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K Y B E R N E T I K A Č Í S L O 6, R O Č N Í K 2/1966 

Neuron Model with Electronic 
Treshold Circuit 

PETR HIRSL 

A circuit was proposed on the base of a graphically solved neuron model [1], this circuit having 
properties which are analogous to the properties of a motoneuron from the point of view of its 
external electrical behaviour. This approach permits to solve the model as a voltage-frequency 
converter, and vice versa. 

INTRODUCTION 

When designing an electronic neuron model, one starts from the graphic solution 
of the model [1]. One of the requirements to be met by a technical embodiment of 
the model is maximum plasticity of its properties permitting a ready change in the 
parameters and the possibility of adding further circuits for forming the paradoxical 
phase and adaptivity. Generally speaking, the described model represents a further 
development of some suggestions contained in [2], [3] and [4]. 

It is taken into account that a neuron is neither a digital nor an analog element 
but a hybrid one whose function combines both previous principles. It is obvious 
that a system which would represent a working model of a neuron should comprise 
at least two fundamental units. The first is a voltage-frequency converter simulating 
the function of the soma of a neuron (and of dendrites). The second unit which re­
presents a synapse is a frequency-voltage converter, substantially an integrator formed 
by an R — C circuit (I in Fig. 1). A more detailed analysis of the voltage integrator (I) 
is given in [5] (on p. 111). The axon whose function can be simply illustrated by 
a delay in the transmitted signal is not included in Fig. I. 

VOLTAGE - FREQUENCY CONVERTER 

Let us analyse a voltage-frequency converter which simulates well neuron properties 
and permits also an easy change in the parameters with a view toward the closest 
approach to actual neuron properties. Instead of a multistable multivibrator or 



blocking oscillator currently employed in neuron models there is used a Schmitt 541. 
circuit S which cannot serve as a generator of a pulse sequence without further addi­
tional circuits forming a feedback loop (shaping unit TO, inverter IN, summation 
circuit Y)- The wave form of the feedback voltage determines directly the shape of 
the refractory period. The feedback circuit determines the shape of the conversion 
of the input signal x(t) to the frequency of the output pulses j 
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Fig. 1. Simple functional diagram of neuron model. 

Expression (1) is analogous to expression (5) in [1]. 

The input signal of the converter x(() = £x ; ( t) w>> t n a t ' s t n e complete postsynap-

tical signal is amplified by the input circuit K,-times and it is summed in the summa­
tion circuit with a feedback signal. The output signal R reaches the input of the 
circuit S. 

When meeting the condition 

(2) R^ P = ҺK^ 

where P — threshold of Schmitt circut, h — threshold of neuron model, the circuit S 
changes from state " O " into state " 1 " , and its output signal is transformed by the 
shaping circuit TO into a signal v(r). The inverter reverses the polarity of the signal 
v(i) which is multiplied by a constant K2 and then summed by the summation circuit 
with the signal x((). Assuming TO to be a simple R - C integrating circuit and that 
the signal 

x(t) ^ P 

is a short pulse, v(() in our model has an exponential rise with a time constant T„, 
and an exponential drop with a time constant TS, and it is possible to meet the require­
ment 

(3) T „ « T S . 

Therefore, across the input of the Schmitt circuit there operates a signal 

(4) R = x(t) Kv - v(t) K2 . 



Generally, if one uses a more complicated form of the circuit TO, one can achieve 
that the shape of the dropping part of the signal v(r) differs from an exponential curve, 
and thus also a change in the function \j/f (l). 

In the simple case of an exponential shape of the start and drop of the signal 
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Fig. 2. Fig. 2a illustrates a signal Kx x{t) and shows the threshold P and the width of the hyste­
resis area uh of a Schmitt circuit. Fig. 2b shows the shape of the signal v{t) which is also shown 
in Fig. 2c after amplification and inversion. Fig. 2d illustrates a signal R operating across 
the input of a Schmitt circuit. The resulting output pulses, that is the output of the circuit S 
are shown in Fig. 2e. 



v(t), x(t) in the shape of a step function 543 

(5) x(t) = 0 for t < 0 , 

x(t) = const for t ^ 0 , 

and under the condition 

(6) Kx x(t) ^ P 

one obtains the signal shape indicated in Fig. 2 at the various points of the converter. 
The Schmitt circuit is first excited if the condition (6) is met. But this causes the 
signal v(t) to increase and leads to a decrease in the signal R down to a value 

(7) R = P + u„ = P - K2(v2 - v . ) . 

At this moment the Schmitt circuit returns from state " 1 " into state "0", R in­
creases with a time constant TS until there is again 

(8) R = P 

which excites again the Schmitt circuit. Its first output pulse is longer than the follow­
ing pulses (see Fig. 2e), but this difference is the smaller, the larger R than P. 

The duration of a cycle of the output pulses in the steady state condition is 

(9) T = T„ + T.. 

For the rising part of the signal v(t) one obtains 

(10) v„(0 = v „ , ( l - e - < / - ) , 

and for the dropping part one obtains 

(11) vs(j)= v„,e-'/r* 

vm being the possible maximum value of the signal v(t) and equal to the amplitude of 
the output signal of the Schmitt circuit. The time T„ is determined by the distance 
between the intersections of the curve (10) with the values vt and v2 in the rising 
part, and similarly, for the curve (11) also the time Ts in the dropping part of the 
signal v(f) (Fig. 2b). For the length of the two parts of the cycle there is 

(12) T„= t2 - tt = T „ l n V m ~ V 2 , 
vm - Vj 

and 

(13) Ts= h ~ * 2 - t , t a — • 



With the decrease of the time constant T„ -» 0, there decreases also 

(14) r« -> 0 . 

In the extreme case, when T„ = 0, there is 

(15) T = Tv 

and relationship (l) has the shape of the curve shown by the full line in Fig. 3b. 

In this case the development (1) is therefore non-linear and concave. If x„ #= 0, that 

' 

Fig. 3. The curves in Fig. 
3a illustrate the develop­
ment of (11) for TS = 
= const (curve 1) and for 
TS ~ l/v s(0 4= const (cur­
ve 2). Fig. 3b shows by 
the same type of line the 
corresponding develop­
ment of (1). For TS = 
= const, the shape (1) is 
concave, for TS 4= const 
the shape (1) is convex 
(,,logarithmic"). 

Ш 

^ 

í^® 
^-^/ 

S -

S 
S , 

S / 
/ / / / / / / / / / / / 

,v(í) 



is T„ increases with an increase of x(t), defferent values T„ cause the following changes 

- - ( - ) • 

It is possible to determine T* SO that for 

(16) T„ = T,T 

the relationship (l) differs only a minimum from the linear development. 

For 

(17) T„ < T„* 

(l) is concave, and for 

(18) T„ > T„* 

(l) is convex. The relationship (1) can be generally expressed as a function 

(19) / , = q>(R, T„ T„, P, v1( v2) . 

The effect of the shape of the dropping part vs(i) on the shape (1) is much greater 

than the shape of the rising part v„(f). Assuming T„ = 0, Fig. 3b shows for the 

development vjt) in Fig. 3a the relevant shapes of the relationship (l) for v2 — vt = 

= 0,05vm. 

THE DESIGN OF THE MODEL 

The overall diagram of the electronic model designed in accordance with the above mentioned 
principles is shown in Fig. 4. The input circuit A (ATt in Fig. I) is designed as a difference amplifier 

î'_K. 

Fig. 4. Complete block diagram of neuron 
model. 

which permits to apply the same signal polarity both for 1he excitory and inhibitory inputs. 
The circuit B is the voltage-frequency converter proper. The axon function is simulated by the 
circuit C (monostable multivibrator) with an adjustable value of the delay tz. The circuit D is 
a synapsis model marked in Fig. 1 as integrator I. The output signal of the model has therefore 
the shape of a postsynaptical signal. The circuit E simulating the paradoxical phase is formed 
by a non-linear element with signal inversion. The circuit F simulates adaptivity. A detailed circuit 
arrangement of the model is shown in Fig. 5. 





Fig. 6. Effect of adaptive component of threshold w0a(t) on neuron characteristic y(t) •• 

= y Y,xi(>) "'•• 

Fig. 7. Typical output signal of 
neuron model in Fig. 5. 

Different conceptions of the adaptive circuit F from the point of view of the results of its 
operation are possible. In [2], the signal which increases the threshold by a component »'0o(r) 
is derived from excitatory input signals so that for a constant input signal x(t) = const, the 
output frequency fy(t) decreases gradually to zero. In our case adaptivity is controlled by a signal 
derived from the output signal of the circuit B which results in a gradual approach offJt) toward 



Fig. 8. Shape of dependence fy(t) = WfiY^x-^t) wt] (fig. a) and shape of dependence y(t) = 

= r O j C O »".] (%• b>-

a certain minimum non-zero value. The adaptive circuit can be looked upon as a negative feedback 
circuit with a time constant ta which is relatively large with respect to the time constant x of the 
postsynaptical signal [6]. 

If the upper limit of the active region is determined by the existence of the paradoxical phase, 
the width of the active region a [1] decreases (Fig. 6a) if in Fig. 4 the instantenous values of the 



threshold w0(t) is increased by a component w0a(t). But if the feedback circuit is changed so that 
it does not feed back the signal into the input of the circuit B (as in Fig. 4), but directly into the 
circuit A, one obtains a slightly different result. The value threshold will effectively increase by 
a component Ah which is a function of the output signal fy(t). But the component Ah increases 
also the upper limit of the active region so that the width of the active region o remains unchanged 
(Fig. 6b). If the neuron has no paradoxical phase, it can be readily found that the effect of both 
methods of the adaptive feedback is equivalent (Fig. 6c). 

Fig. 7 shows a typical output signal of our neuron model for the output signal x(t) in the shape 
of a step function (5). The dependence (1) for various amplitudes x(t) of the shape (5) has been 
studied and shown in Fig. 8a, time being the parameter. For a time t = 0, /,,max == 6 kc/s at 
the beginning, and it decrease gradually approximately linear to a steady value for / -> GO. The 
dependence of the output signal yv expressed in voltage is shown in Fig. 8b (for measured signal — 
see Fig. 7). 

NEURON CIRCUITS WITH POSITIVE FEEDBACK 

In conclusion, note the circuit arrangement of a neuron model with external 
positive feedback in accordance with Fig. 9, the value of the weight of the feedback 
being w, > 0. 

In the first place let us use a neuron model without adaptivity and paradoxical 
phase in the circuit arrangement in accordance with Fig. 9. Across its input there 
operates a total signal 

(20) x(t) = xt(t) w; + y(t) vvz , 

there being y(t) > 0, that is the neuron model is fired under the condition 

(21) Xi(t) w; > h . 

Generally, if signals affect several inputs simultaneously, there is 

(22) x(t) = £ x(t) w; + y(t) wz . 

The general condition for retiring within a time / > 0 is 

(23) x(t) ^ h + w0r(t), 

Fig. 9. Circuit arrangement with feedback. 

where w0r(t) is the refractory component of the threshold. 
The signal y(t) has a delay /. with respect to x^t) and an exponential drop with 

a synaptical time constant T which affects the fulfilment of the condition (23). 



550 A detailed analysis would show that the least favourable conditions for a sub­
sequent firing occurs with the arrival of the first pulse of the signal y(t) because the 
feedback signal is yet small. Only if the neuron is retired, firing conditions improve 
further because the amplitude of the signal y(t) increases gradually (see Fig. 5 in [1]). 

For a neuron with adaptivity, condition (21) is again valid for the first firing, but 
in the adaptive component of the threshold w0a(t) apears in expression (23) 

(24) x(t) ^h + w0r(t) + w0a(t) 

which worsens firing conditions. At the beginning, when w0a(t) has a small value, 
the same conclusions are practically valid as for neurons without adaptivity. But as 
w0a(t) increases, excitation conditions gradually deteriorate. In the case of a small 
input signal £ xt(i) w; and a small value wz and f. there is readily created the con-

tk 
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Fig. 10. Dependence of time duration of fired state of model tk on magnitude of weight w. 
of feedback for different values of threshold h. 



dition in which 

(25) x(t) <h + w0r(t) + w0a(t) 

and oscillations disappear. The creation of this condition is also assisted by the 
existence of the paradoxical phase because for larger values x(t), as x(t) increases, 
y(t) decreases. 

Consequently, upon meeting requirement (24), the circuit falls into oscillations 
and it remains exited for a time tk. Thus one obtains a storage in which the excitation 
state information is temporarily stored. The results of measuring the time tk in the 
circuit arrangement according to Fig. 9 using a neuron model with adaptivity and 
paradoxical phase (see the characteristic in Fig. 8) are shown in Fig. 10 .The time tk 

is measured as a function of the magnitude of the feedback weight wz, and the value 
of the threshold h is the parameter at a = const, tx = const and z — const. The 
circuit was brought into the excited state by a short reactangular pulse. It is obvious 
from the results that a large values wz is necessary to maintain oscillations for large 
values of the threshold h, because oscillations are quickly suppressed. But if one 
reduces the threshold h -* 0, a relatively small value wz = 7 is sufficient for keeping 
up stable oscillations. 

It may be questioned whether in the nervous system the weights of the connections 
can achieve such large values that the individual neurons can be set into oscillations, 
at least as long as it may be correctly assumed that neuron firing requires cooperation 
of at least 10 synapses [7]. However, if there exists in some neurons feedback of the 
mentioned type, circuits are formed which can perform the function of a storage 
of short duration. The storage time can be affected both by the time of operation 
and by the magnitude of the signals which caused the oscillations, and by the action 
of inhibitory signals. Excitatory signals cause a lengthening and inhibitory signals 
cause a shortening of the time tk. 

(Received November 2nd, 1965.) 
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Model neuronu s elektronickým prahovým obvodem 

PETR HIRŠL 

Tato práce je logickým pokračováním práce [1], neboť návrh elektronického 
modelu vychází z výsledků v ní dosažených. Jsou uvedeny základní vlastnosti elektro­
nického modelu s adaptací a paradoxní fází, pojatého jako obvod s impulsní hustotní 
modulací a integrátorem. Závěrem jsou uvedeny podmínky pro vznik a udržení 
kmitů u neuronu s vnější kladnou zpětnou vazbou a výsledky, dosažené s modelem 
v tomto zapojení. 

Ing. Petr Hiršl, Fakulta technické a jaderné fyziky ČVUT, Břehová 7, Praha 1. 
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