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KYBERNETIKA — VOLUME 7 (1971), NUMBER 3

Statistical Estimation of Deducibility
in Polyadic Algebras

IvAN KRAMOSIL

This paper is devoted to the treatment of deducibility testing in formalized theories. A method
of testing whether some given formula is or is not a theorem of the treated theory is proposed
and some of its principal properties are considered. This method is based on investigating,
whether the tested formula holds or does not hold in a sequence of randomly chosen extensions
of the theory.

The paper is divided into three parts. In the first part the necessary algebraic and logic ap-
paratus is developed, which is a slight modification of that of Halmos’ papers. In the second
part the test is designed and some of its properties are considered. The third part contains some
remarks about possibilities of practical application of this test.

The present paper is concerned with elementary problems of statistical estimation
od deducibility or non-deducibility of propositions. It is well known that the provable
propositions of a polyadic axiomatic theory form a polyadic filter, namely that
generated by a fixed element. As usual, this fixed element is said to be the axiom
of the theory. In order to eliminate degenerate cases we shall always supposc that
the theory is consistent, i.e. not every proposition of the polyadic logic is provable,
or, in other words, the axiom does not coincide with the zero element of the polyadic
algebra. The deducibility or non-deducibility of propositions is to be estimated
on the basis of a random sample. Roughly speaking, a random sample in polyadic
logic, according to our definition is nothing else but a sequence of extensions of the
given polyadic theory chosen at random by an appropriate chance mechanism.
The number of terms of this random sequence is itself a random variable.

The problem of statistical estimation of deducibility was for the first time formulated
and solved by Antonin Spadek ten years ago. His work deals with the case of Boolean
logics. The main presumption on which Spagek’s work was based was that of decid-
ability of a given proposition in every randomly chosen extension (see [1], [2]).
In the present paper we shall remove this presumption and we shall suppose, that
the probability of choosing such a “decidable” extension is “great enough”. This
generalization will enable us to derive a practical way of exploiting our theoretical
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results, for example, by using a computer. However this question will be only briefly
mentioned in this paper.

Let us describe roughly our results. First of them shows, that our treatment of a
given proposition will finish with probability one. The second shows that the prob-
ability of proclaiming a given non-theorem to be a theorem can be regulated and
can be done smaller than a given positive number. Our last results show that the
average number of steps in our treatment and all moments of this random variable
are finite and give estimations for moments and quantiles of this random variable.

The logical apparatus used in this paper is the generalization of that of polyadic
logics. We shall assume, that the notions of Boolean algebra, Boolean logic, Boolean
filter, Boolean endomorfism, existential and universal quantifier and the most
simple properties of these notions are known to the reader. All these notions are
very carefully and clearly explained in [5]. In this paper we shall continually use the
notation and results of this book.

1. GENERALIZED POLYADIC ALGEBRAS AND LOGICS

Let us remark that as a transformation we shall mean a mapping of a given set
into itself. Now let us begin with the definition of polyadic algebra. This notion
is of basic significance for this paper.

Definition 1. A quadruple (4,1, 3, S), in which

A is a given Boolean algebra,
I is a given set, the elements of which are called variables,
3 is 2 mapping from the set of all subsets of the set I into the set of all existential
quantifiers on the given Boolean algebra A4,
S is a mapping from the set of all transformations, defined on the set I into the
set of all Boolean endomorphisms on the given Boolean algebra A, is called
a polyadic algebra, if and only if the following conditions hold:
(a) If & is the identity transformation on the set I, then S(8) is the identity mapping
on the Boolean algebra A.
(b) If o and < are given transformations on the set I, and ¢ x 7 denotes their
product (composed transformation) then for every pe A

S(e x 1) p = S(0) S(r) p

where = is the symbol for the equivalence relation of the given Boolean
algebra A.

(c) If 0 is the empty subset of the set I, then 3(0) is the identity mapping on the
given Boolean algebra A4.

(d) If J, K are given subsets of the set /, then for all pe 4:

IJUK)p=3(J) AK)p.



(e) If ¢ and 7 are given transformations on the set I, if J is a subset of the set I
with the property, that for all iel — J the relation gi = 7i holds, then for
all pe A:

S(@)3() p=S(x)3(N) p.

(f) If J is a given subset of the set I and if 7 is a transformation on the set I, one-
to-one on the set t~1J, then for all p e A4:

NS p=SEIA)p.

An element p of a given polyadic algebra (4, I, 3, S) is called independent on the
given subset J of the set I, if 3(J) p = p. The element p is called closed, if the relation
3(J) p = p holds for every subset J of the set I. A subset K of the set I is called
a support of the element p, if the element 3(K) p is closed. Polyadic algebra (4, I, 3, S)
is called locally finite, if the cardinal number of the set I is equal to W, and at the
same time every element has a finite support.

Definition 2. A subset M of a given polyadic algebra is called a polyadic filter,
if it has the following three properties:

(a) fpeM,ge M, thenp A ge M,

(b)ifpeM,ge A, thenp Vv ge M,

(¢) if pe M and J js a subset of the set I, then V(J) p e M, where the symbols A
and v denote the relations of infimum and supremum of the given Boolean
algebra respectively and V(J) denotes the universal quantifier, dual according
to the existential quantifier 3(J).

The notion of a polyadic algebra was defined by P. R. Halmos [5] just in the
way we have followed in our definition. Now we shall try to generalize this notion
as follows:

Definition 3. A scquence (4, (I;,3;, S)))iz, is called a generalized polyadic
algebra or a type algebra, if for every index i the quadruple (4, 1, 3;, Si) is a polyadic
algebra and the condition '

Inl,=0

holds for every two indices j, k, j + k.

This notion will play a fundamental role in the present paper. An element p of
a given generalized polyadic algebra (A4, (I, 3;, S)))%, is called relatively closed
with respect to the variables of the type k (i.e. the elements of the set 1,) if, and only, if
this element is a closed element of the polyadic algebra (4, Iy, 3i, Si). The element p
is called absolutely closed if it is relatively closed with respect to the variables of all
types k, k = 1,2, ..., A subset J of the set I, is called a support of the type k of the

clement p, if J is a support of p in the polyadic algebra (4, I}, 3, Si). A subset J
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of the Cartesian product X I, is called an absolute support of the elements p, if for
j=1

every j = 1, 2, ... the set of all j-th coordinates of the elements of the set J is a support
of the type j of the element p. A generalized polyadic algebra is called locally finite,
if the cardinal number of every I, j = 1, 2, ... is equal to N, and if for every element p
there exists an index n and at the same time there exist indices k,, k,, ..., k, so that p
is relatively closed according to the variables of all types different from k, k,, ..., k,
and at the same time for every j = 1, 2, ..., n, p has a finite support of the type k;.

Lemma 1. Let (4,1, 3, S) be a given polyadic algebra. Let us denote by A the
subset of all closed elements of this polyadic algebra. Then A is a Boolean algebra
with respect to the same relations, operations and zero and unity elements as the
Boolean. algebra A.

Proof. From the definition of the existential quantifier (see [5]) it follows:
H(J)OEO, Jcl,

IN1tz1, Jcl, therefore 3(J)1

i

L,
INP)=3NED Y =@ p) =p', ped, T,
INpvae=3Hpvile=pvyq.

We can sce that set A is closed according to the operations of negation and supre-
mum and that the set 4 contents the elements 0 and 1. Since A < A, the conditions
of the Boolean algebra hold for all elements of 4. QED.

Remark. If k is a given index, then the set of all elements of a given generalized polyadic
algebra, that are relatively closed with respect to the variables of the type & forms the Boolean
algebra according to the relations, operations, zero and unity elements of the Boolean algebra 4.

Lemma 2. Let (4,(I, 3, S))% be a given generalized polyadic algebra.
Let us denote by A the subset of all absolutely closed elements of this generalized
polyadic algebra. Then A is a Boolean algebra to the same relations, operations,
zero and unity elements as the Boolean algebra A.

Proof. In the same way as in the proof of Lemma 1 we can derive
(Ho=0, 3(Nt=1, j=1,2,...,J =I;, therefore 0ecd, led,
yNp=p, 3J(Npva)=pvy, pged, j=1,2,..,JcI;.

If we follow again the argumentation of the proof of Lemma { we find that the
statement of Lemma 2 is valid. QED.



Definition 4. A subset M of a given generalized polyadic algebra (4, (I;, 3;, S;))2+
is called a generalized polyadic filter, if the following three conditions hold:

(@) f pe M, ge M, thenp A ge M,

(b)if peM, ge A, thenp v ge M,

(c) if pe M, then V{J)pe M for every j = 1,2, ... and every subset J of the
set 1.

It is well known from the theory of Boolean algebras that the subset I(a) of the
given Boolean algebra A, defined for a given element a of the set 4 defined by the
relation

Ha) = {x:xed,x2a}

is a filter of this Boolean algebra. We now try to generalize this result as follows:
Lemma 3. Let (4, (I, 3;, S)), be a given generalized polyadic algebra, let a
be an element of the set A. Then the set 1,(a), defined by the relation:
Ifa) = {x:xed,a £x,a 2V;(I;)... Vil ) x}

jor every k = 1,2,... and every sequence (ji, ..., j,) of indices, is a generalized
polyadic filter of the given generalized polyadic algebra.
Proof. (a) Let us suppose that pe I(a), ge A. 1t follows: (p v g) A a=(p A a) v
v (g ana)=av(qAa)= a,therefore p v q = a. From the fact thatp v ¢ 2 p
and from the properties of the universal quantifier (see [5]) it follows for all indices
Ky jis oo it
Vislljn) - Yallwy(p v @) 2 Viull;) - Valli) pz @

The definition of 1,(a) gives then the result: p v g € I,(a).
(b) Let us suppose that p, g € 1.(a). It follows:

prg)ra=(pra)r(gra)=a,

therefore p A q = a. Since V() ... V(1) p as well as V;,(1;,) ... V(I ;) g are
elements of I,(a), we have:

Vallj) - Yl (p A @) = Vulln) - Val) p A V() Vallp) g 2 a
according to what we have just proved. Therefore p A gel *(a)‘

(c) The fact that the set I.(a) is closed with respect to the universal quantifier
of any type follows directly from the definition of I(a). QED.

Definition 5. A pair (4, M) where 4 is a given generalized polyadic algebra and M
is a given generalized polyadic filter of this algebra will be called generalized polyadic
logic. If M = I,(a) for some ae A we shall call this a axiom of our generalized
polyadic logic. A generalized polyadic logic (4, M) will be called consistent if, and
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only if, there is no element p of the set 4 for which the two sentences pe M and p'e M
hold simultaneously.

It is well known and can be easily shown that in the case M = I,(a) the condition
a % 0 necessary and sufficient for the consistency of the is generalized polyadic
logic (4, I{a)).

The elements of a given generalized polyadic logic (4, M), which are at the same
time elements of the set M will be called theorems of this logic.

Definition 6. Let (4, I.(a)) be a given generalized polyadic logic. Any generalized
polyadic logic (4, I.(x)) where x < a will be called extension of the given generalized
polyadic logic (4, I.(a)).

Let us introduce one result from [1]:

Lemma 4. Let A a be given Boolean algebra. For given x € A let us denote by I(x)
the set

{y:yed, yzx}.

For any x € A I(x) is a Boolean filter of the Boolean algebra A and if a is not an
atom of A and a % 0 (and only in this case) holds the relation:

I(a) = n{I(x) : x€ 4, x > a}.
We now try to generalize this lemma as follows:

Lemma 5. Let (4, 1.(a)) be a given consistent generalized polyadic logic. Let A
be the set of all absolutely closed elements of this logic, let a be a non-zero elements,
which is not an atom of A. Then the following relation holds:

{p:ped,pelfa) n 4} = A(I(x)n 4: x < a, x A),

Proof. Let us denote by I(x) the set I,(x) n 4 for any x € 4. We know that 4
forms a Boolean algebra with respect to the operations of the Boolean algebra 4.
Therefore we can state:

(2) If p, g€ I(a), then p, gel(a), p,qc A. Therefore p A gelfa), p A ged
and it follows: p A g e I(a).

(b) If pel(a), qe 4, then pel(a)n A4, therefore pv gelyfa), pv qed
and it follows: p v g € I{a). '

We can therefore state that I(a) is a filter of the Boolean logic 4. From lemma 4

it follows: _
I(a) = n{I(x):x < a,xe A}

what is just the assertion of lemma 5. QED.



Let us explain this result in another way:

An absolutely closed element of the given generalized polyadic logic is a thcorem
of this logic if, and only, if, it is a theorem of all extensions of this logic.

We can generalize the last result by admitting the “degenerate” extensions which
are equal to I(a) and we obtain:

I(a) = n({I(x),x < a, xe 4}).

If ped, then p A ae 4, p A a £ a. Therefore
I(a) = n({I(x A a), xe 4}).

We shall say that a given generalized polyadic logic (A4, I«{(a)) is complete with
respect to the set 2 = A if and only if

Ifa)nA=n(lx Aa)nAd:xe2).

From the foregoing explanation we can see: any generalized polyadic logic
is complete at least with respect to the set of all absolutely closed elements. It is
possible in concrete cases to find proper subsets of the set 4 with the same property
but we shall not investigate this matter in this paper.

2. STATISTICAL MODEL FOR ESTIMATION OF DEDUCIBILITY

Let (A, I,(a)) be a given generalized polyadic logic with an absolutely closed
axiom a. Let us consider the following situation: Let pe A. We choose at random
an extension of our logic which is of the previously described type. We try to test
whether in this extension p is true (i.e. whether p is a theorem), or whether non p is
true. If we can decide that p is a theorem of this extension we ascribe to this extension
the number 1. If we can decide that non p is a theorem of this extension we ascribe
to it the number —1. If we can decide that p as well as non p are theorems of this
extension we ascribe to it the number 0. If we cannot decide about p or about non p
we choose step by step at random another one, two, ... but at most K elements
of our logic (wheie K is a given positive integer) and try to decide about p or non p
supposing that these elements are theorems of our extension. If we than can decide
that p is a theorem of our extension, we ascribe to this extension one of the numbers x;,
i=1,2,...,K with respect to the number of formulas we have used. If we can
decide that non p is a theorem of our extension we ascribe to it the number —1,
no matter how many formulas we have used. It we can derive in our extension p
as well as non p we ascribe to it the number 0 no matter how many elements we have
used. If we cannot decide either in presence of all those K formulas (clements) we
ascribe to it the the number 0. In this way we can ascribe a real number to any
randomely chosen extension of our logic. We than choose at random a second
extension, a third extension and so on and ascribe to them real numbers in the way
just described. We shall finish our procedure in two cases:
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First: when the number —1 is reached. In this case we proclaim:
“p is not a theorem of our logic™ .

Second: when the sum of the numbers we have ascribed to the randomely chosen
extensions reaches or exceeds a formerly given positive number N,. In this case we
proclaim:

“p is a theorem of our logic™ .

The rest of this paper will be devoted to correct description and study of this testing
procedure.

Theorem 1. a) Let (Q, &, p) be a probability space.

b) Let (A, I,{a)) be a countable consistent generalized polyadic logic which
is complete with respect 10 a subset 2 of the set A, let us suppose that card 2 = N,.

) Let the elements of the set 9 be numbered and ordered into the sequence
{a(1), a(2), ...}.

d) Let N, > 0and K = 0 be two given integers. Let for any pair (x, w) € (2 x Q)
be a given vector [y'(x, w), y*(x, ®), ..., y**!(x, ®)] of the elements of the set 2,
which has the following properties:

{w:Y(x,0) = y}e¥ forevery ye2, j=12,..,K+1,
0= vi(x @) £ yi(x 0 £ ... 2)¥x, 0) 2 Y (x,0) =x.
e) Let p be a random variable defined on the space (Q, &, u) with values in the
metric space (A, {A : A < 4}).

f) Let {t;}{2, be a sequence of random variables, defined on the space (Q, &, u)
with values in the set N of all positive integers.

Let for any x € A there exist a set T(x) = 2 and a real positive number O'Q(X)
such that

(1) Jor all ye T(x) x is not an element of H(y), )
2 p{o: a(r(w)) e TE)}{w : 16(@) = jo, - Tum1(@) = Jim1}) = ao(x)[k
for every ke N, (jo, ..., jx-1) € N&

g) For any x e 2 let be given a subset H(x) of the set A with the following pro-
perties:
If x < y then H(x) = H(y), x¢H(x) forall xeAd.

h) Let A be the set of the sums of all finite sequences, numbers of which are the
given numbers
0oy Sog-y ..., Z50=1.



i} Let {R,};%, be a sequence of transformations of the set Q into A defined in the
Jollowing way:
{w:Ry(w) =0} = Q;

{w:R,ii(w) = —1} = {&: R,(w)e <0, Ny),
Po) < (4 ~ Hla(eo)) n (4~ Ha(e@))} ©
VL0 I als(o), o) — B ot 0))] o

o (A = (" Ha(z(w)). @)} ;
{w R, (@) = R,(®) + 2;} = {®: R (w) € <0, N,), p(w) e
e (H(y***(a(r,(w)), w)) — H(*(a(r(w)). ©))) 0 I(y*(a(z,(w)), ),
non p e [H(y* (a(r,(w)), @) v (4 = I (a(r (@), o))]}, J=1,2,....K;
{@: Rysy(w) = R(w)} = {w: R,(w) € <O, Ny),
R,ii(w)¢{—1, Rfw) + o;, j = 0,..,K}}.

Then {R,}o is the sequence of random variables which with probability one
reach a value from the set {No, ) u {—1}.

Remark. The ses H(x) represents for x € 2 the set of all elements of 4, about which we cannot
decide in the extension (A, Iy(x)). 3’ represents the random mechanism by which we find
“auxiliary” elements in our procedure. R, then represents the sum of numbers ascribed to the
extensions we have already considered. The statement of our theorem can be reformulated in the
following manner: With probability one a decision will be taken about any randomly chosen closed
Sformula p.

Proof. It can be easily seen that R, reaches only the values from A for any positive
integer n and card A = N,. If f € 4, then measurability of the set

{w: R (w) =B}

is sufficient for measurability of the mapping R,.
But it can be easily that every set of the just described type can be expressed by sets
of the type

{o: p(w) € HW(a(z()), @)}, {o: po) e 1(y(a(n(w)), @)}
which can be expressed as a countable union of the sets
o - {o: p(w) e Hx)} 0 {o : y(a(z(@)), @) = x}

(analogously for I{y/(a(t,(w))))).
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Measurability of the sets of the type (1) follows from the fact that H(x) is a count-
able subset of the set 4 and p, y/, t, are random variables. As only countable unions
and intersections are used in order to describe the sets of the foregoing types the
measurability of every mapping R, is proved.

p({o 1 Ry, (p(w), w) € €0, Np)}) =

= X}E:A w{o: RNO(P(w),l;'{) (:f;)(, ::;o-)__} ; ){w : plw) = x}) (o o) = x}).

If for every x € A will hold
H({o : Rypl0), @) € 0, No)} o plo) = )
#{w : plw) = x}) '

clearly all the weighted sums will tend to 0. For the convergention of the expression

#({w : Ry(p(@), ®) € 0, No)} 1 {w : p(w) = p})
#({w : p(w) = p})

to 0 the following condition is sufficient:

No > o0,

#({e : Ry(p(w), )€ (0, No)}) > 0

for every pe A with the property pf{{w : p(w) = p}) > 0 where j denotes for every
p e A the random variable on (Q, &, 1) equal to p for every w & Q.
Let pe 4, let us denote by A4, the set:

A = {w:a(u(®)e T(p)}, k=0,1,2,...

Measurability of every set 4, can be proved in the same way as for the mappings R,.
We can easily see that the set 4, represents the event of choosing a decidable extension
by the variable 7.

Let us consider the expression u( N\ 4;). It is equal to
k

ﬂ(kénA,;) = ({0 : a(zn(@)) & (), ..., a(t(w)) & T(R)})

By decomposition of this measure into the sum of products of the conditional measures
and by using the condition f) we can state:

ﬂ(kfiji) ékljn <| _ ‘%) )

It is well known that for any real a € {0,1) there holds: e™® = 1 — a. Therefore




for any k = 1, 2, ... we have:

e ooPk > | _ 7o(p)
- k

1 —exp [—k‘im ”“IEP ] kljm( 7olr )) - u(kf:\mAk’)

and it follows:

plim sup 4;) = p( n

ics

A) = lim y( G 4) =

m m-—+w k=m

k

= lim lim y( U Ak) = lim lim (1 — u( n 4N =1,

meco nevo merao oo
because
1 =lim lim (1 — exp [— ¥ UL]EP—):D < lim lim (1 — ,u( ﬂ AN L.
m-= o n—oo k=m m—+o n—w

But this result means that with probability one a decidable extension will be chosen
infinitely many times. As N,-times choosing of a decidable extension is a sufficient
(but not a necessary) condition for reaching the set (N,, 00) U {~1}, the last result
proves our theorem. QED.

Theorem 2. Let the conditions a), b), c), d), ¢), g), h), i} of the theorem 1 hold,
and the condition f) be modified in the following way:

f) Let {1;}{2, be a sequence of random variables defined on the space (Q, &, u),
taking their values in the set of all positive integers N.

Let for any x € 4 there exist a subset U(x) of the set 2 and a real positive number
ao(x) so that the following conditions hold:

(1) for every y e U(x) x is not an element of H(y) and at the same time x is not
an element of 1(y).

0) o (e (®) < U} | (0 7o) = o - 71} 2 7L

for all indices k and all sequences (jo, jy, .- ., ju-1) of indices.

Let p({o : p(w)e A — 1(a)}) > 0. Then for Ny — oo:
p("f)v {o : Ry(w) € (N, )} | {w : plw)e 4 — I,(a)}) = 0.

Remark. Let us denote the conditional probability from the assertion of this theorem by PE,.
PE, represents the probability of reaching or overtaking the value N, under the condition that
the tested element is not a theorem. It means that PE; represents the probability of proclaiming
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a non-theorem to be a theorem. If u#({w : p(w) € A — I,(a)}) = O then PE, is not defined but
in this case only theorems can be chosen for testing and therefore the probability of proclaiming
a non-theorem to be a theorem is trivially equal to 0. The probability of refusing a theorem will
not be treated in this paper generally. But it can be easily seen that if the set of extensions formed
from the set 2 does not contain an inconsistent extension then the probability of refusing a theorem
is equal 10 0.

Proof.

w0

PE, = u( U {0: R (w)e <Ny, )} | {w: plw)e A — I(a)}) =

n=No
i U (03 Rf0) € oy 0) . p0)e 4 = L@} llor: o) ¢ (a) -
For all n = Ng, No + 1,...

{w:R[(w)e {No,koo)} < {w: Ry,(w) e <0, No)},
therefore

gv {w 1 R(w) e {No, ), p(w)e A ~ I(a)} = {w : Ry (w) e <0, N>}

and from this relation it follows:

PE; = p{w : Ry(0) € <0, Nod}) | f{r : plw) € A — I, (a)}) =

- Mo : a(ro(@)) ¢ U(p(w), ... a(en(@)) ¢ U(p(@))})
w({w: p(w)e 4 — I(a)})

By the same arguments we have used in the proof of theorem 1 it is sufficient
for our scopes to prove that the right hand side of the last equality converges to 0
for every ‘““degenerate” random variable p defined for every p e 4 in the same way
as in the proof of theorem 1. Let us denote by PE,(p) the result of the substitution
of the random variable p for the random variable p in PE,. By writing the right
hand side of the last relation as a product of conditional probabilities and use the
condition (2) we obtain:

PE,(5) = ] e afc ) VRO | {03 o) # V(R .
a0 £ U)o o) ¢ U(FO)) 5

él(l—gQ%w),.‘.,(l—%:)):ﬁl(] _Zoli_ll)>

By well-known criterion of mathematical analysis we have that PE,(p) - 0 for

©
Ny — oo because Y. o4(p)/k = co and the proof of theorem 2 is finished. QED.
k=1




The conditions concerning the sequence of variables {r;}2, may seem to be
rather complicated. We shall sce that it is not quite true. Let p be an element of our
logic (4, I(a)) about which we cannot decide whether it is or is not a theorem
of this logic. In the extension (4,I{(a A non p))(non pe A) we can decide that
non p is a theorem of this extension but p is not. Therefore the set U(p) contains
at least the element non p. If the random variables {t;}{Z, satisfy the conditions:

=1, j=01.., ¢=p{w: e =j)>0,j=01,..

and the random variables {t,}7>, are independent, then

u{o @ a(ty()) e U(x)} | {@ : 1o{®) = jor - Tems(®) = juoi}) 2
2 w({o : a(rw)) = non p}) = p({w : t(w) = jo}) = c;, > 0

where j, is the index of the clement non p. We see that the conditions (1) and (2)
of theorem 2 are in this case satisfied.

The number of steps in our procedure is not an a priori given number but it is
a random variable. The following two theorems will deal with moments and quantiles
of this random variable.

Theorem 3. Let the conditions of theorem 2 be satisfied except the condition £(2).
Let the condition £(2') holds:

f(2)  p({o: a(rw)) e TGN @ : 1o(@) = oo - or Tam1(@) = oy }) = 00(x)

for any index k and any sequence {jo, js, .-, ju-1} of indices.
Let for any pe A V(p) be the random variable defined by the relation:

{@:V(p) (0) = n} = {o: R((w), )€ (No, 0) U {~1}} .
Then the random variable V(p) has for every pe A finite moments of all orders.
Remark. 1t follows from the relations of theorem ] that the random variable ¥{p) is by the

last relation completely defined. The random variable V'(p) is sometimes (for example in [1], [2])
called the length of the heuristic r ing about the el D.

Proof. Let p be an element of the set 4. It follows from the proof of theorem 1
that the probability of choosing an undecidable extension in fixed j, steps is smaller
than or equal to (1 — ao(p))’. The probability of choosing just j undecidable exten-

sions in the first i steps is therefore smaller than or equal to (n> (1 = ao(p)). The
J
probability of choosing at most N, — 1 decidable extensions or, what is the same,

No—1 n
at least n — Ny — 1 undecidable ones is than smaller than or equal to Y ( ) .
=o\n—j

(1= a-o(p))"‘i. But choosing at least n — Ny, — 1 undecidable extensions in the
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first n steps is a necessary (but not a sufficient) condition for finishing our process
{R,} in the step n. Thus we have:

O N E N (B (R0

j
Let us denote by M,(p) the moment of the k-th order of the random variable V(p).
It follows:

o

@ Mi(p) = 3 n (- V(p) (0) = }) <

n=0

s¥we 3 ou(Y (}) (1 = ooy ) =

38 ()0 - o) o

Let us denote by A(j) the sum
()= ey,
P ) n=No+1 \J

It can be easily seen that for

o < max {[J(%;z)_l -

1 — aofp)

/ _ -1
() )
VA1 = ao(p)
the quotient of two successive members of any sum A(j) is smaller then 1 — a4(p)/2 <

< 1 and therefore by D’Alembert’s criterion any sum A(j) is finite. It follows that
My(p) is finite for any index k. QED.

Theorem 4. Let the conditions a), b), ¢}, d), €), g), h), i) of the theorem 1 hold.

Let {t;}{Zo be a sequence of random variables defined on (Q, &, y) taking their
values in the set of all positive integers N.

Let for all x € A there exist subsets U(x) = T(x) = 2 and positive real numbers
0 < 0o(x) < eo(X) <1 so that the following four conditions hold:

(1) For all ye U(x): x ¢ H(y), x ¢ I(y).

v p({o a(tw)) e Ux)H{o @ to(@) = Jos +oor Tem (@) = jioy 1) 2 ao(x)
for all (josJis ..., jx—1) € N* and all indices k.



(3) For ye T(x): x ¢ H(y). 195
4) 1({o : a(n{w)) € T(x)}{w : 16(@) = jor -+ T-1(@) = jx-1}) Z &o(x)
for all indices k and all sequences {jo, jys .- Ju—1} of indices.

Then for any pair of real positive numbers 8,, 6,, 6, < 1, 6, < 1, there exists
a positive integer S(5,, 8,) which satisfies the following two conditions:

(a) N({w : RS(a,,az)(ﬁa LO) € <0, No)}) < 6,3,

(b) K F\ {0 : R(p, w)e Ny, 0)}/{w : p(w)e A — I, (a)}) < 6,, ped.

n=No
Remark. In other words this theorem states with probability at least 1 — J, a decision about p

will be taken in the first S(d,, 8,) steps (see (@)) and at the same time the probability of proclaim-
ing a non-theorem to be a theorem will be at most equal to d,.

Proof. All the conditions of theorem 2 are satisfied and therefore we can state:
we can choose a positive integer N, in such a way that the condition (b) holds. Such
a N, will be denoted by No(5,).

It follows from the well-known Tchebysheff’s inequality that

w{w s V(p) (0) > My(p) + &}) < lllgg))

for any ¢ > 0, where D V(p) is the dispersion of the random variable ¥(p). By using
the inequality (2) we obtain:
#{o: V(p) (0) > 0 M,(p) + &) = p({w : V(p) (w) > My(p) + &}) <

_ D) _ Malp) _ 0)

e
(o omin 580 )<

For any index n

If we choose
we have

{@: R,(p, w) € {0, No)} < {w: V(p) (w) > n},
therefore if we define S(8,, 6,) by

o)
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we have

u({o : R, spf@) € <0, No)}) £ 8, ,
QED.

3. SOME REMARKS ABOUT POSSIBILITIES OF APPLICATION
OF THE PREVIOUS TESTING PROCEDURE

This last part of our paper will be devoted to a brief account of the possibilities
of practical application of our procedure for testing of the deducibility. Let us
consider a formalized mathematical theory based on the simple theory of logical
types (defmition of the simple theory of logical types see for example in [6]) It can
be casily shown that we can define on the set of all well-formed formulas (w.f.f.)
of this theory all the necessary relations, operations, quantifiers and endomorphisms
in very simple and natural way so that we obtain the structure which has all the
properties of generalized polyadic logic according to our previous definition. We shall
ommit all the details of this construction and the proof, because it is only the matter
of routine.

After what we have just said we shall try to apply the procedure of testing the
deducibility, which we have theoretically described in the previous paragraph,
to our formalized theory. There are only two things we have to solve, namely how
to precise the sense of the expression “we can (we cannot) decide about an element x,”
ot, in other words, how to define the sets H(x) and how to define the vectors
(=, @), ..., ¥{x, @)}

Let us begin with this definition:

Definition 7. Let R, s be two positive integers, let P, P,, ..., P, be well-formed
formulas of a given formalized theory A. Then as a deductive neighbourhood of the
size R of the formulas Py, P,, ..., P, we shall call and by Op(Py, Py, ..., P;) denote
the smallest set of the well-formed formulas of our theory, which satisfies the fol-
lowing conditions:

(a) If pis a w.f.f. and if there exists a proof of the formula p based on the axioms
of our theory and the formulas Py, P,, ..., P, which contains at most R formulas,
then pe Og(Py, ..., Py).

(b) For any w.f.f. A of our theory the formula A > 4 belongs to Og(Py, Py, ..., P,).

(c) If wEf. Q > Te Ok(Py, ..., P), then for every w.f.f. P '

- ((Q A P)> T)e 0P, ..., Py,
(0= (TV P)eOk(Py, Py, ..., Py).

Now let us suppose that we have for every pair (i, j), i = 0,1,...J = 0,I,...,K
a random variable 7/, defined on the given probability space (Q, &, 1) with the



values in the set of all positive integers. Let us define for every w.f.f. x:
H(x) = A — 0x((4,, .-, 4,), x)

where A is the set of all closed w.f.f. of our theory and A4, 4,, ..., 4, are its axioms.
Further let us define for every x € 4 and every pair of positive integers (i, /), j £ K:

VI a(rfw), @) = a(e(@) A aG@) A ..o aEE (@)

It can be shown that if, for example, the random variables {r{}{Z;:"¥ are mutually
independant, equally distributed and if at the same time:

wW{o (w) =i}) >0
for every index i, then all the conditions of all the theorems of part 2 are satisfied.

Therefore all the statements of those theorems hold and our testing procedure,
applied to our formalized theory has the following properties:

(a) The length of the heuristic reasoning about any element is finite with prob-
ability 1. All the moments and quantiles of this random variable are finite.

(b) The probability of proclaiming a non-theorem to be a theorem decreases to 0
with increasing parameter N.

(c) The probability of proclaiming a theorem to be a non-theorem decreases to 0
with increasing parameter R of the used deductive neighbourhood. This last statement
is based on the fact that for every theorem p of our theory there exists at least one
positive integer R(p) (namely the number of formulas in some proof of p) that in the
case we use this R(p) as the parameter of our deductive neighbourhood we cannot
come to a mistake for the testing procedure applied to p.

Let us remark that by what we have just said we have reduced our testing of
deducibility of sentences into two priciple steps; the random choice of positive
integers by some random mechanism and the investigation whether the tested sentence
belongs to some deductive neighbourhood or not. If we limit the number of all
variables in our tested theory to a finite number, then the number of all sentences
of the same length as the tested formula will be finite in every deductive neighourhood
of the type we use.

Therefore the decision procedure about belonging or not belonging of the tested
formula to a randomly chosen neighourhood can be reduced to the question, whether
the tested formula belongs or does not belong to a randomly chosen finite set. There-
fore the answer to this question can be effectively found. It is possible to compile
a programme in ALGOL or in another programming language which would formally
describe our decision procedure. The possibility of practical use of such a programme
would depend on many other circumstances, of course, for example on the cost
of such a programme or on the time necessary for its realization.

Last year the author considered the case of the formalized theories, which can
be expressed in so called Centzen’s calculus. The testing procedure considered in this
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paper was slightly modified and applied to such theories. The following results were
proved:

(a) The length of heuristic reasoning about any element is bounded and its upper
bound can be chosen in such a way that the probability of proclaiming a non-theorem
to be a theorem will be smaller than an a priori given positive number.

(b) Let us consider some formalized theory based on the first order functional
calculus. Let us express this theory in two ways, first by means of “classical” first
order functional calculus (with modus ponens as one of its deductive rules) and
second by means of Gentzen’s calculus. If we apply to the “classical” formalization
of our theory the testing procedure considered in this paper and if we apply to the
Gentzen’s formalization the modification of our testing procedure mentioned above
then, under the condition that the probability of proclaiming a non-theorem to be
a theorem is in both cases smaller than a given number, the upper bound of the
length of the heuristic reasoning about a sentence p in the “Gentzen’s” formalization
will be smaller than the expected value of this random variable in the case of the
“classical” formalization. The difference between the two quantities can be rather
essential in some cases, because if we denote as Pg the probability of choosing such
an extension of the considered Gentzen’s formalization that we can decide about
the tested sentence and if we denote as Py the probability of choosing an extension
with the same properties in the case of the “classical” formalization, then the expres-
sion Py/Pg will tend to 0 when the number of the extensions which can be chosen
with a positive probability increases or when the number of the variables of our
tested theory increases.

In the present time the author is concerned with the questions of the reduction
of this decision procedure into numerical form and elaboration of a programme
in ALGOL in order to judge the possibilities of a practical use of this testing procedure.

(Received March 13, 1970.)
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VYTAH

Statisticky odhad dokazatelnosti v polyadickych algebrach

IvaN KrAMOSIL

Prvni Gast prace je vénovana konstrukci algebraického modelu formalizovanych
teorii, zaloZenych na prosté teorii logickych typi. Zakladnim pojmem je zde pojem
zobecné&né polyadické algebry, ktera je definovana jako systém polyadickych algeber
nad danou Booleovou algebrou s disjunktnimi mnoZinami proménnych.

Préace pokraduje zavedenim pojmu absolutné uzavieného elementu, zobecn&ného
filtru a pojmit zobecnéné polyadické logiky a jejiho rozifeni. P¥es nékolik pomocnych
tvrzeni dostivime se k zdkladnimu tvrzeni této &sti prace (lemma 5), které pravi,
Ze mnoZina viech absolutné uzavienych vyrokt, které jsou pfitom teorémy dané
zobecn&né polyadické logiky, je prénikem (pfes mnoZinu viech roziifeni) mnoZin

wry

teorémit téchto rozsifeni.

V druhé &asti prace je konstruovana rozhodovaci procedura pro testovani do-
kazatelnosti. Princip metody spogiva v provéfovani pravdivosti testovaného vyroku p
v ndhodn& vybranych rozgifenich. Jestlize v ndhodn& vybraném rozsifeni umime p
dokazat, pfifadime mu hodnotu 1, umime-li v ném dokéazat p jen za urditych pfed-
pokladd, pfifadime mu jinou hodnotu z intervalu <0,1> a neumime-li v ném p
dokézat ani tehdy, pfifadime mu nulu. Hodnoty, které jsou takto ndhodné vybira-
nym roz8itenim pfifazovany, seditime a proceduru konéime, kdyz:

bud narazime na rozsifeni, ve kterém umime dokézat negaci p; pak prohlasime p
za neteorém,

nebo soucet hodnot rozifenim pfifazenych pfesdhne pfedem stanovenou mez
a pak prohlasime p za teorém.

Viechna dal§i tvrzeni zabyvaji se pak zkoumanim vlastnosti pravé popsané pro-
cedury. Tak véta 1 uvadi systémy podminek postadujicich k tomu, aby procedura
s pravd&podobnosti 1 skonéila, véta 2 pak uvadi, Ze za podminek, které vzniknou
GasteSnym zesilenim n&kterych podminek véty 1 konverguje pravd&podobnost,
Ze neteorém bude uvedenou procedurou pfijat chybné za teorém, k nule s rostouci
horni hranici, nutnou k pfijeti formule za teorém.

Véty 3 a 4 se pak zabyvaji po¢tem pokusi, nutnych k vysloveni rozhodnuti o zkou-
mané formuli, chdpanym jako ndhodna veli€ina a nazyvanym heuristickd délka
uvahy. Uvadgji se podminky, za kterych ma tato ndhodna veli¢ina kone&né momenty
a kvantily jakoZ i obecn& platné, ale v konkrétnich p¥ipasech dosti hrubé meze pro
tyto momenty a kvantily.

Diikazem t&chto vét koné&i &ast 2. V &asti 3 je pak naznaleno, Ze pfi vhodné volbg
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postupu, na jehoZ zaklad® budeme rozhodovat o pravdivosti roziifenich budou
splnény podminky vét z &asti 2. Tyto otdzky nejsou ale v této praci podrobné&ji
rozvijeny a nékteré z nich budou namétem dalsich praci.

Dr. Ivan Kramosil, CSc., Ustav teorie informace a

izace CSAV (I of Information
Theory and Automation — Czechoslovak Academy of Sciences), Vysehradskd 49, Praha 2.




		webmaster@dml.cz
	2012-06-04T21:10:35+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




