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K Y B E R N E T I K A — V O L U M E 10 (1974), N U M B E R 1 

The Possibilities of the Linear 
Discriminant Method for Decision 

JlRf POLACH 

In the paper the question of the reduction of the initial set of variables in medical decision 
problem is solved. The discriminant measure, as the criterion for ordering variables, is introduced 
and its properties are derived. "' ; 

INTRODUCTION 

Medical diagnosis is a special recognition problem characterized on the one hand 
by its statistical character and on the other hand by unequal costs of measured 
variables. 

Especially the second feature is significant for diagnostic decision making. Variables, 
by them we mean any data about a patient gained by history-taking, laboratory 
examinations, therapeutic results or even by surgery, have not the same information 
value. Also costs of the measurements of these variables are different and they can 
be hardly determinated, because they are connected with payload, the patient's 
discomfort, the risk of this health aggravation, etc. These circumstances mean for 
a diagnostician to choose such a decision strategy that will garantee sufficient infor­
mation for making a diagnosis and, at the same time, the number of variables will 
be the minimum. 

The presented method of ordering and selection of the most important variables 
is based on properties of well-known linear discriminant method for the case of 
multivariate distribution of variables, that need not be normal, in which the criterion 
for construction of the discriminant function is the maximum of the between-class 
variance in the transformed space. Ordering of variables is made possible by the 
existence of monotonicity of a certain characteristic of the mutual distinction of 
diagnostic classes. 



METHOD 

Let each patient, that can have one from s diagnoses, be described by a column 
vector x with fc components. Let us call the set of all n patients described by vector x 
the training sample from the mixed class, the set of ny patients with diagnosis y 
the training sample from the 7-th class. Further, let us denote by Uw the sample 
within-class covariance matrix, by Ub the sample between-class covariance matrix 
and by t / the sample covariance matrix of the mixed class. These matrices of order fc 
have the elements: 

n y = l ty-l 

U": < = 1 X n y (xf>-x ; ) (x<: '>-x , . ) , 
n y = l 

U: a t f - - £ (x« - x;) (xy. - x,-) , 
n ? = i 

where by x;|* we denote the values of the i-th variable measured on the £y-th patient 
from the 7-th class, by x;

7) the mean of the f-th variable of the 7-th class, by x ; the 
mean of the i-th variable of the mixed class, i.e. the class consists of all n = nl + 
+ ... + ns patients of all s classes. 

The method of linear discrimination is based on looking for such a linear trans­
formation (with a square matrix C of full rank) 

(1) z = CTx 

that maximizes the multivariate between-class variance, at the same time the within-
class variance is constant, in the transformed space. The solution is looked for by the 
method of Lagrange's multiplicators and leads to solving the eigenvalue problem 
in the non-standard form [2]: 

(2) (Uh - Ww) c = 0 , 

where c's are column vectors of the matrix C and X's Lagrange's multiplicators. 

For continuous variables x ; the matrix Uw is positive definite and Uh is positive 
semidefinite of rank (s — 1) with probability 1 under the condition: (n — s) S; k, 
s 5j fc? where n is the number of all patients of training sample from the mixed class, 
s is the number of diagnostic classes and fc is the number of all measured variables 
(see [2]). If some of the variables x ; are discrete, then non-singularity of Uw must 
be attested or eventually secured. 

Under the condition of non-singularity of Uw we can decompose it into the product 
of the upper and the lower triangular matrices 

Uw = LLT 



46 and the equation (2) will have the form 

(3) Py = Xy, 

where 
P = 2 . - 1 U 6 ( L r ) - 1 , y = Lrc. 

Now let us introduce a characteristic of the mutual distinction of diagnostic classes 
in the transformed space: 

(4) ' - ' - £ 1 ' 
where \UW\ = det U* is the within-class variance and |U*| = det U* is the variance 
of the mixed class in the transformed space. It holds: 

uz = CrUwC, U* = CrUC, U* = Uw + I/*. 

It can be shown (see [2]) that 

(5) n* = 1 
(i + i,)...(i + K~y 

where Xt #= 0 are eigenvalues of the matrix P. From (5) we can see that values of n* 
are from the interval (0, 1). The higher values of */„, correspond with better discrimi­
nation, i.e. diagnostic classes are mutually more separated in the transformed space. 
Therefore we shall call n* the discriminant measure. 

It can be proved that ?/* is invariant under non-singular linear transformations 
(i.e. the matrix of transformation is a square matrix of full rank). So, it holds 
namely 

i.e. the discriminant measure in the transformed and the original spaces are the same. 
Thus n can be computed from (6) without solving the eigenvalue problem. Further, 

as we want to compute r\ for the set of (k — 1) variables, when i-th variable is elimi­
nated, then it is enough to omit the i-th row and i-th column in the matrix Uwand U 
and to replace |UW| and |U| by determinants of obtained minors of order (k — 1). 
So, if we succeeded to prove that r\ is a monotonic function of the number of .variables, 
then we would obtain the suitable criterion for ordering and selecting variables 
according to their discriminant ability. 

Indeed, there exists a theorem on the base of which we can prove the monotonicity 
of//. 

Theorem. Let matrices Uw and Ub be symmetric and Uw positive definite. Then 
the roots I j of the equation 

d e t ( U * - X'UW) = 0 



separate the roots lj of the equation 

dst(Ub
+l - Ww

+1) = 0 , 

where Uw, Ub are the leading principle minors of Uw and Ub of order i. 

The proof of the theorem is given by Wilkinson [ l ] . 

In our case the rank of Ub (and therefore of P too) is, under above mentioned 
assumptions, equal to (5 — 1). Thus in view of the Theorem we shall have 

(7) 2 1 H U . . . H ] _ I l ^ i . 

This gives 
1 . 1 

(1 + A . ) . . . ( I + A,_.) (1 + A ' . ) . . . ( I + A ; _ , ) 

and hence 

(8) nr+1^nr, 

where nt denotes the discriminant measure calculated for the set of i variables. 

Now we can sumarize the properties of the discriminant measure n: 

1) values of n are from the interval (0, 1), 
2) it is invariant under linear non-singular transformations, 
3) it is a monotonic function of the number of variables. 

We see that n is similar to an information measure of dependence [3]. 
• \ 

ALGORITHM OF ORDERING AND SELECTING OF VARIABLES 

Let us consider the case of two classes (s = 2). 

1) Construct the sample matrices Uk, Ub, Uk and compute nk for the complete 
set of variables xt: 

IWI 

2) Choose a value of coefficient a that will determine assigned reduction of nk 

and denote 

tlo = (1 - «) Ik • 

3) Set q = 1. 
4) Compute ^ for combinations of a variables (q - l) of them have been selected 

in the preceding steps; j denotes indexes of variables that have not been selected 
in the preceding steps. Let be 

max nqJ = nql. 
J 



nqi = no 

then choose the variable x, as the best in the given step and interrupt the process of 
selecting of variables. 

5) If 

nqi < no 

choose the variable x, as the best in the given step, set q = q + 1 and go to 4). 
If we index variables according to the number of the step in which they have been 

selected we get the following sequence of combinations of variables: 

x,, x,x2 , ..., X] ... x,, t < k — 1 . 

The remaining (k — t) variables have not any substantial discriminant power 
(the discriminant measure can increase at most by 0%), so we can eliminate them 
as nonsubstantial. For the resulting combination of / variables we use the linear 
discriminant method. 

CONCLUSION 

The advantages of the presented method for the reduction of the initial set of 
variables in a diagnostic decision problem are: 

1) a normal distribution of variables needs not be assumed, 
2) an independence of variables needs not be assumed, 
3) variables can be continuous and discrete, 
4) estimations of the discriminant measure are better than those of measures 

based on probabilities namely for sets of a large number of variables. 

Disadvantages of the method are given by restrictions of linear models. 
After the information-theoretic approach of Perez [4] to the problem of the 

reduction of a system of parameters the proposed method shows other possibility 
of solving the problem. 

(Received December 7, 1972.) 
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