-triangular matrix. The technique of finding A, is described

in [1].

The above trick allows us to factorize S™(z™") S(z) without knowing 5(z).



Example 2.

To demonstrate the above method, let us go back to Example 1. There we obtained the R
matrix (55), which is the same as the R in (73).

Equation (75) gives us

o) = 0-30884z~1 —0-21057z""
: 020256271 —0-13811z"!

and for z™! = 1 we have

14 @) ' =
( ) [—0-1732 111797

0-7362 0']7986]

Setting z™1 = 1 in (49),

STs, = [10'44 33 ]

33 325
Then
491498 3-3671
1+ 0)) 1 SESL(L + @)t = = A}
(14007 SiS.{L +2) 33671 57269 °7°
where
221698 1-51878
o 1-8494
by (79).

Finally the result is

S*(z) = Ao(l + 9(2)).
2:21698 + 0-99234z°! 1-51878 — 0:6766z "
0-37461z7* 18494 — 02554271 |’

(80) 5*(z) = [

To check this result, we also computed

S;Si =

10440067 3-29969
329969  3-249968

and the determinant of the matrix (80):

det S*(z) = 4-10008 + 0-70006z ' .
The matrix (80) is indeed the S (z) matrix because the poles of the matrix $*@)~ ! lay
inside I

THE GENERALIZATION TO »-INPUT n-OUTPUT SYSTEMS

Consider an n-input n-output system described by the transfer function matrix
Sll SlZ Sln

(L1) S=18,, ,
San e Sun
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where
niy
(2.1) Siy= Y sz,
=0
(3.1 S, =Y sl
=0
Write
Dll DIZ - Dln
T DZI
(4.1) D=5"s=|" :
. Dug oo D,,
Evidently
(5'1) Du = Z gkiskj -
k=1
Denoting
(6.1) §i=maxny,,
Ckel,nd
we get
& B
(7.1) D, = ‘Zé.d;jzfr =Dy.

Examine closely expressions (61) and (71). It is easy to see that the highest power of Z
in all polynomials of the i-th row of the D matrix does not exceed &;.

Analogously, the highest power of z~* in all polynomials of the j-th column of the D
matrix does not exceed &;.

To apply the above algorithm we write down matrices (25) through (29):

(5) -] :

bty 4
& & . d
(9.1) By =|d} for j=i
0




and

iy 4} 4
di=di ... d;¥ 0
(10.1) By =1d;>0 : for i>j.
0
[\ . 0 ]
Further
M My, M,
(11.1) M= | M=z
My e M,,

where M;;are N x N submatrices of the form

g0 g4-1 4-2 —& —
dil,. déj‘ d,._j‘ e dif o_g‘ .. 0
d; dy, dit ... i o ..
0
(12.1) M= | dift| for jzi
)
0
0...0 df oo, dy
and
M,;=M], for i>j.

The M matrix can be constructed by successive adjoining paper tapes like in (34).
We have to use as many different tapes as is the number of the system outputs.

To demonstrate this procedure we define the following n x n matrix

dif dig ... diy
rooger 2
(13.1) A = dyy dig ... d;,
nt dy oy o

Observe that the superscript r is positive below the principal diagonal and negative
elsewhere.

Write
(14.1) 1, = [43, 4, ..., 45,

where ¢ = max ¢;.
ieC1,n)

467
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Therefore we can define paper tapes P1, P2, ..., Pn as follows:

{d, 4%, ... dzn 0...0} =P1
0 0 =
(15.1) 1, = s {d, ... 42, ARV 0..0} =p2
. {an, 0...0} =Pn
in words

P1 is given by first row of IT,,
P2 is given by second row of I, starting with d3,,

Pn is given by n-th row of T, starting with d5,.
Now we use the corner paper tapes (see {34)) and construct the M matrix as

[P]
[P2]

(16.1) M- [Pn]

In words, we choose the tape having a nonzero element furthest in the right. Let the
index of this element be r; then M is a (2r — 1) — diagonal matrix in accordance
with Definition 1.

Construct an (r — 1) x (r — 1) matrix Q, starting in the upper-left corner as
follows: We adjoin the tapes [P1], [P2], ..., [Pn], again [P1], [P2], ..., [Pn] etc.,
until all entries of Q are defined. We see that Q is again of the form (38).

Further compute Q™' and repeat this algorithm until the next iteration differs
sufficiently little.

It remains to define the matrix B.

Let
= max &;.
ie(1,n>
Define
1 2
dy;  dijeeaa dy
1 2 !
dyy  dypeeoan a3
_ 1 2 14
B,; = d”l aljj2 ......... d3;
divey difey oo e dié




and
0 0
10 0
U; =101
0 010 %8y
and
Biyy;=B,;.U; for i=12..(6-1)
j=12...,n.
Then
Bll BlZ . Bln
B Byy.oon B,,
B B,

Further we proceed in the same way as for a 2-input 2-output system, that is, we com-
pute
R=0;'B,

construct §(z) by (75), and further compute &(1) = &, and
ST(1). S(1) = ST. S, .
The A, matrix is given by (80) as
(1 + @3) ' SiSu(l + &,) = AJ4, -

We choose A to be an upper-triangular matrix and compute it by the formula for
the decomposition of a positive definite matrix. Then

§%(z) = Aof1 + @(2))

and we have thus obtained the desired spectral factorization of ST(z™*) §(z).

CONCLUSIONS

Examples show that the method described converges quite fast. It has been proved
analytically that the method converges monotonically and if there are no zeros of
det ST(z™") S(z) on the unite circle, it converges geometrically. If we write 4 for that
zero of ST(z ') S(z) lying inside I and being closest to I then the method converges
no slowly than ||,

The method has been tested by computing ||SSx — Sy Sy || as well as by the check
for stability of (S*(z))~".

The method allows the accuracy 10~ or better.
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VYTAH

Numericka metoda spektralni faktorizace matic

ZDENEK VOSTRY

Pii syntéze mnohorozmérnych diskrétnich reguladnich obvodt podle kritéria
minima kvadrati je hlavnim problémem numericky vypodet spektralni faktorizace
matic, jajichz prvky jsou racionalni lomené funkce komplexni proménné z.

Numericka metoda popsana v tomto &lanku je odvozena bez {ijmy na obecnosti
pro polynomialni matice, které pro odvozeni metody chapeme jako matice pfenoso-
vych funkei jednoduché mnohorozmémé soustavy. Déle je urdero Fizeri takovéto
soustavy z nenulového poéateéniho stavu do nulovych ustalenych hodnot vystup
podle minima souétu kvadratickych ploch vystupd.

V prvni €asti ¢lanku je ukazéano, jak lze danou tlohu v Zasové oblasti pfevést na
feSeni nekonedného systému rovnic o nekoneén& neznamych a jak tento systém fesit.

V druhé &asti €lanku je vypocet spektralni faktorizace matic pomoci feeni v dasové
oblasti. Postup je ukazan v pfikladech.

Ing. Zdenék Vostry; Ustav teorie informace a automatizace CSAV (Institute of Information
Theory and Automation -- Czechoslovak Academy of Sciences), VySehradskd 49, Praha 2.
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