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KYBERNETIKA CiSLO 6, ROCNIK 2/1966

Neuron Model with Electronic
Treshold Circuit

PETR HIRSL

A circuit was proposed on the base of a graphically solved neuron model [1], this circuit having
properties which are analogous to the properties of a motoneuron from the point of view of its
external electrical behaviour. This approach permits to solve the model as a voltage-frequency
converter, and vice versa.

INTRODUCTION

‘When designing an electronic neuron model, one starts from the graphic solution
of the model [l] One of the requirements to be met by a technical embodiment of
the model is maximum plasticity of its properties permitting a ready change in the
parameters and the possibility of adding further circuits for forming the paradoxical
phase and adaptivity. Generally speaking, the described model represents a further
development of some suggestions contained in 2], [3] and [4].

It is taken into account that a neuron is neither a digital nor an analog element
but a hybrid one whose function combines both previous principles. It is obvious
that a system which would represent a working model of a neuron should comprise
at least two fundamental units. The first is a voltage-frequency converter simulating
the function of the soma of a neuron (and of dendrites). The second unit which re-
presents a synapse is a frequency-voltage converter, substantially an integrator formed
by an R—C circuit (I in Fig. 1). A more detailed analysis of the voltage integrator (I)
is given in [5] (on p. 111). The axon whose function can be simply illustrated by
a delay in the transmitted signal is not included in Fig. 1.

VOLTAGE — FREQUENCY CONVERTER

Let us analyse a voltage-frequency converter which simulates well nearon properties
and permits also an easy change in the parameters with a view toward the closest
approach to actual neuron properties. Instead of a multistable multivibrator or




blocking oscillator currently employed in neuron models there is used a Schmitt
circuit S which cannot serve as a generator of a pulse sequence without further addi-
tional circuits forming a feedback loop (shaping unit TO, inverter IN, summation
circuit }). The wave form of the feedback voltage determines directly the shape of
the refractory period. The feedback circuit determines the shape of the conversion
of the input signal x(7) to the frequency of the output pulses f,

) fy= wf[;xi(t) wi] =y [x(1)].

Fig. 1. Simple functional diagram of neuron model.

Expression (1) is analogous to expression (5) in [1].
The input signal of the converter x(t) = Y x(t) w;, that is the complete postsynap-

tical signal is amplified by the input circuit K,-times and it is summed in the summa-
tion circuit with a feedback signal. The output signal R reaches the input of the
circuit S.

When meeting the condition

@ Rz P=hK,

where P — threshold of Schmitt circut, h — threshold of neuron model, the circuit S
changes from state “O” into state 1™, and its output signal is transformed by the
shaping circuit TO into a signal v(t). The inverter reverses the polarity of the signal
¥(¢) which is multiplied by a constant K, and then summed by the summation circuit
with the signal x(t). Assuming TO to be a simple R—C integrating circuit and that
the signal

x(r) =P

is a short pulse, ¥(£) in our model has an exponential rise with a time constant t,,
and an exponential drop with a time constant t,, and it is possible to meet the require-
ment

(3) T, €Ty,
Therefore, across the input of the Schmitt circuit there operates a signal

4 R=x(1)K; - 1)K, .
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Generally, if one uses a more complicated form of the circuit TO, one can achieve
that the shape of the dropping part of the signal v() differs from an exponential curve,

and thus also a change in the function ¥y (1).

In the simple case of an exponential shape of the start and drop of the signal

Kix(t)

1)

e)

T

Fig. 2. Fig. 2a illustrates a signal K; x(#) and shows the threshold P and the width of the hyste-
resis area uy, of a Schmitt circuit. Fig. 2b shows the shape of the signal v(z) which is also shown
in Fig. 2c after amplification and inversion. Fig. 2d illustrates a signal R operating across
the input of a Schmitt circuit. The resulting output pulses, that is the output of the circuit §

are shown in Fig. 2e.




¥(t), x(t) in the shape of a step function

(5) x(fy=0 for t<O,
x(t) = constfor =0,

and under the condition

(6) K x(t)2 P

one obtains the signal shape indicated in Fig. 2 at the various points of the converter.
The Schmitt circuit is first excited if the condition (6) is met. But this causes the
signal ¥(1) to increase and leads to a decrease in the signal R down to a value

(7) R=P+u,=P—-K)v,—v).

At this moment the Schmitt circuit returns from state “1” into state “0”, R in-
creases with a time constant 1, until there is again

() R=P

which excites again the Schmitt circuit. Its first output pulse is longer than the follow-
ing pulses (see Fig. 2e), but this difference is the smaller, the larger R than P.
The duration of a cycle of the output pulses in the steady state condition is

©) T,=T,+T,.

For the rising part of the signal ¥(f) one obtains
(10) 5(1) = vl = e7),
and for the dropping part one obtains
(11) (1) = v, e

v,, being the possible maximum value of the signal v(t) and equal to the amplitude of
the output signal of the Schmitt circuit. The time T, is determined by the distance
between the intersections of the curve (10) with the values v, and v, in the rising
part, and similarly, for the curve (11) also the time T in the dropping part of the
signal v(f) (Fig. 2b). For the length of the two parts of the cycle there is

(12) T,=1,—1, =r,,1nv"‘—v2,
Vm — V1

and

(13) To=t,—t, = 1,In 2L,

V2
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(1)

a)

With the decrease of the time constant t, — 0, there decreases also
(19) T,—-0.
In the extreme case, when T, = 0, there is

(15) T;=T,
and relationship (1) has the shape of the curve shown by the full line in Fig. 3b.
In this case the development (1) is therefore non-linear and concave. If 7, # 0, that

N

7, = const ,

f(0)
Fig. 3. The curves in Fig.
3a illustrate the develop-
ment of (11) for 7, =
= const {curve 1) and for b)
g ~ 1/v (1) & const (cur-
ve 2). Fig. 3b shows by
the same type of line the
corresponding  develop-
ment of (1), For 7, =
= const, the shape (1) is
concave, for 7, = const
the shape (1) is convex
(,.logarithmic*). = X()




is T, increases with an increase of x(z), defferent values t, cause the following changes

in (1).

It is possible to determine 7} so that for
(16) T =T,

the relationship (1) differs only a minimum from the linear development.
For

(amn T, < T

(1) is concave, and for

(18) T, > TF

(1) is convex. The relationship (1) can be generally expressed as a function
(19) Sy =0(R, 1, T, P, vy, vs).

The effect of the shape of the dropping part vs(t) on the shape (1) is much greater
than the shape of the rising part v,,(t). Assuming T, = 0, Fig. 3b shows for the
development v((t) in Fig. 3a the relevant shapes of the relationship (1) for v, — v; =
= 0,05v,,,

THE DESIGN OF THE MODEL

The overall diagram of the electronic model designed in accordance with the above mentioned
principles is shown in Fig. 4. The input circuit A (K in Fig. 1) is designed as a difference amplifier

excitatory

{o}— =~ N_

nhibitory

. Fig. 4. Complete block diagram of neuron
. model. )

which permits to apply the same signal polarity both for the excitory and inhibitory inputs.
The circuit B is the voltage-frequency converter proper. The axon function is simulated by the
circuit C (monostable multivibrator) with an adjustable value of the delay 7. The circuit D is
a synapsis model marked in Fig. 1 as integrator I. The output signal of the model has therefore
the shape of a postsynaptical signal. The circuit E simulating the paradoxical phase is formed
by a non-linear element with signal inversion. The circuit F simulates adaptivity. A detailed circuit
arrangement of the model is shown in Fig. 5.
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Fig. 6. Effect of adaptive component of threshold iwy,(¢r) on neuron characteristic y(f) =

=y Txdtyw,.
i

) T

't max

Fo min—

'
—

Fig. 7. Typical output signal of
neuron model in Fig. 5.

Different conceptions of the adaptive circuit F from the point of view of the results of its
operation are possible. In [2], the signal which increases the threshold by a component wg (¢}
is derived from excitatory input signals so that for a constant input signal x(¢) = const, the
output frequency f,(t) decreases gradually to zero. In our case adaptivity is controlled by a signal
derived from the output signal of the circuit B which results in a gradual approach of f,(¢) toward
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a certain minimum non-zero value. The adaptive circuit can be looked upon as a negative feedback
circuit with a time constant 7, which is relatively large with respect to the time constant 7 of the
postsynaptical signal [6].

If the upper limit of the active region is determined by the existence of the paradoxical phase,
the width of the active region o {1] decreases (Fig. 6a) if in Fig. 4 the instantenous values of the




threshold w(¢) is increased by a component wg,(?). But if the feedback circuit is changed so that
it does not feed back the signal into the input of the circuit B (as in Fig. 4), but directly into the
circuit A, one obtains a slightly different result. The value threshold will effectively increase by
a component A# which is a function of the output signal fy(t), But the component Ak increases
also the upper limit of the active region so that the width of the active region ¢ remains unchanged
{Fig. 6b). If the neuron has no paradoxical phase, it can be readily found that the effect of both
methods of the adaptive feedback is equivalent (Fig. 6¢).

Fig. 7 shows a typical output signal of our neuron model for the output signal x(¢) in the shape
of a step function (5). The dependence (1) for various amplitudes x(¢) of the shape (5) has been
studied and shown in Fig. 8a, time being the parameter. For a time = 0, f, ., == 6 ke/s at
the beginning, and it decrease gradually approximately linear to a steady value for t > o». The
dependence of the output signal y, expressed in voltage is shown in Fig. 8b (for measured signal -
see Fig. 7).

NEURON CIRCUITS WITH POSITIVE FEEDBACK

In conclusion, note the circuit arrangement of a neuron model with external
positive feedback in accordance with Fig. 9, the value of the weight of the feedback
being w, > 0.

In the first place let us use a neuron model without adaptivity and paradoxical
phase in the circuit arrangement in accordance with Fig. 9. Across its input there
operates a total signal

(20) () = x40 we + (1) v
there being y(1) > 0, that is the neuron model is fired under the condition
(21) x{()w; 2 h.

Generally. if signals affect several inputs simultaneously, there is

(22) x(1) =Y x{(t) w; + () w, .

i

The general condition for refiring within a time ¢ > 0 is

(23) (1) Z b+ wo (1),

(1) " v(f)

Fig. 9. Circuit arrangement with feedback.

where wy, (1) is the refractory component of the threshold.
The signal y(r) has a delay t, with respect to xi(t) and an exponential drop with
a synaptical time constant t which affects the fulfilment of the condition (23).
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A detailed analysis would show that the least favourable conditions for a sub-
sequent firing occurs with the arrival of the first pulse of the signal y(t) because the
feedback signal is yet small. Only if the neuron is refired, firing conditions improve
further because the amplitude of the signal y(t) increases gradually (see Fig. 5in [1]).

For a neuron with adaptivity, condition (21) is again valid for the first firing, but
in the adaptive component of the threshold w,,(f) apears in expression (23)

(24) x(£) 2 h 4 wo (1) + wol(f)

which worsens firing conditions. At the beginning, when »vOa(t) has a small value,

the same conclusions are practically valid as for neurons without adaptivity. But as

Wod(t) increases, excitation conditions gradually deteriorate. In the case of a small

input signal ¥, x,(f) w; and a small value w, and t, there is readily created the con-
H
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Fig. 10. Dependence of time duration of fired state of model 7, on magnitude of weight w,
of feedback for different values of threshold 4.



dition in which
(25) x(t) < b+ wo,{t) + wou(t)

and oscillations disappear. The creation of this condition is also assisted by the
existence of the paradoxical phase because for larger values x(), as x(¢) increases,
¥(1) decreases.

Consequently, upon meeting requirement (24), the circuit falls into oscillations
and it remains exited for a time #,. Thus one obtains a storage in which the excitation
state information is temporarily stored. The results of measuring the time t, in the
circuit arrangement according to Fig. 9 using a neuron model with adaptivity and
paradoxical phase (sec the characteristic in Fig. 8) are shown in Fig. 10 .The time ¢,
is measured as a function of the magnitude of the feedback weight w_, and the value
of the threshold h is the parameter at ¢ = const, t, = const and ¢ = const. The
circuit was brought into the excited state by a short reactangular pulse. It is obvious
from the results that a large values w, is necessary to maintain oscillations for large
values of the threshold k, because oscillations are quickly suppressed. But if one
reduces the threshold h — 0, a relatively small value w, = 7 is sufficient for keeping
up stable oscillations.

It may be questioned whether in the nervous system the weights of the connections
can achieve such large values that the individual neurons can be set into oscillations,
at least as long as it may be correctly assumed that neuron firing requires cooperation
of at least 10 synapses [7]. However, if there exists in some neurons feedback of the
mentioned type, circuits are formed which can perform the function of a storage
of short duration. The storage time can be affected both by the time of operation
and by the magnitude of the signals which caused the oscillations, and by the action
of inhibitory signals. Excitatory signals cause a lengthening and inhibitory signals
cause a shortening of the time f,.

{Received November 2nd, 1965.)

551



REFERENCES

{17 P. Hir§l: Mode! neuronu. Kybernctika I.(1965), 6, 539—550.

[2] L. D. Harmon: Studies with Artificial Neurons, I. Kybernetik / (Dez. 1961), 3, 90—101.

{3] K. Kiipfmiiller, V. Jenik: Uber die Nachrichtenverarbeitung in der Nervenzelle. Kybernetik /
(Jan. 1961), 1, 1 6.

[4] M. A. Tiobunckuit, H. B. Tosur: Mogenuposanue npoueccos nepepaborkn nndopmaumu B Heji-
pore. Maremarndeckoe M (PU3HYECKOE MOICITAPOBAHUE IPOLECCA MHTErPATMH MUMIIYNbOCE.
AptoMaTnka u Tenemexanuka 24 (1965), 10, 1746—1756.

[5] M. 3. Lbinkui: Teopus MMAyIbCHBIX cucTeM. Mocksa 1958.

[6] J. Bure§, M. Petrafi, J. Zachar: Elektrofyziologické metody v biologickém vyzkumu. Praha
1960.

{7] W. K. Taylor: Bolduc/iMTenbHbIE YCTPOUCTBA W HEPBHAS CHCTeMa. MogeaupoBanue B GHOJIOrHA.
Mockea 1963, 203—228. (Translated from: Models and Analogues in Biology. Cambridge,
1960.)

VYTAH

Model neuronu s elektronickym prahovym obvodem

PETR HIr3L

Tato prdce je logickym pokradovdnim prdce [1], nebot ndvrh elektronického
modelu vychdzi z vysledk v ni dosaZenych. Jsou uvedeny zdkladni vlastnosti elektro-
nického modelu s adaptaci a paradoxni fdzi, pojatého jako obvod s impulsni hustotni
modulaci a integrdtorem. Zdvérem jsou uvedeny podminky pro vznik a udrZeni
kmiti u neuronu s vnéjsi kladnou zpétnou vazbou a vysledky, dosazené s modelem
v tomto zapojeni.

Ing. Petr Hirsl, Fakulta technické a jaderné fyziky CVUT, Biehovd 1, Praha 1.
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