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K Y B E R N E T I K A ČÍSLO 6. R O Č N Í K 2/1966 

System Dynamics Identification 
by means of Adjustable Models 

J. KRÝŽE, A. KRÝŽOVÁ, R. MIKOLÁŠ, M. SALABA 

Two methods for system dynamics identification based on processing of recorded stochastic 
input and output signals of a system by means of adjustable models were thoroughly experimen­
tally tested on a laboratory scale. 

The theoretical discussion of the methods involved and results obtained yields insight into 
the advantageous properties and intrinsic limitations of straightforward model methods. 

1. INTRODUCTION 

Among other methods for identifying dynamic parameters of control systems, 
the methods based on knowledge of input and output signals of general stochastic 
character seem to raise a rising interest in the last time. Blandhol [1] and Norkin [2] 
showed in their papers some new possibilities of the model method. 

The authors of the reported work decided to investigate experimentally on a labo­
ratory scale some of the possible modifications of the model methods using the 
specialized computer MUSA 6 [3, 4, 5] which is able to record and reproduce very 
exactly comparatively long intervals of input and output signals of some system. 

The main interest was in parameter identification of systems which, for technolo­
gical or economical reasons, permit an analysis based on stochastic signals recorded 
during normal operation only. 

The basic methodology of the experiment was therefore chosen similar to that 
described in [1]: 

First, the signal from a generator of stochastic processes G (fig. l) was connected 
to the input of a system S. The transfer function of this system was supposed to be 
of the form 

(1) F (p) = h. + /?'P + ••• + P»P" = ^Mil 
a 0 + «iP + ••• + a„p" Na(p) 



where M„(P) and Na(p) denote the polynomials of the nominator and denominator, 509 
respectively. 

The input signal xx and the output signal x2 were recorded in the memory MM. 
When analysed, the signals xt and x2 were reproduced and fed into a model M 

formed on an analog computer (fig. 2). 

Ш-тгИ 
Fig. 1. Recording of signals. 

On the model coeficients at and b; were set by hand so as to minimize the mean 
square value K of the deviation A: 

(2) K = - A2(t)dt 
T 

which was used as the criterion for the quality of approximation of the values a ; 
and /?; (now supposed to be unknown) by the values a, and b;, respectively. 

x ^ Ң З Fig. 2. Anylysis of recorded 
signals. 

For each setting of a; and b; the whole recorded data for x1 and x2 were reproduced 
at least once; according to the obtained value of the criterion K, indicated on a digital 
voltmeter DV, a new setting of a; and b; was chosen. 

2. METHODS USED FOR FORMING THE DEVIATION SIGNAL A 

One of the most straightforward methods for this purpose is illustrated in fig. 3. 
On the model the transfer function 

(3) 
F (p) = bo + b^P + ••• + b„P" = Ms(p) 

a0 + axp + ... + a„p" Ns(p) 

Fig. 3. Basic scheme of the ITF method. 



is formed. The Laplace transform of the deviation signal is then 

(4) 4P) = XfrftFJj,) - Fs(p)] . 

In [2] a new identification method is suggested and theoretically motivated. The 
structure in fig. 4 is based on the general principles used in this method for forming 

Fig. 4. Basic scheme of the DTF 
method. 

the deviation signal A. Here 

(5) 4P) - X2(P)\NS(P) - Xx(p)~Ms(V) = 
P P 

(6) 

= Xl(p)~-n[Ns(P)F„(p)- Ms(p)}, 
P 

A(p) = X1(p)[Fa(p)-Fs(P)]^Áň-. 

The transfer functions Ns(p)jp" and Ms(p)jp" consist of pure integrations. This 
would in practice inevitably lead to instability caused by DC unbalance, and drifts 
and a steady increase of A limited only by amplifier saturation would be the result. 
In [2] this difficulty is overcome by postulating values of integration constants in 
each of a number of successive integration steps which ensure the mean value of 
the involved functions to be the same after integration as before. 

This postulate was not respected quite exactly, because otherwise a rather complex 
scheme would be necessary. But a fairly good approximation was used. This was 
achieved by a change in the transfer functions Ns(p)jp" and Ms(p)jp" ensuring in-
sensitivity of the method to the values of integration constants by suppression of the 
lowest part of the frequency band used. As a rule this part is, of almost no interest 
for identification purposes. 

We can, therefore, use a high-pass filter with a transfer function FH(p) and choose 
a sufficiently low limiting frequency so that the interesting part of the A spectrum 
is left unchanged. 

Then, instead of the transfer functions Ns(p)jp" and Ms(p)jp" the transfer functions 

(7) 
P" 

Fн(p) and 
p" 

FÁP) 



are used, where the high-pass filter transfer function 

(8) FH(p) = £ _ 
pm + E c,pm ' 

i = l 

is formed so as to secure minimum deviation from 1 above the chosen limiting 
frequency. 

Both transfer functions in (7) are then realizable by conventional analog computer 
techniques without difficulties, because the zero poles in (7) are cancelled by zeroes 
of (8); the denominator of FH(p) must, of course, be stable. 

Then, there results the deviation signal A: 

(9) 4P) = ^i(p)W?) - Fs(p)] ^M FH(p) . 
P 

This method in accordance with fig. 4 will be referred to as the Distributed Transfer 
Function Method (DTF), whereas the first one will be referred to as the Integrated 
Transfer Function Method (ITF) for distinction. 

The DFT method has some advantageous features which cannot be found in the 
ITF method. The most important one is the mutual orthogonality of settings of 
coefficients a ; with even and odd potences of p in the Ns(p) transfer function. By 
this orthogonality, proved in [2], the independence of the value a, defined by 

on the settings of all values ai + 2k + x (k is an integer) is understood. A similar indepen­
dence of the values bt defined by 

(11) ^ = 0 
V ! dbt 

on the settings of all values bi + 2k + 1 can be found both in the DTF and the ITF 
methods. 

Comparison of the expressions (6) and (9) for A{p) in both methods shows that the 
signal A for DTF can be gained from the signal A in ITF by adding a filter with the 
transfer function 

P 

The transfer function Ns(p)jp" depends on a( settings. It is this dependence which is 
responsible for the orthogonality of settings of coefficients a, with odd and even 
indexes. 



The absolute value of Ns(p)jp" is, however, always greater on the lower end of the 
used spectral band than on the upper end. The addition of the transfer function 
Ns(p)lp" results therefore in a relative suppression of higher frequencies. This can 
hardly be considered an advantage, because it makes more defficult to recognize 
details of the system transfer function in the higher frequency region which, as a rule, 
is the most important region for control purposes. 

One of the main tasks of the experiment which was carried out in November 1965 
in the Institute of Information Theory and Automation of the Czechoslovak Academy 
of Sciences, in collaboration with Mr. V. D. Spiridonov from the Institute of Automa­
tion and Telemechanics of the Academy of Sciences of the USSR, according to an 
agreement between the mentioned Institutes, was the verification and the comparison 
of the features of both methods. 

3. METHODOLOGY OF THE EXPERIMENT 

For simulation of the system and for creating adjustable models, a small analog computer 
MEDA (described in [6]) was used. There was no substantial departure from conventional 

EҺ 
И Q 

Fig. 5. Recording apparatus (A — am­
plifier). 

feedback analog computer programming techniques and it seems therefore unnecessary to show 
the used schemes in detail. 

The block diagram for recording the signals xt and x2 into the memory is shown in fig 5. 
The input random signal .Vj was obtained by filtering of a telegraph random signal by the 

filter KF. The telegraph random signal was delivered by the generator G of the random process 
GENAP, described in [17] which was controlled by a signal generator SG. The shape of the 
autocorrelation function of this signal is shown in fig. 6 where 0 is equal to the basic interval 
of the telegraph signal. For the described measurements 0 = 0-5 ms was chosen. 

Fig. 6. Autocorrelation function of ran­
dom signal generator output. 



The signal xt should have a spectral density similar to spectral densities expected to be found 513 
in JCJ signals in field applications. These will be generally falling with increasing frequency. 

Therefore, an integrating network was chosen for the filter KF with the transfer function 
1/(1 + TF/>). Its time constant T F was made equal to the highest time constant of the system S. 

Fig. 7. Autocorrelation function of xt(t). 

"With the examinated system transfer functions its numerical volue was 

T F = 100 ms . 

Because T F g> 0, the autocorrelation function of the input noise x t has a nearly exponential 
form (see fig. 7) with the time constant rF. 

A desirable frequency response |FH(jw)| of general form is shown in fig. 8. A high-pass filter 

l/нldB 

Fig. 8. Filter frequency response F H , generally. 

of the second order with the amplitude frequency response shown in fig. 9 and the transfer 
function 

(13) Fн(p) = — 
pг + 6,132/7+ 27,47 

was used in the experiment. 

To the basic schemes shown in fig. 2, 3 and 4 several further elements were added, as indicated 
in fig. 10. 

Differentiating networks with time constants Tt and T 2 were used to remove direct current 

components arising by high amplification of drift and zero unbalance of D.C. amplifiers. Since 



differentiating networks are high-pass filters, the same conclusions are valid for their use as for 
the high-pass filter FH(p). 

The MUSA 6, used as a magnetic tape memory, repeats periodically the recorded signals xx 

and x2 during the identification process. Every time a play back of the signals is started or fini­
shed, transient processes in the used models and filters are generated. These transients are caused 
by abrupt changes in the recorded xx and x2 signals on the beginning and end of their recording. 

Fig. 9. Frequency response F H of filter, as used. 

The influence of these transients is suppressed by the key k. This key closes only after a time, 
necessary for full decay of transients, has elapsed from the beginning of xx and x2 recordings; 
it opens just before their end. Then the signal A obtained does not differ from the signal _ which 
would be obtained with infinitely long records. 

The useful part of xx and x2 processes, that is, the part not suppressed by k, was represented 
by some 35 000 values of each of the variables. 

^ 

1 
1 
1 
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1 
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Fig. 10. Basic scheme used for identification {rx = 165 msec used for ITF and z1 = 

for DTF; r2 = 1-6 sec). 

4. HYPERSURFACE FORMS 

The criterion K, established and measured in accordance with (2) and the methods 

described, is a function of the settings of the coefficients a ; and bh and it depends also 

on the signal and gain levels used. 

To exclude this last mentioned dependence, and to get results of a more general 



meaning, a dimensionless measure of K was introduced: 

(H) * - | 

where 

(15) K r = — [ ATdt. 
T Jo 

Here J r denotes the deviation signal A for the correct setting of a ; and b ;, but with 
the x, or x2 path in fig. 10 disconnected. The form of the hypersurfaces defined by 

(16) x =/(«,-, b£) = const 

is of great interest from the identification standpoint. 
The function 

(17) *~f(abb,) 

can be in the neighbourhood of the optimum approximated by a quadratic form; 
as will be shown by the experimental results, this approximation is fairly good for 
surprisingly great deviations of a ; and b; from their optimal values. 

Denoting the relative deviations of a ; and bt from their optimal values ai0 and bi0 

by 

(18) S, -» " ' " fl,° , O ^ i r g n , 
-10 

(19) ,5B + , = * L Z - * » , 0 < i ^ n 

(b0 is supposed to be choosen as the constant coefficient) one can write the approxima­
tion of (17) as follows: 

(20) x = ''k£"xik5A , 
i,k = 0 

The measurement was carried out especially for two cases: 
a) only one S-t is set to a chosen value, all other dk, where k 4= i, being left zero: 

For this case (20) yields: 

(21) x = v ? ; 

b) one 8j is set to a chosen value, alle other <5t, where k 4= i, being adjusted to 
minimize x: 

(22) — = 0 for k * i • 
ddk 



516 Then (21) yields 

(23) x = ^d2 

where 

<24) " - £ • 
M j j 

In (24) M denotes the determinant of the matrix [|Ait[| and Mn is the subdeterminant 
for the element XH. The changes in 5k are related to the change in St by 

(25) §k=
MJL8i = nikdi. 

Mu 

The values 

(26) 

which can be evaluated from the measured values of x,^; and Sk according to (23), 
(24) and (25), form a symmetrical matrix. The matrices [|A,t[| and |al7k[| are related 
by the equation 

(27) M • ||M = 1 

and hence values of ||A,-t|| can be computed from measured values flaitfl, or vice versa. 
The axes of the hyperellipsoid corresponding to (20) are determined by the eigen­

values A of the matrix \\Xik\\. For a given ye the length of an axis is equal to y(x/A) 
and its direction is given by the respective eigenvector. 

5. NOISE INFLUENCE 

Let us consider a field application of the mentioned model methods where the stu­
died system is noisy. This situation is illustrated in fig. 11. Besides the input signal xt 

_ м i k _ Џik Mц 1 
яik = a i i 

м ЏІ м ЏІ 

Fig. 11. Noise influence on x2. 

also a noise u enters the system, causing the output to consist of two components: 

(28) x2 = x2 + v 



where x2 is due to the input xt and related to it by the transfer function Fa(p) and v 517 
is due to the noise u. Both the noise and the transfer function relating v to u are 
supposed to be unknown. 

For the ITF method the signal A influenced by noise will be 

(29) A ~ A + v , 

Let us suppose that u and x t are statistically independent. Then for the criterion 
we get: 

(30) £ - . 1 í A2dt = - [ (A2 + v2)dt 
T } 0 Г J 0

V 

because due to statistical independence of x1 and u also v and x,, v and x2, and hence, 
v and A are statistically independent. The mean value of the A . v product tends, 
therefore, to zero if T is increased sufficiently 

(31) lim — I A .vdt = 0 . 
r - = o r j 0 

Thus, 

(32) K = K + Kmin 

where Kmin is the value of K for optimum setting of ax and br that is for zi = 0: 

(33) ^ ' ^ i l o ^ 2 ^ ' 
It can be seen from (32) that a minimum of K occurs, if K is minimal (zero), because 
Kmin is a constant. No change in the minimum position will be caused by the disturbing 
noise u, and the same at and bt values should result. 

But this is not exactly the case, bacause the values of K gained from the scheme 
on fig. 10 are never quite accurate. They are influenced by errors, due partly to the 
simplifications used (finitness of recording intervals, supposition of system linearity) 
and partly to apparatus imperfectness (e.g. drifts, model nonlinearity, gain variations, 
external noises). 

As a result of these errors the correct value of K can be measured only with some 
uncertainty the relative value of which in neighbourhood of the minimum of K is 
designated by 3. 

The minimal significant change in K will then be equal to the absolute value of 
this uncertainty: 

(34) (A£)min = K = 9Kmin . 



518 Such change in K has to be produced by the minimal discernible deviation from 
optimum in settings of the coefficients a( and b:. For the ITF method 

(35) AT = x2 

so that (15) yields 

(36) KT = I Cxi df. 
T Jo 

The RMS signal to noise ration r\ in the x2 signal is then given by 

(37) *"t 
and for the minimal significant change in K from (34) one gets an expression for the 
minimal significant change in x: 

(38) x - A . 

Combining (38) and (23) one gets 

which determines the maximal relative error in at setting to be expected in the presence 
of a disturbing noise. In a similar way, the length of the longest axis of the hyperel-
lipsoid for the x value defined by (38): 

(40) sT = L l±_ 

is the length of the maximum error vector 

(41) *r = V ( X # ) -
> 

Thus, the sensitivity coefficients Ai4 and fi-, and the eigenvalues X are very important 
figures of merit, showing directly the limits imposed on the examined methods by 
noise and apparatus imperfectness. The values jiik allow to estimate the mutual 
interference of individual coefficient setting in the optimization process; for an ideal 
orthogonality all nik, i 4= k, would be zero. 

The analysis for the DFT method has to take into account the additive filtering 
action on the deviation signal defined by (12). Signals x2 and v, gained from x2 

and v by filtering through a filter (12), have to be substituted for x2 and v in (29), 
(30), (31) and (33). 



The value Kmin then depends on a ; settings, because the transfer function (12) 

and hence v are dependent on these settings. 

Consequently, the position of the minimum of K differs from the position of the 

minimum of K generally, the change in individual coefficients being a complex 

function of the signal to noise ratio, x2 and v spectral density forms and <x, and /?; 

values. The exact analysis of this function exceeds the scope of this paper. 

But it may be noted that the analysis of noise influence derived for the 1TF method 

applies also to the DTF method in the special case where only noise generated in 

the computing machinery, independent on at and bt settings, can be considered as 

responsible for the Kmm value. 

6. THE RESULTS 

Systems with four transfer functions were simulated and then both DTF and ITF identification 
methods were applied to the recorded signals. The used transfer functions were as follows: 

a) A simple first order transfer function 

(42) ¥„(p) = 1 + 0,1 p 

b) A simple second order transfer function without numerator and with real roots: 

1 300 
(43) F » = 

(4/30)/> + (l/300)p2 (p + 10) (p + 30) ' 

c) A simple second order transfer function without numerator and with complex roots: 

1 100 
(44) Fa(p) = 1 + (p/W) 7(2) + (p2/W0) [p + 5 V(2)(l + j)] [p + 5 7(2)(1 - j)]' 

d) A second order transfer function with a first order numerator and real roots: 

1 + p/20 15(p + 20) 
(45) Fa(p) = 

1 + (4/30V + (p2/300) (p + 10) (p + 30) 

For a), b), c) a detailed measurement, consisting of several hundred points, of the K function 
(17) was taken allowing to construct the hypersurfaces K = const. For the simplest case a) the 
system of these hypersurfaces is reduced to a system of contour lines K = const, in the <50 — S1 

plane. For b) and c) the equation K = const, describes conventional three-dimensional surfaces. 
An idea about the overall form of these surfaces can be drawn from the three normal cross-
sections formed by contour lines in the three normal planes, defined by the d0 and St, 5X and S2, 
32 and 30 pairs of axes. These sections are shown in figs 12 to 15. 

From figs 12 to 15 it is quite apparent that the approximation of the K function (17) by the 
quadratic form (20) is fairly good for <5; to some 10% —20% and for K to 64 . 10~4 . This can be 
seen from the very nearly elliptic form of the contour lines and from the very nearly linear scales 
formed on any line passing through the origin by interceptions with the system of contour lines 
corresponding to a quadratic scale of K values. 



+ I0»/o 

Fig. 12. Contour lines gained by three normal sections through the system of surfaces 
K = const. = (1, 4, 9, 16) . 10~ 4 for the second order transfer function with real roots 
and DTF method. 



The measurements taken showed that also for <5; twice (and rc four times) as great as shown in 
figs 12 to 15 the departure from the quadratic form is not very significant. 

No secondary minima were found in any of the reported cases; thus it can be concluded that 
the hypersurfaces in both identification methods seem to have a fairly simple, nearly quadratic 
form in a wide neighbourhood of the optimal settings of at and b{ coefficients. 

This would be no doubt very advantageous for automation of the identification procedure. 
The only, but very significant remaining trouble arises from the possibility of very lengthy elliptic 

Fig. 13. Same as fig. 12, but ITF method. 

(or generally hyperellipsoidal) forms with considerable inclination to coordinate system axes. 
As illustrated by fig. 16 in such a case finite probe steps in all four directions from point P can 
lead to a false conclusion that P is a minimum. Therefore taking account of this possibility, 
some more elaborate optimizing method has to be used. 

In some of the figures, especially figs. 14 and 15, there is a slight, but noticeable departure 
from the orthogonality of odd and even coeffcients. The reason for this discrepancy with the 
orthogonality theory could lie, theoretically, in a short lenght of the recorded processes. But with 
the number of samples used a substantial deviation from the asymptotic values has a low pro­
bability. Another explanation seems more likely, that is, model imperfectness. With the used 
frequency band ranging to 2 kHz the small machine MEDA worked well on the top of its possibi­
lities with respect to frequency response. Additional phase shifts and parasitic capacitive couplings 
may cause several other coefficients of the transfer function to be slightly influenced by the change 
of the element value (e.g. potenciometer setting) corresponding to any given coefficient. In a first 
approximation the effect of this is a linear transformation of coordinate axes comprising shifts 
and rotations. 



»*2 

I-10-/o 

Fig. 14. Contour lines gained by three normal sections through the system of surfaces 
K = const. = (4, 16, 36, 64) . 1 0 - 4 for the second order transfer function with complex 
roots and DTF method. 



Respecting this observation, and noticing that there is no noticeable change in the inclination 
of ellipses when K is increased, one may conclude that no substantial difference, concerning ortho­
gonality of odd and even coefficients, can be observed in the DTF and ITF method, though 
theory guarahtees this orthogonality for the DTF method generally and for the ITF method only 
for the optimal setting. 

For the last case d), the detailed measurement which should consist of at least six normal 
sections was not made. Nevertheless, sufficient points were tak«r. to confirm the applicability 
of the quadratic approximation (20). 

Fig. 15. Same as fig. 14, but ITF method. 

The quantitative discussion can be more readily made from the | |a ik | | and ||Aik|| matrix 
values and axis lengths and positions. These are shown in tables 1, 2 and 3. The vectors of axes 
shown in these tables are shown for K = 1, and their absolute value is thus given by the respective 
eigenvalue: 

(46) 

Equation (37) may then be rewritten as: 

(47) 



Fig. 16. Apparent false minimum on 
the ax is of avery lengthy elliptic contour 

Taking 9 = 0-01 and t/ ~ 10 as arbitrary values, representing a rough estimate of very favourable 
conditions in field application of the methods described, one gets 

(48) <5 r = 0-01<5absmax = <5a 

and the column <5abs in tables 1, 2, 3 can be regarded as total identification error expressed in 
percents and expected with signal to noise ratio 10 and method and apparatus inaccuracy of 
finding K 9 = 1%. 

From this standpoint the results for the first order transfer function shown in table 1 can be 
regarded as encouraging both for the small absolute value of <5abs and for orthogonality of <50 

and <5,. 



Matrices for First Order Transfer Function 

Unfortunately, the picture changes substantially if the order of the transfer function is raised 
by a single unit. The longest axis grows very rapidly, in one case as much as ten times. Also the 
ratio of longest to shortest axis increases approximately in the same proportions. 

The ITF method is here substantially better than the DTF method, giving approximately 
a 2-5 times shorter longest axis and a 2 or 3 times smaller ratio of longest to shortest axes. Also 
the inclination of the longest axis is less with the ITF method. 

A quite similar difference exists between the results for real and complex roots for any of the 
methods. 

The explanation can be easily found by spectral density considerations. The used noise, due 
to its autocorrelation function form, has a spectral density function falling 100 times for a decade 
of frequency change over » = 10. Moreover, the system itself damps the higher frequencies sub­
stantially. For the DTF method, when compared with the ITF method, a further damping of high 
frequencies, expressed by the additive filter (12), takes place. 

It is obvious that such changes in the transfer function of the model which affect the high 
frequency part of the respective frequency response only will under the described circumstances 
affect only a small part of the total noise energy, that is, their impact omc will be hardly noticeable. 

Therefore, the transfer function with real roots having one root substantially farther in the 
high frequency region, and the DTF method having more damping of high frequency compo­
nents, yield poorer results in this case. 

Unfortunately, the high frequency part of a frequency response characteristic is, as a rule 
the most interesting part for control applications. The input noise spectrum, the falling character 
of which is one of the sources of troubles, will hardly have a better composition in field applica­
tions. 

The matrices in table 2 were computed from Xik values computed from axes positions of the 
ellipses in figs. 12 to 15. The matrix || A ;J| was then inverted and checked with the | |a ; t | | values 
gained from measured ni a n d / i a values. There were no troubles with the sensitivity of the inversion 
process to experimental inacuracies of Xik values and a good agreement was reached. 

Of course, some of the \\Xik\\ and | |a ; )J matrices have nonzero values X0l, Xl2, a 0 1 , al2, 
which correspond to the discrepancy with the orthogonality theory mentioned in the discussion 
of fig. 12 to 15. 

The situation with the matrices \\<xik\\ in table 3 was worse. Their rows are nearly linearly 
dependent, indicating a needle form of the hyperellipsoid. The exact values of both \\Xik\\ and 
\\aik\\ matrices could be determined only by a method using the knowledge of diagonal 
values of both matrices, which are least influenced by measuring errors, and some of the most 
dependable values of \\aik\\, that is, of the values of which the inacuracy has least influence on 
the computed values. a0 2 and a 0 3 have proved to have this quality. But possible inaccuracies 
involved by this method have no effect on the S*bs max value which is here practically equal to the 
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sum of diagonal values of \\aik\\ which were measured directly 

(49) #«-«=I«..-

The validity of this approximation is based on the high ratio between ocj; and ) . u values. 
The matrices in table 3 illustrate the interesting fact that orthogonality of odd and even ai 

coefficients, expressed by X0 < = Xx2 = 0, dees not mean that there is no influence of errors in odd 
coefficients settings to even coefficients settings found by minimization of K; on the contrary, 
from the second row of both ||afJk|| matrices we find 

(50) £ = , , , . = ^ 3 

that is, a 1% error in al setting causes the value a2 to be found with a 3% error. 
This is caused by the interference of bL which is orthogonal with no c ; coefficient. A change 

in Oj setting causes a shift in the position of bx minimum, and the resulting change of bt shifts 
the o2 minimum. 

If the results in table 2 could perhaps appear yet acceptable for a practical application, this 
could hardly be said about the <5abs values in table 3. 

Like in table 2, the ITF method yields here better results. The largest axis and its ratio to the 
shortest one is approximately three times less if ITF the method is used. 

Nevertherless, the results for ITF are not acceptable for practical application. 
Together with the spectral situation already discussed one further circumstance is also respon­

sible for the poor results. In the transfer function (45), like in all transfer functions with a numer­
ator there is more room for compensation of a change of one coefficient by changes of others. 
This compensation can, e.g., limit the influence of a shift of a pole to a short portion of the. 
frequency characteristic, ranging from that pole to the next zero or pole. 

But details of the frequency response characteristic which influence only a narrow frequency-
band will have a very slight effect on the whole spectral energy of the error signal A if disturbing 
noise is present. 

An error in identifying coefficients of a transfer function has to be judged not only by its 
total value but also by its components, that is, by its direction if it is regarded as a vector. The 
influence of errors in various coefficients can add or compensate in the control loop. Ideally, 
a change, which is irrelevant for the control loop, could be allowed to be less noticeable in the 
identification process. The errors for the transfer function (45) lie nearly always in the direction 
of the longest axis because the sensitivity in this direction, (that is the change in' K for a given 
error) compared with the most favourable direction, is 2650 times less for ITF and 28700 times 
less for DTF. The direction of the longest axis is nearly the same for both ITF and DTF and can 
be expressed approximately by the ratio 

(51) <5, : <52 :<S3 = 1 : 3 : 2-5. 

Fig. 17 shows the asymptotic logarithmic frequency response characteristics of the transfer 
function (42) for nominal values (full line) and for <5T = 0-5 in the longest axis direction, that is 

(52) 8i = 0-124 ; <52 = 0-372 ; <53 = 0-31 . 

Fig. 17 proves that the changes of the individual coefficients compensate each other and the 
resulting effect on the frequency response is much less than that corresponding to an error of 
the same magnitude in any single coefficient. One may thus expect that also in a control loop 
the <5; changes will compensate to a certain extent. An exact estimation is, of course, not possible 
without some knowledge about the respective control loop. 
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Fig. 17. Effect of total error aT = 0-5 in long axis direction on frequency response. 

CONCLUSIONS 

Both studied methods yield possibilities for automation of the identification 
process from the standpoint of hypersurface x = const, form simplicity. 

The ITF method proved to be substantially better from the sensitivity standpoint 
if more than two parameters are to be determined. 

The sensitivity of both methods decreases extremely rapidly if the number of 
unknown parameters is raised. The rate of this decrease in the experiments involved 
can be very roughly expressed by two orders of magnitude per one unknown para­
meter added (that is, one order of magnitude of error increase). 

Thus, no simple straightforward method seems promising if more than three 
parameters are unknown, inspite of the favourable circumstance that errors which 
compensate from the identification method standpoint seem to compensate to a certain 
extent from the control loop design standpoint too. 

The most natural way for improving the method sensitivity seems to be some 
filtering of the signals involved which would stress the frequencies lying in the band 
most influenced by the respective coefficient changes and suppressing those which 
do not. 

(Received March 29th, 1966.) 
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Identifikace dynamických parametrů regulačních soustav 
pomocí nastavitelných modelů 

J. KRÝŽE, A. KRÝŽOVÁ, R. MIKOLÁŠ, M. SALABA 

V ÚTIA ČSAV byla ve spolupráci s pracovníky IAT AV SSSR provedena s pomocí 
stroje MUSA-6 podrobná experimentální prověrka dvou metod, užívajících modelů 
pro identifikaci dynamických parametrů soustav na základě zpracování zaznamena­
ných vstupních a výstupních signálů stochastického charakteru. 

Zejména byl podrobně prověřen vliv odchylek od správného nastavení modelů 
na hodnotu použitého integrálního kvadratického kritéria, tvar nadploch s konstantní 
hodnotou tohoto kritéria. Z výsledků jsou odvozovány závěry o možnostech iden­
tifikace dynamických parametrů za přítomnosti rušivých šumů a podrobněji osvětleny 
některé výhodné i limitující faktory v metodách zkoumaného druhu. 

Ing. Jiří Krýže, CSc, Ing. Anna Krýžová, Ing. Roman Mikoláš, lng. Miroslav Salaba, Ústav 
teorie informace a automatizace ČSA V, Vyšehradská 49, Praha 2. 
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